
Pre-print. To appear in ACM SAC 2017, Marrakesh, Morocco, April 3-6, 2017.

An approach based on design practices to specify
requirements in agile projects

Juliana Medeiros1,2, Alexandre Vasconcelos2, Miguel Goulão3, Carla Silva2, João Araújo3

Instituto Federal de Educação, Ciência e Tecnologia da Paraíba (IFPB)1,

Universidade Federal de Pernambuco (UFPE/CIN)2, Universidade NOVA de Lisboa (UNL/FCT/NOVALINCS)3,

juliana.medeiros@ifpb.edu.br, amlv@cin.ufpe.br, mgoul@fct.unl.pt, ctlls@cin.ufpe.br, joao.araujo@fct.unl.pt

ABSTRACT

The agile manifesto highlights a frequent communication with the

customer to detail his/her needs and to validate the software

requirements through frequent software deliveries. So, the agile

methods treat the Software Requirements Specification (SRS)

differently from the traditional development methods. User stories

are one of the most widely used approaches to specify

requirements in agile projects. However, empirical studies in the

industry point out that user stories are targeted to customers, only

cover simple functional requirements visible to the users, and do

not address system and non-functional requirements that are also

required for coding, testing, and maintaining. We propose an

approach to specify requirements based on design practices

targeted to the developer. We conducted an industrial case study

during eight months to evaluate the proposed approach. The initial

findings indicate that the SRS is closer to what will be

implemented, and it meets the developers’ expectations.

CCS Concepts

• Software and its engineering → Specification languages

• Software and its engineering → Agile software development

Keywords

Requirements Specification, Agile Methods, Design Practices.

1. INTRODUCTION
Since the publication of the Agile Manifesto [1] the adoption of

the Agile Software Development (ASD) has been growing. A

survey involving about 4000 people pointed out that 45% of

respondents use agile methods in the majority of projects [2].

Recent studies [3][4][5] have been conducted in the industry to

investigate the challenges of the requirements engineering in

ASD, such as low availability of the customer, poor quality of

Software Requirements Specification (SRS), inadequate

management and prioritization of the requirements. According to

the Agile Manifesto [1], the validation of requirements must be

made through frequent software deliveries. As a result, using the

SRS to validate the customer requirements is unnecessary. Thus,

the SRS should be used to support the development activities [6].

However, the User Stories (US) are written in the language of the

problem domain and its format leads to a high level description of

the software requirements, targeting the customer [7]. USs lack

detail to support the development team [8]. Even with the

continuous presence of the client during the software

development, the design information cannot be gathered because

the client is not capable of perceiving it. The design information is

neglected in SRS [8], making it difficult the activities of coding,

testing and maintaining [9] as well as the knowledge transfer in

distributed development and in high turnover teams [4][10].

USs lack expressiveness and capture only simple, customer

visible, functional requirements [3]. They do not convey enough

information for supporting the design, in complex or hardware-

dependent systems. This focus on functional requirements often

leads to overlooking technical aspects such as design constraints,

making their development harder at later stage [5][11].

Traditionally, an information system is defined regarding two

perspectives: one related to its function and the other to its

structure [12]. The functional perspective results in a high-level

description of the system's functionality from the users’ point of

view. From the structural perspective, a system is depicted

regarding entities and static relationships. Conceptual modeling is

the systematic activity of describing some aspects of the structural

and social world around for purposes of understanding and

communication [13]. According to Olivé [14], conceptual models

are needed to achieve a common understanding of the system

domain among all stakeholders. Although the conceptual

modeling and mockups are established practices in traditional

approaches, they are not systematically used in popular agile

methods, such as scrum [15] and XP [16].

To address these issues, we propose an approach called

Requirements Specification for Developers (RSD) to specify agile

requirements using to well-established design practices. RSD

provides an integrated view of the requirements linking in a

systematic way the benefits of the identification of the problem

domain concepts (conceptual modeling), the visual representation

of interface requirements (mockups), the business rules,

nonfunctional requirements-NFR and technical constraints

(acceptance criteria). The remainder of this paper is organized as

follows: Section 2 summarizes the background about ASD.

Section 3 details the RSD approach. Section 4 describes the

evaluation of the approach and threats do validity. Section 5

discusses some related work. Finally, Section 6 presents our

conclusions and directions for future work.

2. BACKGROUND
The Agile Manifesto establishes values and principles to guide the

ASD and several practices have been proposed, as shown in

"Subway map" Agile Practices [17]. From the fundamental

practices, we used Iterative Development and Incremental

Development. From the XP practices, we used Iterations and

Frequent Releases. RSD also includes three design practices:

Modeling Concepts, Modeling Mockups and Acceptance Criteria.

The latter adds three testing practices: BDD, ATDD and

Acceptance Testing. In the scope of this research, the design

practices help to bridge the gap between the problem and the

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

SAC 2017, April 03-07, 2017, Marrakech, Morocco

© 2017 ACM 978-1- 4503- 4486-9/17/04…$15.00.

DOI: http://dx.doi.org/10.1145/3019612.3019753

https://dl.acm.org/ccs/ccs.cfm?id=10011007&lid=0.10011007&CFID=546028999&CFTOKEN=53163440
https://dl.acm.org/ccs/ccs.cfm?id=10011007&lid=0.10011007&CFID=546028999&CFTOKEN=53163440

Pre-print. To appear in ACM SAC 2017, Marrakesh, Morocco, April 3-6, 2017.

solution domains, providing a better understanding for the

developer in charge to implement a feature. According to

Bjarnason [9], an SRS closer to what is implemented may reduce

the effort required to coding, testing and maintaining.

The requirements approaches employed in ASD, such as USs,

focus on functional modeling. There is no concern in defining the

conceptual model in a systematic way together with USs.

Sometimes, the data entities are generated from the classes

defined in the source code. It may end up creating an unstable

data model. An inadequate conceptual model can hinder the

inclusion of new features, the incorporation of changes and the

provision of data for business intelligence systems. Some changes

in the conceptual model have an enormous impact on code. Hence

the importance of dedicating time to design the conceptual model.

The identification of the concepts (actors) and information on the

profile of each actor is proposed in [18]. However, it does not

treat other concepts involved in the business domain and not

address the relationship between these actors, it treats only actors.

Mockups are drawings that show how the user interface is

supposed to look during the interaction between the software and

the end-user [19]. Mockups have proven to be an efficient practice

to capture and defining functional requirements. One of their

advantages is that they are technically valuable for developers

and, at the same time, fully understandable by end-users [20].

Although many tools exist for drawing screen mockups, several

professionals prefer to sketch screen mockups on paper. Mockups

improve requirements gathering, without implying an additional

effort [20]. Many agile projects require user interaction design,

but the integration of mockups into ASD is not well understood

[21]. The popular agile methods do not use the mockups as part of

their process, an exception can be found in Dynamic Systems

Development Method (DSDM). So the companies need to adapt

their processes to integrate the mockups in ASD.

RSD approach, described in next section, adopts the Acceptance

Criteria (AC) used in USs. AC is based on the concept of the

Acceptance Tests (AT) from XP [16], which defines constraints

for the USs. Since we have changed some original concepts from

AC, we defined the AC+ notation with the aim to distinguish it

from the AC. AC+ is an atomic statement that defines any need or

constraint on the operation of the system. As with AC, an AC+ is

generally understood to have a binary result: pass or fail, in which

a failure suggests the presence of a defect. However, the AC+ has

some differences regarding the AC as show in Table 1.

Table 1. Differences between AC and AC+
 AC AC+

Link
Specific to a single user story

[22];

Can be reused by several

requirements;

Scope
Focus on constraints related to

the business rules[16];

Can be a business rule,

interface, validation, technical

or any other constraint;

Oriented

to

Directed to the customer and

described at high level, without

much detail [23];

Directed to developer and

technical jargon can be used;

Writer
Should be written by

customers [16];
Any stakeholder;

Domain Problem [7]. Problem and solution.

Like Test-Driven Development (TDD), Acceptance Test Driven

Development (ATDD) also involves creating tests before coding,

and these tests represent expected behavior of the software [17].

In ATDD, the team creates one or more acceptance-level tests for

a feature before implementing it. ATDD changes the purpose of

testing by creating concrete examples of business rules for

clarifying and documenting requirements.

Behavior Driven Development (BDD) is a synthesis and

refinement of practices stemming from TDD and ATDD [17].

BDD focuses on the behavioral aspect while the TDD focuses on

the implementation aspect. BDD is usually done in a very

English-like language to help the domain experts to understand

the implementation rather than exposing the code level tests.

As in ATDD and BDD, AC+ uses concrete examples of complex

rules as a strategy to clarify the understanding of it. However,

AC+s are defined under the developer's point of view, uses a

developer-oriented language and beyond of describing functional

requirements, also include rules regarding the NFR and technical

aspects. On the other hand, ATDD and BDD only address

functional requirements.

3. REQUIREMENTS SPECIFICATION

FOR DEVELOPER (RSD)
Literature reviews [3][24] and case studies [6][9] allowed us

identifying challenges related to requirements specification in

ASD, such as language customer-oriented and reliance on tacit

requirements knowledge. We proposed the RSD approach to

encompass design practices in the SRS to provide a better

understanding to the developer about what will be implemented.

In RSD approach, the customer is involved throughout the

development process, describing his/her needs, prioritizing and

validating the requirements. In this paper, customer is a person

who buys, uses, or defines the software requirements.

In the RSD structure, customer needs and system requirements are

represented using a single view that integrates three perspectives.

The first perspective models the business concepts (entities,

attributes, and relationships). The second describes the acceptance

criteria that can represent the business rules, but also technical

requirements, NFR, or any other constraint. The third describes

the visual interface elements between the system and the user

(mockups). This provides a wider requirements coverage, when

compared to USs, which only addresses user requirements.

The conceptual modeling and the use of mockups are consolidated

practices in traditional development. Although not part of the

main agile methods, these practices are used in many agile

projects, although neither in a systematic way [21], nor integrated

into the functional requirements outlined by the US. The

innovation of our approach is to systematize the use of these

practices in ASD, and integrate the description of the functional

and technical requirements in a single view in order to provide a

SRS with the information required for coding.

3.1 Metamodel

In the RSD metamodel (Figure 1), the Requirement (functional or

non-functional) is identified by a label and has a high-level

description that succinctly describes a user or system requirement.

Figure 2 shows an example of a requirement specified using the

metamodel. Each requirement is detailed through the description

of the Concepts (from the conceptual model), Mockup, and the

Acceptance Criteria related. The Product Backlog (PB) contains a

set of requirements that are allocated to Sprints according to the

customer Priority. A requirement may have zero or more related

Mockups. Mockups are not mandatory, since there may be

requirements that do not require a visual interface with the user.

An AC+ is produced by a Stakeholder (a client or any member of

the development team), and it is verified by evaluating its Quality

Attributes. The following assertives should be considered: (i) AC+

may be applied to more than one requirement; (ii) All

Pre-print. To appear in ACM SAC 2017, Marrakesh, Morocco, April 3-6, 2017.

requirements must have at least one associated AC+; (iii) A

requirement might have AC+ with different priorities that can be

allocated to different sprints; (iv) AC+ does not need to be

associated with a Mockup.

Figure 1. MetaModel of RSD

To have an SRS targeted for the developer, the AC+ includes not

only business rules, but also validation rules, interface, technical

or any other type of constraint necessary for the system coding.

An AC+ can be categorized into six types as shown in Table 2.

Table 2. Acceptance Criteria Type
Type Description

Business (B)
Represents a restriction related to the intrinsic nature of the

business.

Validation

(V)

Represents a validation that the application needs to perform

but it is not directly related to the core business.

Interface (I) Represents any restriction related to the user interface.

Technical (T)
Represents a technical restriction on how the solution should

be implemented.

Non-

Functional

(N)

Represents concerns about tracking quality, e.g., performance

constraints, reliability constraints.

Other (O) When it does not fit in any of the previous types.

3.2 The Practices of RSD
The practices of RSD aim to detail each requirement. The process

of detailing starts with the creation of the conceptual model which

should be done considering all requirements of a sprint. Then, the

mockups are modeled, and the AC+s are specified, in parallel.

Depending on the size of the team, the sprint backlog, and

schedule, there can be multiple instances of Modeling Mockups

and Specify AC+ activities being carried out in parallel, one

instance for each requirement of the sprint. The coding of each

requirement starts as soon as the AC+ and related mockups are

specified. There is no need to wait for the detailing of all sprint

requirements.

3.2.1 Modeling Concepts
This practice aims to model the concepts (data entities) related to

the requirements of a sprint. This activity is one of the

differentials of RSD compared to other agile approaches which

focus on behavioral modeling.

It is crucial that the modeling includes all requirements of a sprint.

The requirements should not be analyzed in isolation. The joint

analysis contributes to the conceptual model become more

structured to meet future changes. It is recommended that before

meeting with the customer, the team reviews the PB and the notes

to identify potential problems that need to be clarified with the

client. Together with the customer, the analyst should sketch a

model of the concepts. However, if the customer availability is

limited, the team should at least make notes on the business rules

so that the concepts modeling can be done later without the

customer's presence. The modeling can be performed using any

tool or may be drawn on paper together with the customers.

Although this practice does not aim to identify AC+, if the

stakeholders perceive the existence of any AC+, they must be

registered in the RAC (Repository of Acceptance Criteria), even if

it is not possible yet to identify to which requirement it is related

to. Also, if new requirements or changes are identified, they must

be registered in PB in order to be analyzed.

As opposed to what is laid down in traditional approaches, RSD

approach recommends that the constraints of the technologies

being used in the project such as DBMS (Database Management

Systems), programming languages, and persistence frameworks

should be considered in this stage. This minimizes rework in the

development phase, thereby increasing agility.

The initial conceptual model is based on the requirements

allocated to the first sprint and others that the team may, due to

their background experience, have knowledge of or that can have

an impact on the architecture. It is not mandatory to change the

data entities in each sprint; it depends on the requirements

allocated to the sprint.

3.2.2 Modeling Mockups
This practice aims to model the mockups of the requirements that

require some interaction between a user and the application.

Usually, each RSD has only one associated mockup, but some

requirements may have no associated mockup. On the other hand,

some requirements may have more than one associated mockup.

In these situations, it is worth assessing whether it would be more

appropriate sub-dividing the requirement.

The team should conduct this practice together with the customer.

The mockups can be drawn using any tool or a piece of paper. In

this case, photos can be incorporated into the RSD. Depending on

the availability of the client, the team can sketch an initial version

of the mockups, taking into consideration the conceptual model. If

new requirements or changes are identified, they must be

registered in PB to be analyzed during the most convenient time.

If it is required to make changes in the conceptual model, they

should perform the guidelines described previously.

3.2.3 Specify the Acceptance Criteria+
This practice aims to identify or specifying the AC+ associated

with a requirement. It should run in parallel with the Modeling

Mockups activity. The team and the customer should specify the

AC+ together. However, to optimize time, the team can specify

some AC+ without the customer, taking into consideration the

conceptual model and the knowledge gathered from other

conversations with the customer. In fact, most of the AC+

provided by the customer has the business type. However, the

team can extract other AC+ from the data entities. Many

technical, interface, NFR, and validation rules can be reused from

other similar requirements. The AC+s are stored in RAC to

encourage the reuse during the specification and coding. Table 3

shows some of the AC+ related to a requirement of a doping

control system [25] that is illustrated in Figure 2.

Pre-print. To appear in ACM SAC 2017, Marrakesh, Morocco, April 3-6, 2017.

Table 3. Acceptance Criteria+ Examples

ID Description Type

AC01 The email address must be valid V

AC03 To save, it is necessary that all required fields (*) are filled V

AC04 Only active records must be displayed V

AC07 The age must be calculated from the date of birth V

AC08
The routine to save an athlete should also save the corresponding

addresses
T

AC09
The operation to read and write files in the file system should be

done through relative address
T

AC12
The sequential code to identify the record must be generated by

the database
T

AC13

The initials of the athlete must be extracted from the athlete’s

name, e.g., if the name is “Fabiana de Almeida Murer”, initials

must be “F.A.M”.

T

AC17 All foreign athletes must have a passport number B

AC20
The drop-down list must only display the confederations that the

user logged has access permission in your profile.
B

AC21
There cannot be two athletes with the same registration number in

the same confederation
B

AC50 The label must use the multilingual resource N

AC90 The widget is read-only I

The RSD structure (Figure 2) is divided into four parts. The first

part (top) shows the mockups associated with the requirement, if

applicable. Notice in the example that the use of the mockup

allows the visualization of the data of the athletes and how they

will be presented in the system, which facilitates the user

validation while he/her is detailing the requirement with the

development team. The second part (the left column in the table)

presents widgets that are present on the mockup. The third part

(center column) shows the data entities and attributes extracted

from the conceptual model which relate to each widget. The

widgets are also in the conceptual model related to the

requirement. However, this information (left and center column)

is targeted to the developer who will code the requirement.

 Label: Registration of athlete Priority: Critical Source: Ana Sprint: 1

 Description: The system should enable the inclusion and updating of data of

national and foreign athletes of sports federations recognized by the International

Olympic Committee

Figure 2. Example of an SRS using the RSD approach

Finally, the fourth part (right column) shows the AC+ related to

the widgets and the data entities. An AC+ may be reused for

different requirements. Reuse may also occur several times in the

same SRS, for example, AC90. AC+ does not have to be

associated with a data entity (e.g. AC7) nor to a widget (e.g.

AC12). In general, acceptance criteria which describe NFR, web

services or algorithms have no relation with widgets.

In this example, note that the AC+ could be used to detail

business-related needs (AC17 and AC21), but also to describe

information that is closer to what will be implemented, such as

validation constraints (AC01), interface (AC90), technical (AC09)

and NFR (AC50). RSD allows all these requirements to be

represented in a single and integrated form which may facilitate

the understanding of the developer. Although SRS are not

intended to be used as a requirements validation mechanism,

mockups allow validating the understanding of the needs during

the identification of the AC+ with the client. AC20 is a business

need requested by the client, but note that it is used the term

“dropdown”. RSD does not restrict the adoption of technical

terms, given that the SRS is not used to validate requirements with

the client. As said before, the validation in ASD methods, such as

RSD, is done by frequent software deliveries. Besides, the AC+

can exemplify some rules to facilitate understanding (e.g. AC13).

If USs were used to describe this requirement, the language used

would be customer-oriented and focused only on business

requirements. As a complement to the US, the company could use

mockups and the conceptual model, but in this case, the use of

such practices would not be associated with the acceptance

criteria. The integration of mockups, conceptual model and AC+

is only possible using the RSD approach. Besides, the AC+

considers other constraints beyond the business type. In RSD, the

requirements are not identified and detailed by role, as happens

when using US, but by business need, regardless the roles related

to them. An AC+ can be related to more than one stakeholder and

to more than one requirement, unlike the USs.

RSD aims to facilitate the understanding of the developer through

the link made between the AC+, the mockup of widgets and the

conceptual model. Besides, the adoption of AC+ allows that the

internal tests performed by the team and the acceptance tests

performed by the customer can be extracted directly from the

RSD, without the need to prepare another artifact for this purpose.

4. EVALUATION
Case study (CS) is a research method that can be used when it is

desired to know whether a theory applies to a specific real world

setting [26]. We conducted a CS to assess how the RSD works in

practice and gather insights to enhance it. We set out from the

principle that finding out how to solve a problem cannot be

separated from the human context. So, we took a constructivist

stance, and a CS offers the opportunity to obtain a thorough

understanding of how and why certain phenomena occur. We seek

answers to the following Research Questions (RQ): RQ1: What is

the quality of the SRS produced using RSD?; RQ2: How the RSD

approach affects the work of the team?.

This study was conducted over 8 months in the development of an

information system for doping control [25] for a federation

affiliated to the International Association of Athletics Federations.

4.1 Design and Procedures
We used the guidelines suggested by [27] composed of five steps:

Planning; Preparation; Collecting evidence; Analyzing the data

collected; and Synthesis. This study had an exploratory purpose,

and its type is classified as being single-case and as embedded

because there were two units of analysis: system analysts and

Pre-print. To appear in ACM SAC 2017, Marrakesh, Morocco, April 3-6, 2017.

developers. Data were collected and analyzed simultaneously, in

incremental and iterative steps. We used three data collection

sources: observations, analysis of documents and interviews.

We participated as observers in the team activities, such as i)

Discovery sessions with the customer to specify AC+, mockups,

and the conceptual model; ii) Acceptance testing and iii) Meetings

to analyze the impact of changes in requirements. Regarding the

analysis of documents, the development team analyzed 39 RSD

and 257 AC+. Some RSDs were related to more than one

requirement. We also analyzed 157 non-conformities (NC)

identified in the software by the team during acceptance tests, and

71 changes made in RSD (volatility). The interviews were

conducted individually with 10 team members. A questionnaire

with 38 questions was used to guide the interviews. It is available

at https://sites.google.com/site/rsdapproach/evaluation/interview.

Table 4 shows a sample of the questions. The answer of each

interview was reviewed to check if it was correctly noted and to

capture complementary information, if needed.

Table 4. Excerpt of the Interview Guide

Q8. What helps or hinders you from using the approach?

Q9. How do you assess the structure of RSD?

Q19.
How do you assess the effort required to implement the
requirements from the RSD?

Q20. How do you assess the effort required to create the RSD?

Q22. Was the quality of the RSD different from what you expected?

Q28.
How do you assess the effort required to use the RSD compared

to other approaches?
Q38. How do you assess the RSD in relation to ISO\IEEE 830?

The team assessed the quality of SRS from 2 aspects: i) Structure;

and ii) Content. The effort required and the challenges faced

when using RSD were also assessed. The quality of RSDs was

evaluated by using attributes from ISO-IEEE 830 [28]: Correct,

Unambiguous, Complete, Consistent and Ranked for Importance.

For each attribute, RSD was assessed as in Compliance (1) or

Non-compliance (0). We analyzed the correlation between

volatility, NC and the quality of RSD by using the Spearman's

correlation coefficient, also called p (rho). We analyzed the data

using IBM SPSS® Statistics Package Software. Correlation

analysis was conducted by checking the significance of the

coefficients. The findings from the triangulation of the collected

data are presented in the next section.

4.2 Results and Discussions
Scrum and several agile practices were well established in the

project, such as backlog, frequent prioritizing requirements,

iterations, frequent releases, continuous integration, automated

build, and retrospective. Each sprint lasted for a month, but partial

versions of the product were released every week. The

development team had experience with ASD. The RSD has been

prepared for two systems analysts with customer collaboration to

specify concepts, mockups, and AC+ of the business type. The

AC+ of the other types were usually specified by the analyst.

Eight developers evaluated the quality of the RSD that they used

during the project. Each analyst assessed the quality of the RSD

produced by other analysts. The most experienced developer

played the roles of architect and configuration engineer.

4.2.1 RQ1: What is the quality of the RSD?
To evaluate the RSD structure (Q9), the team used a scale from 1

(Inadequate) to 5 (Very Adequate). The structure is Very Adequate

in the opinion of most respondents (80%). The remaining

evaluated it as Adequate (4). Most interviewees (60%) pointed out

that the RSD structure is more appropriate than other approaches’

structure. USs and use cases were cited by more than 70% of

respondents as approaches that they had used previously. In the

opinion of the team (Q22), the approach provides a SRS that met

the expectations of the developers, as follows:

“The description of the functional and system requirements

through acceptance criteria leads to a developer-oriented SRS

containing descriptions on how the requirement should be

implemented. This helps us in the coding activity.” (D#3)

In the evaluation in accordance with the ISO attributes (Q38), the

developers considered that the RSD is considered Modifiable,

Traceable, and Correct. And partially Verifiable, Complete, and

Unambiguous. One respondent (analyst) considered that the RSD

did not comply with the attributes: Consistent and Ranked.

All interviewees (10) also evaluated the quality of RSD compared

to approaches used in other projects. Most interviewees

considered that the RSD quality is better in Correct and Complete

attributes. Regarding the Complete attribute, nine developers

assessed as better, just one considered as worse. Regarding

Unambiguous, Modifiable and Consistent attributes, half of the

respondents considered that the RSD is better than other

approaches used by them. The other half considered that RSD has

the same quality. 8 out of 10 respondents did not consider that the

RSD quality is worse than the other approaches. Only two (one

analyst and one developer) considered the approach worse than

other approaches in relation to the Ranked attribute. The quality

evaluation of the RSD is summarized in Table 5.

Table 5. Summary of the evaluation by quality attribute

Table 5 shows the percentage of compliance of SRS with the

quality attributes (1st column), the average quantity of NC found

in the software (2st column) and average changes made in the SRS

(3st column). For each attribute, we count the SRS evaluated as in

compliance with it (X). Then, we summed all non-conformities

related to the SRS (Y). The average was calculated as X/Y. For

example, 33 SRS were in compliance with the Correct attribute

(Y). The tests reported 101 non-conformities regarding the

requirements related (X). Therefore, the average was 101/33 =

3.06 (rounded to 3.1). The same procedure was applied to

calculate the average of volatility. The Ranked attribute had the

lowest percentage of compliance (59%). The Unambiguous

attribute had the highest percentage of compliance (95%).

The results of the statistical analysis (Table 6) showed that there

are significant correlations between some quality attributes and

the number of NC in the software. We investigated 21 relations

between a) the quality of RSD, b) NC found in the tests and c) the

changes made in RSD (volatility), as shown in Table 6.

Only five correlations were statistically significant. R12, R16, and

R20 were considered significant with a 0.01 margin of error. R11

and R17 were significant with a 0.05 margin of error. Initially, we

analyzed the relation between quality attributes (R1..R10), but no

significant correlation was found in these attributes.

Pre-print. To appear in ACM SAC 2017, Marrakesh, Morocco, April 3-6, 2017.

Then, we investigated the relations between the quality attributes

and the NC in the software (R11..R15). During the acceptance

tests, the team reported 157 NC in the software. The results

showed that the correct SRS produced three times less NC, as

shown in Table 5. R11 presented a significant correlation (p= -

0.411) between correct SRS and the amount of NC identified, i.e.,

the correct RSD had less nonconformity. The results indicated that

unambiguous SRS produced less NC (R12), with p= -0.317. Many

NC were identified in the attributes Consistency, Complete and

Ranked for Importance, but the results showed no significant

correlation between these attributes and NC.

Table 6. Results of Spearman's correlation statistical tests

We also investigated the correlation between NC and volatility

(R16). The team made 71 changes in SRS. Some SRS were

changed more than once. R16 (p = 0.405) indicated that the SRS

changed many times produced more NC in the software. Finally,

we investigated the relation between the attributes and the

volatility of SRS (R17..R21). R17 presented the highest

correlation coefficient (p = -0.510). The negative sign indicates an

inverse correlation between the amount of changes (volatility) and

correctness of the RSD. The correct SRSs had few changes. The

incomplete SRS had many changes (R20, p = -0.357). In such

requirements, it is possible that the team did not fully understand

the customer’s needs. Although many changes had been made to

these SRS, they were not considered complete and correct.

A weak correlation (not significant but p>2) was identified

between the correct and unambiguous attributes. Volatility had a

weak correlation negative with the consistency of the SRS. Also,

between correct and Ranked for Importance attribute. The RSD

structure did not represent the AC+ priority. Thus, if an AC+ had

a different priority (i.e., if an AC+ had to be implemented in

another sprint), the analyst registered this information as a note in

Redmine, a project management tool. This was the main reason

why the Ranked attribute which had only 59% of compliance

(Table 5). Below is the statement of a developer (Q8) on the issue:

“The priority of acceptance criteria should be described in the

RSD instead of Redmine. If the developer has no attention to

look at the written note in Redmine, he loses time coding AC+

allocated to another sprint.” (D#7)

It is worth to notice that the limitation stated by D#7 do not affect

any other quality attribute, nor the software conformity, nor the

SRS volatility because there are no correlations between them and

the Ranked for Importance attribute. Other limitations include

some inconsistencies identified between the conceptual model and

mockups regarding the required fields, and SRSs considered

incomplete because they were missing AC+.

4.2.2 RQ2: How the RSD approach affects the work

of the team?
RSD introduces new practices to improve SRS in ASD. Thus, we

formulated the following hypothesis: The effort required to

specify requirements using RSD is higher than using other

approaches, but the effort to implement using RSD is lower than

when implementing using other approaches. However, in the

opinion of the interviewees (Q19, Q20, Q28) the effort required

for using the RSD is not higher than using other approaches. One

analyst considered that less effort was required. The other analyst

believes that it is the same. All developers considered that RSD

required either less effort (5) than other approaches or the same

amount (5). According to most of the developers (7),

implementing RSD requires a reasonable effort, and the other

developers (3) consider that implementing from RSD requires

little effort.

According to the analysts, much effort is required to keep the

Traceability Matrix (TM) up-to-date. The TM presents the

relationship between requirements and AC+, so it helped in the

impact analysis when a request for changing requirements is

received. The TM was not properly used in the project due to the

high effort needed to keep it up-to-date. In parallel to drawing up

the SRS, the TM had to be updated manually. The same happened

when the team needed to change an AC+ and/or a requirement.

The TM was operationalized by using a spreadsheet shared among

the stakeholders. Developers reported that due to the TM being

outdated, they did not use it to identify AC+ that could be reused

in the source-code. Thus, they wasted time searching for reuse

opportunities because they had to analyze the source code, instead

of obtaining this information from the TM. However, since the

matrix was always out-of-date, it didn’t help the team. Below is

the statement of a system analyst on the issue:

“The traceability matrix is not being properly used in the

project because the manual update requires much effort. I do

not think it's worth wasting time on this. The matrix should be

extracted automatically from the documentation.” (A#1)

Although not a practice initially defined in RSD, the AC+s were

categorized by the system analysts in General (potential to be

reused in other requirements) and Specific. Analysts considered

that this categorization facilitated the search for it in the RAC and

improved the reuse. At the end of the study, the TM was updated

to examine the reuse rate of the AC+. Many AC+s were reused in

several requirements, especially the AC+ of the validation,

technical, and interface types, resulting in a reuse rate greater than

60% which improved the team productivity, as follows:

“The definition of requirements through the AC+ has

contributed to the reuse of rules used in other requirements,

which improves our productivity.” (A#2)

However, reuse depended largely on knowledge about the

existence of AC+. We identified that there were high reuse rates

of the AC+ specified by the same analyst. The reuse rate of the

AC+ specified by different analysts was much lower. Analysts

have reported difficulties to find AC+ that can be reused because

Pre-print. To appear in ACM SAC 2017, Marrakesh, Morocco, April 3-6, 2017.

it was stored as a text document. A more efficient mechanism is

required to share and find AC+. The support of a tool can increase

reuse rates. Besides storing the AC+ in a database, the tool could

provide features to locate them more efficiently.

Analysts and developers pointed out the structure of the RSD had

a positive influence on team performance, as well as the

objectivity and clarity of the RSD, as follows:

“The structure and clarity of documentation were one of the

aspects that most contributed to improving the productivity in

the execution of my activities as a developer.” (D#5)

Figure 3 summarizes the good practices (+) and limitations (-)

that affect the team's performance using RSD.

Figure 3. Factors that affect the performance using RSD

The team pointed out that the conceptual modeling was a positive

factor that contributed to the construction of a more stable data

model. Despite the incremental development and the changes in

requirements, little changes were required in the structure of the

data model during sprints, which reduced the rework.

The acceptance tests were conducted using the RSD as a

reference. This was pointed out as a good practice because it was

not necessary to create a specific artifact for testing (Q8). The

tester validates whether the software complies with each AC+. We

identified that the acceptance test could be optimized by tool to

generate a roadmap (checklist) automatically from AC+.

Therefore, the tester needs only to check or uncheck the checklist,

according to the test result. In addition to making the registration

of NC associating the AC+ related, the tool can send an email

notification to the responsible to make the necessary corrections.

Software will optimize the time of the team. Furthermore, the use

of the checklist prevents the tester to forget to validate an AC+,

thus contributing to improving the quality of testing.

4.3 Threats to Validity
The quality of the data extraction was a potential threat to the

validity. To mitigate it, data were triangulated (interviews,

observations, and analysis of documents) and two researchers

(first author and project coordinator) checked the results. This was

the main strategy for increasing credibility.

Another threat was the software engineers give answers that they

thought the researchers wanted to hear, rather than responding to

real opinion of them. To minimize this threat, the interviewees

were encouraged to critique and point out the difficulties and

limitations of the approach in order to improve it and the work of

the team. The researchers had no personal or professional

relationship with the software engineers. The confidentiality of

the answers was guaranteed, and it was reinforced with the

interviewee the importance to detail the answers as much as

possible. Also, leading questions were avoided, and probes were

defined with the objective of deepening the respondent's answers.

The subjectivity inherent in categorizing and classifying the

factors that affected the quality of SRS was tackled by

undertaking analysis based on the team’s perception. The

concepts of quality defined in ISO-IEEE 830 were used to

minimize the impact of subjectivity.

The approach could have been evaluated by other researchers or

by using another research method. These may have reduced any

bias in the results that may have resulted from the authors

conducting the evaluation. The objective of the researchers, who

themselves conducted the case study, was to identify in loco the

limitations and the difficulties that the team had in using the

approach, and also to identify best practices and strengths.

Certainly, the level of detail captured might be different from an

evaluation carried out by others.

5. RELATED WORK
Some studies were identified that propose practices to improve

SRS in agile projects. Batool [29] proposed a conceptual scrum

framework based on user stories to describe functional

requirements. Class diagrams and mockups are used but they are

not integrated with user stories. Also, the SRS lacks NFR,

technical aspects and traceability of the requirements. The

framework also adopts other artifacts such as story cards, index

cards, and vision document which affect the agility of the process.

Gebhart [30] argues that scenarios are an appropriate way to

describe a system from the user’s point of view and presents an

enhancement based it. The methodology establishes activities for

the identification of stakeholders and goals. The goals are realized

through scenarios that can be reused, are customer facing, free of

implementation and do not contain architectural decisions.

SnapMind provides a language based on mind maps to represent

both US and domain models for ASD [31]. It aims to make the

requirements modeling process more user-centered, but it does not

support technical constraints, NFR, mockups and AC.

6. CONCLUSIONS
Current techniques used to specify requirement in ASD are

customer-oriented and have been proven to be insufficient to

developers. We presented the RSD approach in order to overcome

this issue by the inclusion of design practices like conceptual

modeling, mockups and AC+, in an integrated manner. A case

study was conducted to assess how RSD works in practice, and to

gather the difficulties faced by the team when using it.

The results showed that RSD met the developer's expectations and

proved to be a very objective SRS, suitable for coding activities.

The practices introduced did not adversely affect the process

agility. The results support that RSD has the potential to reduce

the gap between the problem and solution domains, thereby

enabling the developer to acquire a better understanding of the

feature to be implemented. Also, RSD allows technical aspects to

be represented and produces an SRS that is closer to what will be

implemented. The feedback collected through interviews suggests

that RSD does not add extra effort (as suggested by 50% of the

respondents) or may even help reducing the effort involved in

coding, testing and maintenance (as suggested by the remaining

50% of the respondents).

To facilitate the adoption of RSD in practice, we are working on

the development of a tool that does the automatic extraction of

widgets from mockups, and the entities and fields from the

Pre-print. To appear in ACM SAC 2017, Marrakesh, Morocco, April 3-6, 2017.

conceptual model. The tool also provides mechanisms to describe

the AC+ considering the priority and to search the AC+ in the

repository, encouraging reuse. In the future, the tool will also

generate the traceability of the requirements and AC+, and the

skeleton (source-code) of the business classes from the conceptual

model. In addition, the tool will support the tests from the AC+

and the quality evaluation of AC+ by developers.

Also, we intend to conduct assessments in the context of other

agile projects to identify the points of convergence and divergence

regarding this empirical study and enhancing the RSD approach.

The objective of the case study was evaluating the use of the RSD

in practice and identifying its strengths and limitations. We did

not have the intention of making a comparative assessment of the

RSD with other approaches, although a few questions were asked

about it. An experiment can be conducted to evaluate the RSD

quantitatively in comparison to other approaches.

7. REFERENCES
[1] Agile Manifesto. Manifesto for Agile Software Development.

Available: http://www.agilemanifesto.org/. 2001.

[2] VersionOne. 9TH Annual State of Agile Survey. Available:

http://info.versionone.com/state-of-agile-development-

survey-ninth.html. 2015.

[3] Heikkilä, V. T., Damian, D., Lassenius, C., and Paasivaara,

M. A Mapping Study on Requirements Engineering in Agile

Software Development, 41st Euromicro, Funchal. 2015.

[4] Read, A. and Briggs, R.O. The Many Lives of an Agile Story:

Design Processes, Design Products, and Understandings in

a Large-Scale Agile Development Project. 45th Hawaii

International Conference, pp.5319,5328. 2012.

[5] Daneva, M., Van Der Veen, E., Amrit, C., Ghaisas, S.,

Sikkel, K., Kumar, R., Ajmeri, N., Wieringa, R. Agile

requirements prioritization in large-scale outsourced system

projects: An empirical study. J. Syst. Soft. 86, 5. 2013.

[6] Medeiros, J., Goulão, M., Vasconcelos, A., and Silva, C.

Towards a model about quality of software requirements

specification in agile projects. 10th QUATIC. Lisbon,

Portugal. 2016.

[7] Povilaitis, S. Acceptance Criteria. Available:

http://www.leadingagile.com/2014/09/acceptance-criteria/.

2014.

[8] Heck, P. and Zaidman, A. A quality framework for agile

requirements: a practitioner’s perspective.

http://arxiv.org/abs/1406.4692. 2014.

[9] Bjarnason, E., Wnuk, K. and Regnell, B. A case study on

benefits and side-effects of agile practices in large-scale

requirements engineering. 1st AREW. ACM, USA. 2011.

[10] Lee,J.C, Judge,T.K, McCrickard, D.S. Evaluating eXtreme

scenario-based design in a distributed agile team. CHI EA.

New York, USA, 863-877. 2011.

[11] Haugset,B., Stalhane,T. Automated Acceptance Testing as an

Agile Requirements Engineering Practice. 45th HICSS,

Maui, HI, pp. 5289-5298. 2012.

[12] Hirschheim, R., Klein, K., and Lyytinen, Kalle. Information

Systems Development and Data Modeling: Conceptual and

Philosophical Foundations. Cambridge Univ., USA. 1995.

[13] Loucopoulos, P., Zicari, R. Conceptual Modeling, Databases

and CASE: An Integrated View of Information System

Development. John Wiley & Sons, New York, USA. 1992.

[14] Olivé, A. Conceptual Modeling of Information Systems,

Springer Verlag, ISBN 978-3-540-39389-7. 2007.

[15] Schwaber, K. and Beedle, M. Agile Software Development

with Scrum. Prentice Hall PTR, NJ, USA. 2001.

[16] Beck, K. Extreme Programming Explained: Embrace

Change. Addison-Wesley, Boston, MA, USA. 1999.

[17] Agile Alliance. Practices Map. Available at:

http://guide.agilealliance.org/subway.html. 2016.

[18] Cohn, M. User Stories Applied: For Agile Software

Development. Addison Wesley, Redwood, CA, USA. 2004.

[19] Ricca, F., Scanniello, G., Torchiano, M., Reggio, G., and

Astesiano, E. Assessing the Effect of Screen Mockups on the

Comprehension of Functional Requirements. ACM Trans.

Softw. Eng. Methodol. 24, 1. 2014.

[20] Rivero, J.M., Grigera, J., Rossi, G., Luna, E. R., Montero, F.,

Gaedke, M. Mockup-Driven Development: Providing agile

support for Model-Driven Web Engineering, IST, 56,6. 2014.

[21] Ferreira, J., Noble, J. and Biddle, R. Agile Development

Iterations and UI Design, Agile Conference (AGILE),

Washington, DC, pp. 50-58. 2007.

[22] Whichard, G. Definition of Done vs. Acceptance Criteria.

http://www.governmentciomagazine.com/2014/08/definition-

done-vs-acceptance-criteria. 2014.

[23] Mamoli, S. On Acceptance Criteria for User Stories.

Available: http://nomad8.com/acceptance_criteria/. 2010.

[24] Medeiros, J., Alves, D., Wanderley, E., Vasconcelos, A. and

Silva, C. Requirements Engineering in Agile Projects: A

Systematic Mapping based in Evidences of Industry.

ESELAW, CIBSE. Peru. pp.460-476. 2015.

[25] Medeiros, F., Medeiros, J., Ayres, F., Viana, C., Rocha, J.,

Viegas, V., Mendes, E., Santos, A. An Information System to

Support the Anti-doping Process. Information Science and

Applications (ICISA). Springer Singapore. 2016.

[26] Wohlin, C., Höst, M., and Henningsson, K. Empirical

Research Methods in Software Engineering. Lecture notes in

Computer Science, 2765 7-23. 2003.

[27] Runeson, P. and Martin, H. Guidelines for conducting and

reporting case study research in software

engineering. Empirical Software. Eng. 14, 2, 131-164. 2009.

[28] ISO/IEEE 830-1998. Recommended Practice for Software

Requirements Specifications, IEEE. 1998.

[29] Batool, A., Hafeez, Y., Asghar, S., Abbas, M.A., Hassan,

M.S.. A Scrum Framework for Requirement Engineering

Practices. ISSN: 2306-1448 (online). 2013.

[30] Gebhart, M., Giessler., P., Burkhardt, P., Abeck, S. Quality-

Oriented Requirements Engineering for Agile Development

of RESTful Participation Service. ICSEA. 2014.

[31] F. Wanderley, A. Silva, J. Araujo and D. S. Silveira.

SnapMind: A framework to support consistency and

validation of model-based requirements in agile

development, IEEE 4th MoDRE, Karlskrona, Sweden. 2014.

