
NOVA LINCS Technical Report
September 2015

The GENERALIZED MIN-CUT Problem

Konstantinos Kloudas‡1, Margarida Mamede†,
Nuno Preguiça†, Rodrigo Rodrigues‡1

†NOVA LINCS, DI, FCT, Universidade NOVA de Lisboa
‡INESC-ID / IST, University of Lisbon

1Work done while the author was at NOVA LINCS

The GENERALIZED MIN-CUT Problem

Konstantinos Kloudas†2, Margarida Mamede1, Nuno Preguiça1 and
Rodrigo Rodrigues†2

1NOVA LINCS, DI, FCT, Universidade NOVA de Lisboa
2INESC-ID / IST, University of Lisbon

1 Background
This section presents the background necessary to understand the rest of the paper. We
start by presenting the basic notions from network theory, which are needed for the
presentation of the classic MIN-CUT problem, and the EDMONDS-KARP algorithm
that solves it. We focus on the MIN-CUT problem as this is the problem the closest to
ours, and our algorithm is inspired by the EDMONDS-KARP one. For a more formal
definition of the above notions, the reader can refer to [1].

1.1 Flow Networks and Flows
A flow network is a graph G(V,E) seen as a network of water pipes, each with a
specific capacity, c(i, j) ≥ 0. The capacity stands for the maximum amount of water
that can be sent through pipe e(i, j) ∈ E. Pipes are considered bidirectional, i.e., water
can flow both ways, with one direction canceling the other. The later corresponds to
the edges in G being, either undirected, or directed with two edges e(i, j),e(j, i) ∈ E
of equal capacity, and such that if k units of flow are sent from i to j, while m < k units
are sent from j to i, then the flow along e(i, j), with direction from i to j, has value
f (i, j) = k−m. In addition, a flow network has two special nodes, the source s, where
water is being pumped from, and the sink t, where water is being pumped to.

As in real water pipes, the total water flowing along an edge e(i, j) ∈ E cannot
exceed its capacity, c(i, j), and the total flow entering a node has to be equal to the one
exiting it. The only exceptions to the later are nodes s and t. More formally, we extend
the edge capacity function to every (i, j) ∈ V ×V , by defining c(i, j) = 0 whenever
e(i, j) 6∈ E, and adopt the definition of flow in [2]:

Definition 1 (Flow) A flow in G(V,E) is a real-valued function, f : V ×V → R, with
the additional constraints that:
• Capacity Constraint: −c(i, j)≤ f (i, j)≤ c(i, j), ∀i, j ∈V ;
• Symmetry Constraint: f (i, j) =− f (j, i), ∀i, j ∈V ;
• Flow Conservation: ∑ j∈V f (i, j) = 0, ∀i ∈V −{s, t}.

The value of the flow is: | f |= ∑ j∈V f (s, j).

†Work done while the author was at NOVA LINCS

1

In the MAX-FLOW problem, we are given a flow network G(V,E) with source
s and sink t and we want to find a flow whose value is maximum, that is, where the
maximum amount of flow is sent from s to t. The MAX-FLOW problem is solved by
the EDMONDS-KARP algorithm, presented below. As shown by Theorem 2, finding
the maximum flow from s to t is equivalent to finding the edges with the minimum
total capacity that, when removed, they separate s from t. The latter corresponds to the
classic MIN-CUT problem.

1.2 The Edmonds-Karp Algorithm
Before diving into the EDMONDS-KARP algorithm for solving the MAX-FLOW and the
MIN-CUT problems, we present some necessary notions, namely: residual networks
and augmenting paths.

Intuitively, the residual network G f (V,E f) of a network G(V,E) with flow f is
the graph itself with the capacities and edges transformed to represent how much more
flow can be sent on each edge. Due to the capacity constraint, given a network G and a
flow f , an edge e(i, j) of G cannot receive more than

c f (i, j) = c(i, j)− f (i, j)

additional flow, where c f (i, j) is the residual capacity of e(i, j) ∈ E. In addition, as
said earlier, pipes are bidirectional and an algorithm that tries to maximize the total
flow from s to t may need to decrease the flow on a particular edge. The latter is called
flow cancelation. To integrate this possibility, for each edge e(i, j) ∈ E, when k units
of flow are sent from i to j, the value of f (i, j) increases by k and the value of the
flow passing through the reverse edge, f (j, i), decreases by an equal amount. Flow
cancelation is illustrated in the example in Figure 1.

Given the above, the definition of residual network G f (V,E f) follows.

Definition 2 (Residual Network) Given a flow network G(V,E) and a flow f , the
residual network G f is:

G f = (V,E f), where E f = {e(i, j) ∈ E | c f (i, j)> 0}.

In G f , an augmenting path is a simple path p from s to t. That is, p is a path in G
that has spare capacity to receive additional flow. A path is simple if it contains each
node at most once. The above definition implies that paths with cycles, e.g., v→w→ v,
are not simple, thus not augmenting paths.

Definition 3 (Augmenting Path (AP)) Given a flow network G(V,E) with source s
and sink t, and a flow f , an augmenting path p is a simple path from s to t in the
residual network G f . The residual capacity of p is given by:

c f (p) = min{c f (i, j) | e(i, j) ∈ p}.

It follows from the definition of residual network that the residual capacity of an
augmenting path is always positive.

With the above notions in mind, Algorithm 1 presents the pseudocode for the
EDMONDS-KARP algorithm that solves the MAX-FLOW problem. The algorithm starts
by initializing the flow (assuming that there are two directed edges, e(i, j) and e(j, i), in
E for every pipe in G). Then, at each iteration, a new augmenting path p is discovered

2

Algorithm 1: The EDMONDS-KARP Algorithm.

1 f (i, j)← 0 for every edge e(i, j) ∈ E;
2 while (p← findPath(G f ,s, t)) 6= /0 do
3 c f (p)←min{c f (i, j) | e(i, j) ∈ p};
4 for e(i, j) ∈ p do
5 f (i, j)← f (i, j)+ c f (p);
6 f (j, i)← f (j, i)− c f (p);

7 return f ;

in the residual network G f (line 2), its residual capacity is computed (line 3), and the
path is saturated by updating the flows of the edges of the path accordingly (lines 5,6).
Here we have to note that flows are updated for both the original edge, and its reverse.
The detail that differentiates the EDMONDS-KARP algorithm from pre-existing ones
is that the exploration for new augmenting paths is done in a breadth-first way, i.e., a
shortest augmenting path is saturated first. This is done for efficiency, not correctness.
In fact, the EDMONDS-KARP algorithm runs in O(V E2) time. An example execution
of the algorithm step-by-step is shown in Figure 1.

8" 8"
V1" V2" V3"

s" t"

V4" V5" V6"

8"
8" 8"

5"

5"

7" 3"
4"

10"

V1" V2" V3"

s" t"

V4" V5" V6"

8" 5/5"

/5/5"
7" 3"

4"

5/10"
5/5" /5/10"

/5/5"
St.1"

St.2"

V1" V2" V3"

s" t"

V4" V5" V6"

8"
8" 8"

/5/5"

7" 3"

4"

5/10"
/5/10"

/5/5"
5/5"

5/5"

3/8" 3/8"
V1" V2" V3"

s" t"

V4" V5" V6"

3/8"

/5/5"
3/7" 3/3"

3/4"

2/10" /2/10"
/5/5"

5/5"

5/5"
/3/3"/3/7"

/3/8"/3/8"
/3/8"

/3/4"

3/8" 3/8"

Final"

V1" V2" V3"

s" t"

V4" V5" V6"

3/8"

5"
3/7"

3/4"

2/10" 10"
5"

3"7"

8"8"
8"

4"5/5"

5/5"

3/3"
Figure 1: An example execution of the EDMONDS-KARP algorithm. The left-hand
side presents the next path to saturate, along with the current flow, f , and capacity, c,
of each edge (written f/c, or c when f = 0), while the right-hand side shows the flow
after the saturation of the path. The only exception is the final step, where no more APs
exist and, for clarity, flows of negative value are omitted. The value of the computed
flow is 8.

3

1.3 Cuts
Now we present the definition of cut and some connections between flows and cuts.

Definition 4 (Cut) A cut in the network G(V,E) is a partition of the set of nodes V
into two sets (S,T) such that s ∈ S and t ∈ T .1 The cut-set of the cut is the set of edges
whose tail is in S and whose head is in T :

cut-set(S,T) = {e(i, j) ∈ E | i ∈ S, j ∈ T}.

The cut capacity is the sum of the capacities of the cut-set edges:

c(S,T) = ∑
e(i, j)∈cut-set(S,T)

c(i, j).

In the MIN-CUT problem, we are given a network G(V,E) with source s and sink
t and we want to find a cut whose capacity is minimum. The two following properties
relate flow values to cut capacities.

Theorem 1 Let G be a flow network, f be any flow in G, and (S,T) be any cut in G.
Then, the value of f does not exceed the capacity of (S,T), i.e., | f | ≤ c(S,T).

Theorem 2 (Max-Flow Min-Cut [1]) If f is a flow in a network G, then the following
conditions are equivalent:
• f is a maximum flow in G.
• The residual network G f contains no augmenting paths.
• | f |= c(S,T) for some cut (S,T) of G.

Upon termination of Algorithm 1, no more augmenting paths exist. From the above
theorems, this means that the value of the computed flow f is maximum and it is
equal to the capacity of the minimum cuts. The next theorem shows how to compute a
minimum cut from f .

Theorem 3 Let G(V,E) be a network with source s and sink t, and f be a maximum
flow in G. Then, (S,T) is a minimum cut in G, where:
• S = {v ∈V | ∃ a simple path from s to v in the residual network G f }
• T =V \S.

In the example in Figure 1, nodes s, V1, V2, V3, V4, and V5 are reachable from
the source s in the final residual network. So, the cut ({s,V1,V2,V3,V4,V5},{V6, t}) is
minimum and its capacity, which is given by c(V3, t)+ c(V5,V6), is 8.

2 MIN-CUT and Data-Parallel Jobs
Although the EDMONDS-KARP algorithm manages to accurately solve the MIN-CUT
problem, in this section we show that the problem itself does not fit our settings. The
reason can be traced back to a form of implicit data replication, which is inherent in
data-parallel jobs, and opens up more optimization opportunities, if leveraged. We term
this form of replication, Dataflow Forking.

Dataflow Forking stands for the case where an operator, v, forwards its (entire)
output to more than one downstream operator. Figure 2(a) presents an example, with a

1Since (S,T) is a partition of V , /0 6= S⊆V , /0 6= T ⊆V , S∩T = /0, and S∪T =V .

4

job with 2 inputs, V1 and V2, and one output V7, where the output of V3 is consumed by
downstream operators V5 and V6. We assume that the input of V2 is stored at the location
where the output, V7, is to be sent, while V1 is at a different location, and that the
weights on the edges correspond to the size of the output of the operator corresponding
to each node.

At first sight, partitioning the different operators between the locations of V1 and
V2−7 while minimizing the traffic that has to be sent from one to the other, can be seen
as a MIN-CUT problem, over the graph presented in Figure 2(b). In the figure, two
fake nodes s and t are introduced to represent the source s and the sink t of our flow
network. These are the special nodes to separate, and V1 is connected to s while V2 and
V7 are connected to t with edges of infinite capacity. This trick guarantees that these
edges will not be part of the cut-set of a minimum cut, and that V1 will belong to set S,
while V2 and V7 will belong to T . Besides, the graph seems to be undirected, but there
are two directed edges for every egde drawn, with the same weight.

(a)$

V3# V4#

V6#V5#

15# 15#

7# 7# 4#

5# 5#

V1# V2#

V7#

(b)$

s#

t#

V3# V4#

V6#V5#

15# 15#

7# 7# 4#

5# 5#

V1# V2#

V7#

(c)$

s#

t#

V3# V4#

V6#V5#

15# 15#

7# 7# 4#

5# 5#

V1# V2#

V7#

Cost%=%12% Cost%=%7%

�#

�#

�#

�#

�#

�#

Figure 2: An example where leveraging implicit replication can lead to a cheaper “cut”.
Simply solving the MIN-CUT problem in Figure 2(b), without taking into account

that e(V3,V5) and e(V3,V6) refer to the same data would result in the partitioning de-
picted, with a cost of 12. However, the fact that e(V3,V5) and e(V3,V6) refer to the same
data implies that, if V5 and V6 were placed together on a different location than V3, then
one transfer (instead of two), from the location of V3 to that of V5−6, would be enough.
In this case, the weight of the edge e(V3,V5) should be counted only once. Taking this
into account would allow for the partitioning in Figure 2(c) which has a cost of 7.

From now on, we will refer to a node representing an operator that forwards its
output to more than one downstream operator, e.g., V3, as a special node, denoted as σ.
In addition, the set of special nodes in a graph G(V,E) will be denoted as Σ⊂V . Note
that the edges between a special node σ and its children, chld(σ), have all the same
weight, denoted by w(σ). That is because the weight of an edge represents the volume
of data to be transmitted along that edge and, by definition, the full output of σ is sent
to each of its children.

3 Problem Statement
Section 2 showed that the classic MIN-CUT problem statement fails to capture the
impact of Dataflow Forking while partitioning a job’s graph, thus missing potential

5

optimization opportunities. More specifically, in a graph with a special node σ with
an output of size w(σ) and n children, algorithms for the MIN-CUT problem would
account for the cost of its transfer n×w(σ), irrespective of the final placement of the
children.

Given that the resulting partition has two sets, S and T , with s ∈ S and t ∈ T , the
placement possibilities for the children of a special node, σ ∈ Σ, are: i) all in S, ii) all
in T , and iii) some in S and some in T . Assuming σ ∈ S, in case i) none of the edges
connecting σ to its children belongs to the cut-set, thus w(σ) does not contribute to the
cut capacity, while in cases ii) and iii) w(σ) should be counted exactly once, as in both
cases, for all its children that are in T , one cross-set transfer is sufficient.

From the above discussion, if the set of children of σ that do not end up in the same
set as σ was known in advance, adding an extra node, εσ, between σ and these children
would allow to use classic MIN-CUT algorithms to optimally solve the problem. The
new node would be connected to σ and to each of σ’s children in the remote set with
edges of weight w(σ). This transformation would allow classic algorithms to find the
minimum cut because they would have the option to cut the edge between σ and εσ, thus
accounting for the corresponding transfer only once. Given that this information is not
known in advance, using existing MIN-CUT algorithms, an instance of the MIN-CUT
problem could be solved for every possible distribution of the children of σ among two
sets. In the case of Figure 2(a), this would be {{V5,V6}, /0} and {{V5},{V6}}. For the
first distribution, {{V5,V6}, /0}, an extra node would be added between σ and {V5,V6},
as described previously. For the second distribution, {{V5},{V6}}, there would be two
extra nodes, one between σ and V5, and the other between σ and V6. The final solution
would be one yielding a cut with the smallest capacity.

It is not difficult to see that the number of instances to solve, I, increases exponen-
tially with: i) the number of children per special node, as for a special node with n
children, there are 2n−1 possible distributions among two sets,2 and ii) the number of
special nodes in the graph, as for a graph with m special nodes, each with ni children
(for i = 1, . . . ,m), every distribution of the children of special node σi has to be com-
bined with all possible distributions of the children of each subsequent special node
σ j, thus resulting in:

I =
m

∏
i=1

2ni−1 = 2∑
m
i=1 ni−1. (1)

To formalize the above discussion, our problem definition must capture the fact
that, in the presence of Dataflow Forking, the job’s graph gives rise to a family of
graphs, with an instance for each possible distribution of the children of each special
node among two sets. In fact, we assume that the directed job’s graph (like that pre-
sented in Figure 2(a)) is first transformed into a symmetric directed graph, called the
original graph, Gor, by adding two new nodes, the source s and the sink t, and all
inverted edges (see Figure 2(b) or (c)). An instance of Gor is defined as:

Definition 5 (Instance) An instance of Gor(V or,Eor) is a weighted directed graph G(V,E)
obtained from Gor in the following way, where Σ⊆V or is the set of special nodes:
• All nodes of the original graph belong to the instance: V or ⊆V .
• Every edge of the original graph not connecting a special node to one of its

children belongs to the instance, with the same weight:

{e(i, j) ∈ Eor | (i ∈ Σ⇒ j 6∈ chld(i))∧ (j ∈ Σ⇒ i 6∈ chld(j))} ⊆ E.
2One of the sets can be empty.

6

• For every special node, σ ∈ Σ, with children chld(σ), there are one or two new
nodes in V , called extra nodes of σ.

– If there is only one extra node, εσ, the new vertex is connected to σ and to
all y ∈ chld(σ):

{e(σ,εσ),e(εσ,σ)} ∪ {e(εσ,y),e(y,εσ) | y ∈ chld(σ)} ⊆ E.

In this case, all children of σ are kept together.
– When there are two extra nodes, ε1

σ and ε2
σ, the children of σ are distributed

through both, according to any partition {Y1,Y2} of chld(σ). Vertex εk
σ is

connected to σ and to every y ∈ Yk (for k = 1,2):
∗ {e(σ,εk

σ),e(ε
k
σ,σ) | k = 1,2} ⊆ E;

∗ {e(εk
σ,yk),e(yk,ε

k
σ) | yk ∈ Yk ∧ k = 1,2} ⊆ E.

In both cases, the weights of the new edges are equal to that of the edges in Gor

connecting σ to its children, w(σ). The direct successors of an extra node except
the special node are called the children of the extra node. That is, chld(εσ) =
chld(σ) and chld(εk

σ) = Yk.

With the above definition, the Generalized MIN-CUT problem can be formulated
as follows.

Definition 6 (GENERALIZED MIN-CUT) Given the original graph Gor with source
s and sink t, compute a cut of some instance of Gor that separates s from t and whose
capacity is minimum across all cuts of all instances of Gor.

From the above definition, it follows that the classic MIN-CUT problem is a special
case of the GENERALIZED MIN-CUT problem, where the graph has no special nodes.

4 Solution
After formulating the new GENERALIZED MIN-CUT problem, this section presents
our novel, flow-based approximation algorithm for solving it. The main goal of our
algorithm is that the weight, w(σ), of the edges connecting a special node, σ, to each
of its children contributes at most once to the capacity of the cut computed. The reason
was explained in Section 3 and is related to the fact that all those edges refer to the
same data.

In a nutshell, our algorithm: i) finds the optimal solution when there are no special
nodes in the graph and in some cases with special nodes (e.g., when each σ has 2
children), ii) when it does not, the upper bound of its approximation error is smaller
than the error upper bound of classic MIN-CUT algorithms applied on the original
graph, and iii) its runtime complexity is O(V E2), equal to that of the EDMONDS-KARP
algorithm.

We start with an overview of the main stages of the algorithm, before presenting
the details of each one of them. Finally, an example execution of the algorithm is given
in Section 5.

4.1 Overview
An algorithm for the GENERALIZED MIN-CUT problem should achieve two goals.
These are:

7

Algorithm 2: Generalized Min-Cut Algorithm.

1 Ginit← getInitialInstance(Gor);
2 fbase← computeBaseFlow(Ginit);
3 Gcan← getCanonicalInstance(Ginit, fbase);
4 fmax← computeMaxFlow(Gcan, fbase);
5 return getMinCut(Gcan, fmax);

1. Find an instance of the family of graphs whose minimum cuts are minimum
across all cuts of all instances in the family, and

2. On the selected instance, compute a minimum cut.
The above goals are directly reflected in the general structure of the algorithm,

which is presented in Algorithm 2. Lines 1 to 3 aim at constructing a “good” instance
of the graph, while lines 4 and 5 take that instance and compute the final cut.

Looking at each step individually, getInitialInstance (line 1) builds a first in-
stance of the original graph Gor, by adding one extra node, εσ, per special node, σ ∈ Σ.
The new node intercepts the edges between σ and its children. The resulting instance
of G is called Ginit.

After constructing Ginit, computeBaseFlow (line 2) applies our novel BASEFLOW
algorithm on it. The purpose of this stage is to estimate, for each special node σ, which
of its children should be kept in the same set as σ, and which should not. BASEFLOW
has the same structure as the EDMONDS-KARP algorithm (Algorithm 1), but instead
of searching for Augmenting Paths, it searches for Restricted Augmenting Paths (Def-
inition 9).

With the flow computed by computeBaseFlow, getCanonicalInstance (line 3)
constructs a second instance of the original graph, Gcan, called a canonical instance of
Gor (Definition 12). The cut computed is a minimum cut of Gcan, which is obtained
by applying the EDMONDS-KARP algorithm (line 4) and the classical minimum cut
algorithm (line 5, Theorem 3).

The quality of the final solution depends on the success of the first three stages at
locating an instance with a minimum cut across all instances. After these initial steps,
the two remaining ones are guaranteed to find a minimum cut of the computed instance.

The above stages are discussed in detail in the remainder of this section, where
proofs of their properties are also provided. At the end of this section, Theorem 5 gives
an upper bound of the error of our estimation, while Theorem 6 shows that this upper
bound is smaller than the one of classic MIN-CUT algorithms applied on Gor.

4.2 Initial Instance Ginit

The initial instance of Gor, Ginit, is created by adding an extra node, εσ, per special
node, σ. The new node intercepts the edges connecting σ to its children, whose weights
are all w(σ). This transformation encodes the option of cutting the edge e(σ,εσ) (or its
reverse), if all chld(σ) are put together in the same set and the cost of transferring the
output of σ is counted at most once.

For graphs where all special nodes have exactly 2 children (e.g., Figure 2), this
transformation would allow any MIN-CUT algorithm to compute an optimal cut, as it
gives all options: to cut the edge between σ and εσ, if both children of σ are placed in
the complement set of σ, or to cut the edge between εσ and a child y of σ, if y is the
only child that does not belong to the set of σ. Unfortunately, this does not hold in all

8

cases, as even after the transformation, MIN-CUT algorithms may fail at locating an
optimal solution. Such an example is presented in Figure 3(a), where applying a MIN-
CUT algorithm on the transformed graph gives a cut of capacity 11 (Figure 3(b)), while
a cheaper cut (of another instance) with capacity 6 exists (Figure 3(c)). The following
steps allow our algorithm to find an optimal solution in more cases and, even when the
solution is not optimal, the upper bound of the approximation error is smaller than that
of applying a MIN-CUT algorithm on the original graph.

V4#

V9#

V5# V6# V7#

s# V3#V2#

V1#

V8#

100#

5#

5# 20#5#

4#

13#

∞#

5#

6#

1#

(a)$

Vx
4#

V9#

V5# V6# V7# t#

s# V3#V2#

V1# Vsp
4#

V8#

100#

15#

5#

5#

20#

5#

4#
13#

∞#

∞#

∞#

∞#

5#

6#

1#

(b)$

100#

V9#

V5# V6# V7# t#

s# V3#V2#

V1# Vsp
4#

V8#

5#

5# 5#

20#

6#
4#

13#

Vx
4# Vx

4#

5#

1#

15#

5#

∞#

∞#

∞#

∞#

(c)$
Figure 3: Example where the transformation in Ginit is not enough to allow MIN-CUT
algorithms to find an optimal solution.

4.3 The BASEFLOW Algorithm
After creating Ginit, computeBaseFlow applies our novel BASEFLOW algorithm on it.
The ultimate goal of this step is to estimate, for each special node σ ∈ Σ, which of
its children should be kept in the same set as σ, and which should not. As informally
stated in Section 3, this information would allow us to build an instance of Gor with an
optimal cut. The accuracy of this estimation will determine also the error of the final
approximate solution.

The structure of the BASEFLOW algorithm is exactly the same as that of EDMONDS-
KARP, presented in Algorithm 1. At each iteration, both algorithms explore the residual
network in a breadth-first manner, searching for a valid simple path from the source,
s, to the sink, t, to saturate. The only difference lies in which paths are considered
valid by each one of them (and in the definition of residual capacity of a valid path).
In EDMONDS-KARP, valid paths are called Augmenting Paths (Definition 3) and they
are simple paths in the residual network (that is, paths with positive residual capacity,
c f > 0). BASEFLOW, on the other hand, searches for Restricted Augmenting Paths
(RAPs) to saturate. RAPs, as their name reveals, are also APs, but with additional con-
straints that guarantee that the flow returned by BASEFLOW, which is called a base-
flow, “could be a flow” in any instance of Gor after performing a few minor changes.

To achieve that goal, the flow in Ginit between an extra node εσ and its children
should satisfy one of the following three properties: either there is no flow at all, which
happens immediately after the flow initialization, or it goes down, from the extra node
to the children, or it goes up, from the children to the extra node. In essence, there
cannot be two children y1,y2 ∈ chld(εσ) where the flow has opposite directions: it goes
down, f (εσ,y1)> 0, and it goes up, f (y2,εσ)> 0.

9

Definition 7 (Sets Σ0, Σdown and Σup) Let f be a flow in the initial instance Ginit, σ be a
special node and εσ be its extra node.
• Node σ belongs to Σ0 ⊆ Σ if there is no flow in any edge between εσ and its

children:
∀y ∈ chld(εσ) f (εσ,y) = 0.

Notice that, by symmetry and flow conservation (see Definition 1), this implies
that ∀y ∈ chld(εσ) f (y,εσ) = 0 and f (σ,εσ) = f (εσ,σ) = 0.

• Node σ belongs to Σdown ⊆ Σ if there is only flow going down between εσ and its
children:

∃y ∈ chld(εσ) f (εσ,y)> 0 and ∀y ∈ chld(εσ) f (εσ,y)≥ 0.

In this case, f (σ,εσ) = ∑y∈chld(εσ)
f (εσ,y)> 0.

• Node σ belongs to Σup ⊆ Σ if there is only flow going up between εσ and its
children:

∃y ∈ chld(εσ) f (y,εσ)> 0 and ∀y ∈ chld(εσ) f (y,εσ)≥ 0.

In this case, f (εσ,σ) = ∑y∈chld(εσ)
f (y,εσ)> 0.

Notice that sets Σ0, Σdown and Σup are pairwise disjoint because the flow between the
special node and its extra node satisfies the following (incompatible) properties: if σ ∈
Σ0, then f (σ,εσ) = 0; if σ ∈ Σdown, then f (σ,εσ)> 0; and if σ ∈ Σup, then f (σ,εσ)< 0.

A RAP is a restricted path from the source to the sink, and a restricted path is
a simple path in the residual network that keeps the invariant that flows between any
extra node and its children have the same “up-down” direction.

Definition 8 (Restricted Path (RP)) Let f be a flow in the initial instance Ginit(V init,E init),
and v ∈ V init. A restricted path p from s to v in the residual network Ginit

f is a simple
path from s to v in Ginit

f that imposes the following constraints, for every extra node εσ

in p:
(a) [down section] If σ→ εσ→ y belongs to p (and y ∈ chld(εσ)), then:

either σ ∈ Σdown∪Σ0 or f (y,εσ)> 0.
In the second case, if f (y,εσ) < f (εσ,σ), then the residual capacity of edge
e(εσ,y) in p and Ginit

f is c f (εσ,y) = f (y,εσ).
(b) [up section] If y→ εσ→ σ belongs to p (and y ∈ chld(εσ)), then:

either σ ∈ Σup∪Σ0 or f (εσ,y)> 0.
In the second case, if f (σ,εσ) > f (εσ,y), the residual capacity of edge e(y,εσ)
in p and Ginit

f is c f (y,εσ) = f (εσ,y).
(c) [up-down section] If y1→ εσ→ y2 belongs to p and y1,y2 ∈ chld(εσ), then:

either f (εσ,y1)> 0 or f (y2,εσ)> 0.
In the first case, the residual capacity of edge e(y1,εσ) in p and Ginit

f is c f (y1,εσ)=

f (εσ,y1); in the second case, the residual capacity of edge e(εσ,y2) in p and Ginit
f

is c f (εσ,y2) = f (y2,εσ).
The residual capacity of p is the minimum of the residual capacities of the edges in p:

c f (p) = min{c f (i, j) | e(i, j) ∈ p},

and the residual capacity of edge e(i, j) is

c f (i, j) = c(i, j)− f (i, j),

as usual, unless in the cases explicitly defined above.

10

It is important to see that the definition of RP is not ambiguous and assures that
Σ0∪Σdown∪Σup = Σ, that is, every special node σ belongs to (exactly) one of those three
subsets, after each step of the BASEFLOW algorithm. In the begining, when the flow f
is initialized, every special node belongs to Σ0. The down section constraint does not
limit flows going down where σ∈Σdown∪Σ0 and, after saturating the corresponding path
p, σ∈ Σdown. But p may cancel some flow going up. When f (y,εσ)> 0, then σ∈ Σup and
there are two different cases. If f (y,εσ) < f (εσ,σ), there is flow going up from some
sibling of y. For this reason, the residual capacity of p cannot exceed f (y,εσ) so that,
after saturating p, f (y,εσ) ≥ 0, and σ remains in Σup. Otherwise, f (y,εσ) = f (εσ,σ)
and σ may end in any of the subsets: σ remains in Σup if c f (p) < f (y,εσ); σ moves
to Σ0 if c f (p) = f (y,εσ); and σ moves to Σdown if c f (p) > f (y,εσ). The up section
constraint is dual to the first one: special nodes in Σup ∪Σ0 end in Σup and, when the
second case applies, p can only cancel some flow going down from εσ to a child y but
cannot invert the direction of the flow between εσ and y, unless there is no flow from εσ

to any other of its children. So, if f (σ,εσ)> f (εσ,y), σ will remain in Σdown and, when
f (σ,εσ) = f (εσ,y), σ will be in one of the subsets. The up-down section constraint
prohibits paths of the form y1 → εσ → y2 in special nodes of Σ0. In addition, the
composition of the three subsets will remain unchanged. If f (εσ,y1)> 0, σ∈ Σdown and,
since c f (p)≤ f (εσ,y1), after saturating p, f (εσ,y1)≥ 0 and f (εσ,y2)> 0. Therefore,
σ will be in Σdown. Otherwise, f (y2,εσ) > 0 and σ ∈ Σup. So, after updating the flow,
f (y1,εσ)> 0 and f (y2,εσ)≥ 0, which implies σ ∈ Σup.

Definition 9 (Restricted Augmenting Path (RAP)) Let f be a flow in the initial in-
stance Ginit of Gor. A restricted augmenting path p is a restricted path from s to t in the
residual network Ginit

f .

The first thing to notice is that RAPs are APs (in the sense that they are simple
paths from s to t in the residual network) with additional constraints. Consequently,
the BASEFLOW algorithm computes a flow in Ginit (Section 1.1). For the sake of con-
ciseness, it will be called a base-flow of Gor.

RAPs are crucial for the success of our algorithm, as they preserve the invariant
that every special node belongs to Σ0∪Σdown∪Σup. Figure 4 illustrates with an example
a subtle but important point of Definition 8, the residual capacity of a RAP p, c f (p),
which is the maximum flow that can be sent along p in order to saturate it. Figure 4(a)
shows a part of a graph containing a special node V1, in Ginit, with the extra node Ve
between V1 and its children. The capacity of all edges incident to Ve is 10 and initially
the flow is 0. Figure 4(b) shows Ginit

f after saturating RAP p1 = s V1→Ve→V2 t
with 4 units of flow. Now, let us consider RAP p2 = s V2 → Ve → V4 t, whose
residual capacity is 4, by Definition 8 up-down section, instead of 10, as in the general
case. Figures 4(c) and (d) depict the residual network after sending 4 and 10 units of
flow along p2, respectively. In (c), V1 ∈ Σdown whereas, in (d), the invariant is violated,
because flow goes up from V2 to Ve and goes down from Ve to V4.

In the remainder of this section, we will prove Corollary 1 which shows that the
value of a base-flow does not exceed the capacity of any cut of any instance of Gor.
Given that the instance we will use for computing the final cut is based on the flow
returned by BASEFLOW, this somehow indicates that a base-flow is a step towards the
correct solution. Here we have to remind the reader that BASEFLOW is not guaranteed
to finish with a maximum flow, as after its termination there may still be APs that are
not RAPs.

On the way towards proving Corollary 1, we also define the flow f induced by a
base-flow in an instance of Gor. The next lemma helps proving that f is a flow.

11

RAP$

V1#

V2# V3# V4#

10#
10# 10#

Ve#
10#

(a)$ (b)$

V1#

V2# V3# V4#

4/10#
10#

10#Ve#
4/10#

*4/10#

*4/10#

(c)$

V1#

V2# V3# V4#

0/10#
10#

Ve#
4/10#

0/10#

*4/10########

4/10#
*4/10#

(d)$

V1#

V2# V3# V4#

*6/10# 10# 10/10#

Ve#
4/10#

6/10#

*4/10########

*10/10#

Correct$$
C
f (p

2)$=$4
$

Figure 4: An example of right and wrong residual capacities of RAPs.

Lemma 1 Let fbase be a base-flow. For every special node σ ∈ Σ:
• ∑y∈chld(εσ)

fbase(y,εσ) = fbase(εσ,σ) ∈ [−c(εσ,σ),c(εσ,σ)].
• ∑y∈chld(εσ)

fbase(εσ,y) = fbase(σ,εσ) ∈ [−c(σ,εσ),c(σ,εσ)].

Proof Given that flows between εσ and its children have the same direction, flow
conservation implies that the total flow entering the extra node equals the total flow
exiting it. If flows go up, then the flow exiting εσ is upper bounded by c(εσ,σ),
due to the capacity constraint, while if they go down, the flow entering εσ is upper
bounded by c(σ,εσ). The lower bounds come from symmetry. For instance, if flows
go up, fbase(σ,εσ) = − fbase(εσ,σ) ≥ −c(εσ,σ). So fbase(σ,εσ) ≥ −c(σ,εσ), because
c(εσ,σ) = c(σ,εσ) = w(σ).

Definition 10 (Flow Induced by Base-Flow) Let Ginit(V init,E init) be the initial instance
of Gor, G = (V,E) be any instance of Gor, and fbase be a base-flow. The flow induced
by fbase in G is the function f : E→ R defined as follows.
• f (vi,v j) = fbase(vi,v j)

– if neither vi nor v j is an extra node or
– if vi or v j is the only extra node of some special node σ ∈ Σ.

• For every special node σ ∈ Σ with two extra nodes in V , ε1
σ and ε2

σ, let εσ denote
the extra node in V init. In this case, for k = 1,2:

– f (εk
σ,y) = fbase(εσ,y) and f (y,εk

σ) = fbase(y,εσ), for every y ∈ chld(εk
σ);

– f (εk
σ,σ) = ∑y∈chld(εk

σ)
f (y,εk

σ) and f (σ,εk
σ) = ∑y∈chld(εk

σ)
f (εk

σ,y).

Notice that the flow induced by a base-flow fbase in the initial instance is fbase.

Lemma 2 Let fbase be a base-flow and G be an instance of Gor. The flow induced by
fbase in G is a flow in G whose value is | fbase|.

12

Proof Let f be the flow induced by fbase in G. To prove that f is a flow in G,
we have to show that it satisfies i) the capacity constraint, ii) symmetry and iii) flow
conservation. Symmetry comes directly from the definition of f and fbase being a flow.
The others follow from Lemma 1 and the fact that {chld(ε1

σ),chld(ε2
σ)} is a partition

of chld(εσ). Flow values are equal because all vertices adjacent to the source belong to
the original graph.

The main result of this section follows.

Corollary 1 Let G be any instance of Gor. The value of a base-flow does not exceed
the capacity of any cut in G.

Proof This is a direct consequence of Theorem 1 and Lemma 2.

4.4 Canonical Instance
The purpose of computing a base-flow in the previous step is to estimate which of the
children of a special node σ should be kept in the same set as σ, and which should not.
With this information available, getCanonicalInstance creates a canonical instance
of Gor, Gcan, which is the instance on which we are going to compute a minimum cut.
In this instance, each special node is connected to one or two extra nodes, based on the
“natural partition” of Gor w.r.t. fbase (Definition 11). The natural partition separates the
nodes reachable from the source in the residual network Ginit

fbase
, from the unreachable

ones, like the partition defined in Theorem 3, but considering restricted paths.

Definition 11 (Natural Partition of Gor) Let Ginit be the initial instance and fbase be a
base-flow of Gor(V or,Eor). The natural partition of Gor w.r.t. fbase is the pair (Sor,T or),
where:
• Sor = {v ∈V or | ∃ a restricted path from s to v in the residual network Ginit

fbase
}

• T or =V or \Sor.

From the definition, we see that Sor contains all nodes v of the original graph for
which there is a restricted path from s to v, while T or contains the rest. The two sets are
guaranteed to be disjoint, s ∈ Sor because s is a restricted path from s to s, and t ∈ T or

because there is no RAP after termination of the BASEFLOW algorithm.
We are now ready to define the canonical instance of Gor w.r.t. a base-flow.

Definition 12 (Canonical Instance) Let fbase be a base-flow of Gor and (Sor,T or) be
the natural partition of Gor w.r.t. fbase. The canonical instance Gcan of Gor w.r.t. fbase is
defined as follows. For every special node σ ∈ Σ:
• if chld(σ)⊆ Sor or chld(σ)⊆ T or, there is only one extra node in Gcan;
• otherwise, there are two extra nodes in Gcan, ε1

σ and ε2
σ, and:

chld(ε1
σ) = chld(σ)∩Sor and chld(ε2

σ) = chld(σ)∩T or.

A canonical instance is an instance of Gor because, whenever there are two extra
nodes of a special node, {chld(ε1

σ),chld(ε2
σ)} is obviously a partition of chld(σ). That

is, besides none of the sets being empty, we have:

chld(ε1
σ)∪ chld(ε2

σ) = chld(σ) and chld(ε1
σ)∩ chld(ε2

σ) = /0.

13

4.5 Final Cut and Approximation Error
The final step, after finding the canonical instance of Gor, is the computation of a
minimum cut in that particular instance. To do this, we apply the classic EDMONDS-
KARP algorithm on Gcan. Here we have to note that we do not re-explore already
saturated (restricted) augmenting paths because, instead of initializing the flow with 0,
it is initialized with the flow in the canonical instance induced by the base-flow.

The remainder of the section is dedicated to providing upper bounds for the ap-
proximation error and showing that the upper bound of our solution is smaller than that
of directly applying a MIN-CUT algorithm on Gor. In doing so, we define the natural
cut of Gcan (Definition 13), which extends the natural partition of Gor (Definition 11)
to the set of nodes of Gcan, distributing the extra nodes among the partion sets.

Definition 13 (Natural Cut of Canonical Instance) Let (Sor,T or) be the natural par-
tition and Gcan(V can,Ecan) be the canonical instance of Gor(V or,Eor) w.r.t. the same
base-flow fbase. The natural cut of Gcan is the pair (S,T) built as follows:
• Sor ⊆ S and T or ⊆ T

(nodes shared by all instances of Gor belong to the corresponding sets);
• every extra node ε ∈V can \V or belongs to the set of its children:

– if chld(ε)⊆ Sor, then ε ∈ S;

– if chld(ε)⊆ T or, then ε ∈ T .

Note that, although a cut, the natural cut is not necessarily a minimum cut of Gcan.
Its capacity is given by Theorem 4. The proof of Theorem 4 makes use of several
results, which basically analyse all types of edges that may belong to the cut-set. We
present them in an appendix, for ease of reading.

Theorem 4 Let fbase be a base-flow of Gor, Gcan be the canonical instance of Gor w.r.t.
fbase and (S,T) be its natural cut. Let also P be the set of special nodes σ ∈ Σ that
satisfy one of the two following conditions:

(a) σ ∈ Σup∪Σ0, σ ∈ S and σ has two extra nodes in Gcan;
(b) σ ∈ Σdown, σ ∈ T and σ has two extra nodes in Gcan.

Then,
c(S,T) = | fbase|+ ∑

σ∈P
w(σ) ,

where w(σ) is the weight of the edges between σ and its children.

Proof Let f be the flow induced by fbase in Gcan and e(i, j) be an edge of Gcan

such that i ∈ S and j ∈ T . Then, there are three possible cases for i and j.
1. Neither i nor i is an extra node. From Lemma 4 (a), f (i, j) = c(i, j).
2. i ∈ Σ and j is an extra node of i (so chld(j)⊆ T):

(a) If i ∈ Σup, by Lemma 5 (a), it has two extra nodes and, by Lemma 3 (b),
f (i, j) = 0. But i ∈ P and w(i) belongs to the summation.

(b) If i ∈ Σ0, by Lemma 7 (a), it has two extra nodes and, by Lemma 3 (a),
f (i, j) = 0. But i ∈ P and w(i) belongs to the summation.

(c) If i ∈ Σdown, by Lemma 4 (c), f (i, j) = c(i, j).
3. i is an extra node of j ∈ Σ (so chld(i)⊆ S):

(a) If j ∈ Σup, by Lemma 4 (b), f (i, j) = c(i, j).
(b) j 6∈ Σ0, by Lemma 7 (b).
(c) If j ∈ Σdown, by Lemma 5 (b), it has two extra nodes and, by Lemma 3 (c),

f (i, j) = 0. But j ∈ P and w(j) belongs to the summation.

14

The next proposition states some sufficient conditions for the computed cut to be
an optimal cut.

Corollary 2 Let fbase be a base-flow of Gor, Gcan be the canonical instance of Gor w.r.t.
fbase, (S,T) be its natural cut, and β be the minimum capacity of a cut of some instance
of Gor. If no special node σ ∈ Σ satisfies one of the following conditions:

(a) σ ∈ Σup∪Σ0, σ ∈ S and σ has two extra nodes in Gcan;
(b) σ ∈ Σdown, σ ∈ T and σ has two extra nodes in Gcan,

then c(S,T) = β.

Proof By Theorem 4, c(S,T) = | fbase|. By Corollary 1, | fbase| ≤ β. Finally,
c(S,T)) 6< β because (S,T) is a cut of an instance of Gor.

Corollary 2 is especially important as it shows that the computed cut is optimal, if
any of the following holds:
• there is no special node in the graph;
• the cut-set of the natural cut does not contain any edge between a special node

with two children and one of its extra nodes;
• the residual network of the canonical instance (with respect to the flow induced

by fbase) has no APs.
Finally, Theorem 5 gives an upper bound of the approximation error of the cut

computed by our algorithm, i.e., after computing a minimum cut of a canonical instance
of Gor.

Theorem 5 Let (S,T) be a minimum cut of a canonical instance of Gor and β be the
minimum capacity of a cut of some instance of Gor. Then,

c(S,T)≤ β+ ∑
σ∈Σ

w(σ) ,

where w(σ) is the weight of the edges between σ and its children.

Proof
First of all, c(S,T) ≤ c(S′,T ′), where (S′,T ′) is the natural cut of the canonical

instance. In addition, by Theorem 4, c(S′,T ′) ≤ | fbase|+∑σ∈Σ w(σ), where fbase is a
base-flow of Gor, and | fbase| ≤ β by Corollary 1.

The above shows that the upper bound of the approximation error of our solution
is ∑σ∈Σ w(σ). With this in mind, Theorem 6 computes the upper bound of the approx-
imation error of applying a MIN-CUT algorithm on Gor.

Theorem 6 There are original graphs Gor with any positive number of special nodes
that satisfy the following property, where (S,T) is a minimum cut of Gor, β is the
minimum capacity of a cut of some instance of Gor, and w(σ) is the weight of the edges
between special node σ and its children:

c(S,T) = β+ ∑
σ∈Σ

(|chld(σ)|−1)×w(σ) .

Proof We initially analyse a graph with a single special node (see Figure 5(a)),
before generalizing the result for a graph with an arbitrary number of special nodes
(Figure 5(b)). In both figures, the minimum cut is shown with a dashed line.

15

Vx#

V1# V3# Vn#

w#

>nw#
s"

w#

V2# …"

t"
>w# >w#

(a)"

Vx#

>n1w1# s"

t"

w1#
Vx#

>n2w2#

w2#
…" Vx#

>nkwk#

wk#

Vx# Vx# Vx#

>n1w1#
>n2w2# >nkwk#

(b)"
Figure 5: Approximation error of a MIN-CUT algorithm on the GENERALIZED MIN-
CUT problem.

In the case of a graph with a single special node, VX , shown in Figure 5(a), the
capacity of the minimum cut is equal to n×w, where n is the number of children of
VX , whereas β = w, as all edges belonging to the cut-set refer to the same data. Notice
that β is the capacity of the minimum cut of the initial instance of the graph.

Generalizing this to a graph with multiple special nodes (Figure 5(b)), the capacity
of the minimum cut in 5(b) is ∑

k
i=0 ni×wi, while β = ∑

k
i=0 wi, which is the capacity of

the minimum cut of the initial instance.

Theorem 6 shows that the capacity of the cut computed by a MIN-CUT algorithm
can differ by up to ∑σ∈Σ(|chld(σ)| − 1)×w(σ) from the optimal solution, with the
latter being bigger than the upper bound of the error of our algorithm (Theorem 5).

5 Putting it all together
This section presents an example execution of our algorithm for solving the GENER-
ALIZED MIN-CUT problem (see Figure 6). Following the example in Figure 1, in the
first two steps, on the left-hand side we present the path to saturate along with the cur-
rent flow and capacity of each edge (f/c), while on the right-hand side we show the
flow after the saturation of the path. Flows of value 0 are omitted.

As we can see from the figure, Step 1 (left) presents the initial instance of the graph,
Ginit, along with the first RAP to saturate. Ginit has two RAPs, which are saturated in
Steps 1 and 2. Notice that the AP:

s→V1→V5→V8→V6→V x
4 →V7→V3→ t

is not a RAP because the up-down section V6→V x
4 →V7 violates Definition 8(c). Since

there are no more RAPs, the flow obtained after the second step is the base-flow.
To create the canonical instance Gcan, in Step 3, we need to find the set of nodes

of the original graph that are reachable from s by a restricted path, which is Sor =
{s,V1,V5,V8,V6}. Since V5 and V6 belong to Sor but V7 does not, special node V sp

4 has
two extra nodes in Gcan: one, V x

4,1 connects to V5 and V6 and the other, V x
4,2, connects

to V7. The flow in Gcan induced by the base-flow is straightforwardly computed. In the
natural cut of Gcan, (S,T), set S = Sor ∪{V x

4,1}, because the children of V x
4,1 belong to

S. Likewise, T = T or∪{V x
4,2}.

16

Vx
4$

V9$

V5$ V6$ V7$ t$

s$ V3$V2$

V1$ Vsp
4$

V8$

100$ 100$

15$ 15$

5$ 5$

5$ 5$ 5$
5$

5$
5$

20$ 20$

1$
1$

6$
6$

4$4$
13$

13$

Vx
4$

V9$

V5$ V6$ V7$ t$

s$ V3$V2$

V1$ Vsp
4$

V8$

1/100$ 21/100$

15$

5$

5$
5$5$

20$

1/1$
21/1$

1/6$
21/6$

4$
13$

St.1$

�$

�$

�$

�$

1/∞$

�$

�$

1/∞$

St.2%
Vx

4%

V9%

V5% V6% V7% t%

s% V3%V2%

V1% Vsp
4%

V8%

1/100% 41/100%

15% 15%

5% 5%

5% 5% 5%
5%

5%

5%

20% 20%

1/6%
41/6%

4%4%
13%

1/1%
41/1%

Vx
4%

V9%

V5% V6% V7% t%

s% V3%V2%

V1% Vsp
4%

V8%

6/100% 46/100%

45/15% 5/15%

45/5% 5/5%

5% 5%
5%

5/5%
45/5%

20% 20%

1/6%
41/6%

4%4%
13%

1/1%
41/1%

6/∞%1/∞%

∞%

∞%

1/∞% 1/∞%

5/∞%

∞%

Ca
no

ni
ca
l(

In
st
an
ce
(6/100(

Vx
4(

V9(

V5(V6(V7(t(

s(V3(V2(

V1(Vsp
4(

V8(

;6/100(
;5/5(

5(5(
5(

20(20(

1/6(
;1/6(

4(4(
13(

Vx
4(

5(

1/1(
;1/1(

;5/15(5/15(

5/5(
;5/5(

5/5(6/100(
Vx

4(

V9(

V5(V6(V7(t(

s(V3(V2(

V1(Vsp
4(

V8(

;6/100(
;5/5(

5(5(
5(

20(20(

1/6(
;1/6(

4(4(
13(

Vx
4(

5(

1/1(
;1/1(

;5/15(5/15(

5/5(
;5/5(

5/5(

6/∞(

5/∞(

∞(

1/∞(

6/∞(

5/∞(

∞(

1/∞(

Figure 6: Example execution of our algorithm for solving the GENERALIZED MIN-
CUT problem. Steps 1 and 2 saturate the existing RAPs, while Step 3 creates the
resulting canonical instance of the graph. Given that there are no APs in the canonical
instance, the resulting cut is optimal and has capacity 6.

17

In this example, since there is no AP in the resulting residual network, the cut
computed is the natural cut of Gcan (depicted in the figure), which is optimal.3

To show that, even after the initial transformation from Gor to Ginit, a classic algo-
rithm like EDMONDS-KARP would fail to locate the optimal solution, Figure 7 presents
how EDMONDS-KARP would continue after Step 2 from Figure 6. The reason why this
would happen is because RAPs impose additional constraints to APs. The resulting cut,
presented in Figure 7, has capacity 11.

St.3%
Vx

4%

V9%

V5% V6% V7% t%

s% V3%V2%

V1% Vsp
4%

V8%

6/100% 46/100%

45/15% 5/15%

45/5% 5/5%

5% 5%
5%

5/5%
45/5%

20% 20%

1/6%
41/6%

4%4%
13%

1/1%
41/1%

Vx
4%

V9%

V5% V6% V7% t%

s% V3%V2%

V1% Vsp
4%

V8%

6/100% 46/100%

45/15% 5/15%

45/5% 5/5%

5/5%
45/5%

5/5%

5/5%

45/5%

5/20% 45/20%

6/6%

46/6%

4%4%
5/13%

1/1%
41/1%

45/13%

45/5%

11/∞%

5/∞%

1/∞%

6/∞%

5/∞%

∞%

1/∞%

5/∞%

Ed
m
on

ds
'K
ar
p,

Cu
t, Vx

4,

V9,

V5, V6, V7, t,

s, V3,V2,

V1, Vsp
4,

V8,

6/100, 100,

15, 5/15,

5,

5,
5,

5,

5/20, 20,

6,

4,4,
5/13,

1,

13,

11/∞,

5/∞,

5/∞,

1/∞,

5/5,
5/5,

5/5,

5/5,

6/6,

1/1,

Figure 7: Example where the transformation performed to obtain Ginit is not enough to
allow EDMONDS-KARP to find the optimal solution. Notice that the AP computed in
Step 3 is not a RAP. The resulting cut has capacity 11, which is larger than the one in
Figure 6.

3The natural cut of Gcan had to be an optimal cut by Corollary 2, because the only special node belongs
to Σup and to T ′.

18

6 The GENERALIZED K MIN-CUT Problem.
To solve GENERALIZED K MIN-CUT problem, we rely on the algorithm presented
before, and we apply the Isolating Cut heuristic. This heuristic is used to approximate
the solution of the classic K MIN-CUT problem, by computing a set of MINIMUM
ISOLATING CUTS.

Definition 14 MINIMUM ISOLATING CUT: A minimum isolating cut for terminal
si ∈ S is a minimum weight set of edges Ei ⊆ E whose removal disconnects si from
all terminals s j ∈ S\{si}.

The Isolating Cuts heuristic computes for every terminal si ∈ S, a minimum iso-
lating cut that separates si from all the rest. Assuming that there are k terminals to
separate, i.e., |S| = k, the final solution is the union of the k−1 cheapest cuts. This is
also the approach taken in our solution.

To find a minimum isolating cut for a terminal si, all remaining terminals s j ∈ S−si
are connected to a new vertex, ti, with edges of infinite weight, and a GENERALIZED
MIN-CUT problem is solved for {si, ti}. The result for terminals {si, ti} corresponds
to a partition {Pi,Ti} of the set of all vertices such that si ∈ Pi and ti ∈ Ti. The edges
with one endpoint in Pi and the other endpoint in Ti form the cut. The final solution is
composed of the partitions P = [P1,P2, ...,Pk] that contain the terminals [s1,s2, ...,sk].

6.1 Impact of Dataflow Forking

Vsp$

V2$ V3$V1$

(a)$

Vsp$

V3$

V2$V1$

Vx$

(b)$

Vsp$

V1$

V3$V2$

Vx$

(c)$

S1$ S2$

S1$ S2$
Figure 8: Children of σ partitioned in an overlapping way in different GENERALIZED
MIN-CUT instances of the same GENERALIZED K MIN-CUT problem.

As explained earlier, in the face of Dataflow Forking, and for each of these GENER-
ALIZED MIN-CUT problems, the original graph G(V, E)represents a family of graphs
(or instances), with a member for each combination of different partitions of the chil-
dren of the graph’s special nodes, σ ∈ Σ. To solve each of these problems, our algo-
rithm initially finds the instance (among this set of instances) on which to compute the
minimum cut. This instance is termed the Canonical Instance Gcan of Gor. Given that
for each GENERALIZED MIN-CUT problem, its Gcan is computed independently from
the ones selected for the remaining problems, this may lead to the chld(σ) being parti-
tioned differently between the two canonical instances. Figure 8 shows an example of
a special node σ with its children, v1,v2,v3 ∈ V . Figure 8(a) shows how the children
are partitioned when computing Gcan for separating s1 (red), and s2 (green) from the
remaining terminals. As shown, v2 is put with v1 in s1 and with v3 in s2. The canoni-
cal instances for the two GENERALIZED MIN-CUT problems are shown in Figure 8(b)
and (c), respectively, where an extra node is added between σ and the children that
are on the same partition. Computing the minimum-weight cuts on the aforementioned

19

canonical instances may result in some nodes ending up in two different partitions in
the final solution. This is shown in Figures 8(b) and (c), where v2 ends up in both S1
and S2, where S1 is the partition containing terminal s1 and S2 the one for s2.

6.2 Solution
To eliminate the problem of the overlapping resulting partitions, when two or more
partitions, e.g., Pi,Pj ∈ P, overlap, Gover = Pi∩Pj 6= /0, we apply the following strategy.
We compute the cost of removing Gover from each one of them by summing the weights
of the edges with one end in Pi (or Pj) and the other in Gover, and we rank them in
descending order of total weights. This implies that the partition where we have to
pay the most to remove Gover, is first. For this example, we assume that removing
Gover from Pi is more expensive than removing it from Pj. After this ranking, we
select the first partition, i.e., Pi, and we keep Gover there, while removing it from all
the rest. In the general case, we keep Gover to the partition where we have to pay the
most for removing it, and we remove it from all the rest. In this example, instead of
P = [P1, ...,Pi,Pj, ...,Pk], the result to the GENERALIZED K MIN-CUT problem will be
P′ = [P1, ...,Pi,Pj−Gover, ...,Pk].

7 Appendix
In the following lemmas, let:

• Gor(V or,Eor) be the original graph;

• Ginit(V init,E init) be its initial instance;

• fbase be a base-flow of Ginit;

• (Sor,T or) be the natural partition of Gor w.r.t. fbase;

• Gcan(V can,Ecan) be the canonical instance of Gor w.r.t. fbase;

• f be the flow induced by fbase in Gcan;

• (S,T) be the natural cut of Gcan.

An RP stands for a restricted path in some flow network.

Lemma 3 Let σ be a special node with two extra nodes in Gcan, ε1
σ ∈ S and ε2

σ ∈ T . Let
also εσ be the extra node of σ in Ginit.

(a) If σ ∈ Σ0, then f (ε1
σ,σ) = 0 and f (ε2

σ,σ) = 0.

(b) If σ ∈ Σup, then f (ε1
σ,σ) = fbase(εσ,σ) and f (ε2

σ,σ) = 0.

(c) If σ ∈ Σdown, then f (σ,ε2
σ) = fbase(σ,εσ) and f (σ,ε1

σ) = 0.

Proof

(a) The first property follows directly from σ ∈ Σ0 (Definition 7) and the definition
of f (Definition 10).

20

(b) In this case, σ ∈ Σup, so fbase(y,εσ) ≥ 0, for every y ∈ chld(εσ). Let us assume
that there is some y2 ∈ chld(ε2

σ) such that fbase(y2,εσ) > 0, in order to reach
a contradiction. Then, for every y1 ∈ chld(ε1

σ), fbase(y1,εσ) < w(σ), because
fbase(y1,εσ)+ fbase(y2,εσ)≤ fbase(εσ,σ)≤ w(σ).

Now let us analyse two cases.

• If there is a RP p from s to some y1 ∈ chld(ε1
σ) in Ginit

fbase
that does not

contain εσ, p→ εσ → y2 is a RP from s to y2 in Ginit
fbase

(Definition 8 up-
down section).

• Otherwise, all nodes y1 ∈ chld(ε1
σ) are only reachable from s by RPs of the

form s σ→ εσ→ y1 and s σ→ εσ→ y2 is also a RP from s to y2 in
Ginit

fbase
(Definition 8 down section).

In both cases, we would conclude that y2 ∈ Sor ⊆ S, which is a contradiction.

Therefore, fbase(y2,εσ)= 0, for every node y2 ∈ chld(ε2
σ), which implies f (ε2

σ,σ)=
0 and f (ε1

σ,σ) = fbase(εσ,σ).

(c) Now, σ ∈ Σdown, so fbase(εσ,y) ≥ 0, for every y ∈ chld(εσ). Let us assume that
there is some y1 ∈ chld(ε1

σ) such that fbase(εσ,y1) > 0, in order to reach a con-
tradiction. Let also y2 ∈ chld(ε2

σ). We know that fbase(εσ,y2) < w(σ), because
fbase(εσ,y1)+ fbase(εσ,y2)≤ fbase(σ,εσ)≤ w(σ).

Now let us analyse three cases.

• If there is a RP p from s to y1 in Ginit
fbase

that does not contain εσ, p→ εσ→ y2

is a RP from s to y2 in Ginit
fbase

(Definition 8 up-down section).

• If there is a RP from s to y1 of the form s y→ εσ → y1, for some y ∈
chld(εσ), then by Definition 8 up-down section, fbase(εσ,y) > 0 and s
y→ εσ→ y2 is also a RP from s to y2 in Ginit

fbase
.

• Otherwise, y1 is only reachable from s by RPs of the form s σ→ εσ→ y1
and s σ→ εσ→ y2 is also a RP from s to y2 in Ginit

fbase
(Definition 8 down

section).

In all cases, we would conclude that y2 ∈ Sor ⊆ S, which is a contradiction.

Therefore, fbase(εσ,y1)= 0, for every node y1 ∈ chld(ε1
σ), which implies f (σ,ε1

σ)=
0 and f (σ,ε2

σ) = fbase(σ,εσ).

Lemma 4 The following properties hold.
(a) If e(i, j) ∈ Ecan, i ∈ S, j ∈ T and neither i nor j is an extra node,

then f (i, j) = c(i, j).
(b) If σ ∈ Σup, σ ∈ T and σ has an extra node ε′σ in Gcan such that ε′σ ∈ S,

then f (ε′σ,σ) = c(ε′σ,σ) = w(σ).
(c) If σ ∈ Σdown, σ ∈ S and σ has an extra node ε′σ in Gcan such that ε′σ ∈ T ,

then f (σ,ε′σ) = c(σ,ε′σ) = w(σ).

Proof

(a) In this case, e(i, j) ∈ E init, so f (i, j) = fbase(i, j). Let p be a RP from s to i in
Ginit

fbase
. If fbase(i, j) < c(i, j), p→ j would be a RP from s to j in Ginit

fbase
, and

j ∈ Sor ⊆ S. Therefore f (i, j) = c(i, j).

21

(b) First of all, let us see that f (ε′σ,σ) = fbase(εσ,σ), where εσ is the extra node of
σ in Ginit. When ε′σ is the only extra node in Gcan, the conclusion is immediate
and, when there are two extra nodes in Gcan, it follows from Lemma 3 (b).

Suppose fbase(εσ,σ) < w(σ), in order to derive a contradiction, and let y ∈
chld(ε′σ) such that there is a RP p from s to y in Ginit

fbase
that does not contain

εσ. That node must exist as otherwise all nodes in y′ ∈ chld(ε′σ) were only reach-
able from s by RPs of the form s σ→ εσ→ y′ and σ ∈ S.

If fbase(y,εσ) = w(σ), then fbase(εσ,σ) = w(σ) and we reach a contradiction.

If fbase(y,εσ)<w(σ), p→ εσ→ σ would be a RP from s to σ in Ginit
fbase

and σ∈ S.

Therefore, f (ε′σ,σ) = fbase(εσ,σ) = w(σ).

(c) First of all, let us see that f (σ,ε′σ) = fbase(σ,εσ), where εσ is the extra node of
σ in Ginit. When ε′σ is the only extra node in Gcan, the conclusion is immediate
and, when there are two extra nodes in Gcan, it follows from Lemma 3 (c).

Suppose fbase(σ,εσ) < w(σ), in order to derive a contradiction, and let y ∈
chld(ε′σ).

If fbase(εσ,y) = w(σ), then fbase(σ,εσ) = w(σ) and we reach a contradiction.

So, fbase(εσ,y) < w(σ), If there is a RP p from s to σ in Ginit
fbase

that does not
contain εσ, then p→ εσ → y would be a RP from s to y in Ginit

fbase
and y ∈ S.

Otherwise, there must be a RP from s to σ in Ginit
fbase

of the form s y′→ εσ→ σ,
for some y′ ∈ chld(εσ), which implies fbase(εσ,y′) > 0, because σ ∈ Σdown. But
then, s y′→ εσ→ y would be a RP from s to y in Ginit

fbase
and y ∈ S.

Therefore, f (σ,ε′σ) = fbase(σ,εσ) = w(σ).

Lemma 5 The following properties hold.

(a) If σ ∈ Σup, σ ∈ S and εσ is the only extra node of σ in Gcan, then εσ ∈ S.

(b) If σ ∈ Σdown, σ ∈ T and εσ is the only extra node of σ in Gcan, then εσ ∈ T .

Proof

(a) Let p be a RP from s to σ in Ginit
fbase

. If p contains εσ, it has the form s y→
εσ→ σ, for some y ∈ chld(εσ), so y ∈ S. Otherwise, let y′ ∈ chld(εσ) such that
fbase(y′,εσ)> 0, which exists because σ ∈ Σup. Then, p→ εσ→ y′ is a RP from
s to y′ in Ginit

fbase
and y′ ∈ S.

Since there is only one extra node of σ in Gcan, chld(εσ)⊆ S and εσ ∈ S.

(b) Let y ∈ chld(εσ) such that fbase(εσ,y)> 0, which exists because σ ∈ Σdown. Let us
assume that y ∈ S, in order to derive a contradiction, and let p be a RP from s to
y in Ginit

fbase
.

If p that does not contain εσ, p→ εσ→ σ is a RP from s to σ in Ginit
fbase

and σ∈ S.
Otherwise, p must have the form s y′→ εσ→ y, for some y′ ∈ chld(εσ) and,
by Definition 8 up-down section, fbase(εσ,y′)> 0. But then s y′→ εσ→ σ is
a RP from s to σ in Ginit

fbase
and σ ∈ S.

Therefore, y ∈ T , chld(εσ)⊆ T , and εσ ∈ T .

22

Lemma 6 The following properties hold, for every σ ∈ Σ0, where εσ is its extra node
in Ginit:

(a) If there is a RP from s to σ in Ginit
fbase

that does not contain εσ,
then {σ}∪ chld(εσ)⊆ S.

(b) If there is a RP from s to y in Ginit
fbase

that does not contain εσ, for some y ∈
chld(εσ), then σ ∈ S.

Proof

(a) If there is a RP p from s to σ in Ginit
fbase

that does not contain εσ, then p→ εσ→ y
is a RP from s to y in Ginit

fbase
that contains εσ only once, for every y ∈ chld(εσ).

(b) If there is a RP p from s to y in Ginit
fbase

that does not contain εσ, for some y ∈
chld(εσ), then p→ εσ → σ is a RP from s to σ in Ginit

fbase
that contains εσ only

once.

Lemma 7 The following properties hold, for every σ ∈ Σ0:

(a) If σ ∈ S and εσ is the only extra node of σ in Gcan, then εσ ∈ S.

(b) If σ ∈ T , then there is only one extra node εσ in Gcan and εσ ∈ T .

Proof There are only three cases.

• When, for every v ∈ {σ}∪ chld(εσ), there is no RP without εσ from s to v in
Ginit

fbase
, {σ}∪ chld(εσ)⊆ T . In this case, σ ∈ T and (b) holds.

• Now, let us assume that p is a RP without εσ from s to v in Ginit
fbase

, for some
v ∈ {σ}∪ chld(εσ).

– If v = σ, by Lemma 6 (a), {σ}∪ chld(εσ) ⊆ S. So, σ ∈ S, εσ is the only
extra node in Gcan and chld(εσ)⊆ S.

– Otherwise, v ∈ chld(εσ) and, by Lemma 6 (b), σ ∈ S. Since v ∈ S, if there
is only one extra node in Gcan, chld(εσ)⊆ S.

References
[1] CORMEN, T. H., STEIN, C., RIVEST, R. L., AND LEISERSON, C. E. Introduction

to Algorithms, 2nd ed. McGraw-Hill Higher Education, 2001.

[2] GOLDBERG, A. V., AND TARJAN, R. E. A new approach to the maximum-flow
problem. J. ACM 35, 4 (Oct. 1988), 921–940.

23

