Comparison of Two Frameworks for Parallel Computing in
Java and AspectJ

Jodo L. Sobral
Departamento de Informatica
Universidade do Minho
Campus de Gualtar
4710-057 Braga
PORTUGAL

jlzfdi.uminho.pt

ABSTRACT

This report presents an AspectJ framework for fErabmputing
and compares it with a Java framework providing ieajant
functionality (concurrency/parallelization, distition, profiling
and optimizations). We detect several relative fitnén the
Aspect] implementation, namely greater levels ofoupling
among framework features, a greater level of oblishess from
framework code (avoidance of adapters and concpetific
hooks) and possibility of framework features to umed stand
alone. The downsides are that composition of aspeah be
tricky, which has a strong influence of the overfaimework
design. Generation of source code for some featigemins a
convenient implementation technique. AspectJ avdids more
cases than in the Java version, but not in all.

Keywords
Aspect-oriented frameworks, AspectJ, parallel paogning

1. INTRODUCTION

Most reported aspect-oriented frameworks fall intwo
categories: (1) existing object-oriented (OO) framiks that
were extended from a certain point on with adddion
functionality by means of aspect technology [1][2ind
(2) existing OO frameworks, in which various cragtog
concerns were identified and extracted to aspektd [In both
cases, the original, OO architecture is kept largelplace, with
no significant redesign. Such relatively minor tkieg risks
missing the full benefits that aspect-oriented pragming (AOP)
can bring to framework design.

We believe that fully leveraged AOP can yield siemplless

coupled designs than those that can be obtainedghrplain OO
technology. Presently, aspect-oriented frameworkally f
developed from the ground up with aspect technolegyg

virtually non-existent. It is desirable that suatanmieworks be
reported to the research community, as they cavigga clearer
picture of the implications of AOP on framework dgs as well

as provide a means to better characterize andsasseslvantages
over traditional, OO frameworks [14]. To date, thasea of

research remains largely unexplored.

In this report, we contribute to the understandioig AOP
frameworks by describing and comparing two framdwofor
parallel programming that were separately develppsihg Java
and AspectJ technology, respectively. We providmmparative
analysis of both systems and report on various lesrdre felt

Miguel P. Monteiro
Departamento de Informatica
Universidade Nova de Lisboa

Faculdade de Ciéncias e Tecnologia
2829-516 Caparica
PORTUGAL

nmonteirofdi. uminho.pt

Carlos A. Cunha

Escola Superior de Tecnologia
Instit. Politécnico de Viseu
Campus de Repeses
3504-510 Viseu
PORTUGAL

cacunha@ddi.estv. ipv.pt

during development that have a bearing on the é&woluof
AspectJ systems. To organize the analysis, wehesengjority of
the 13 criteria proposed in [35] for frameworkdigid of parallel
computing.

The focus of this report is on frameworks developéth AOP

technology, not frameworks whose purpose is prosiggportfor

AOP as an alternative to AOP languages, as isdke with [7].
In addition, the comparison and analysis providethis report is
tailored to the specific field of parallel compginHowever, we
believe that many of our findings can be benefid@l other
domains.

The rest of this report is structured as followsctbn 2 presents
an overview of the functionality provided by bothrheworks and
describes how this functionality is implemented Java and
AspectJ. In section 3, we compare both systemb@basis of the
13 criteria proposed in [35]. Section 4 comparéswork against
other efforts and section 5 presents future workctiSn 6
concludes the report.

2. FRAMEWORKS FOR PARALLEL
PROGRAMING

In our previous work, we developed a collection refisable
abstract aspects, coded in AspectJ, that in peacienprise an
AOP framework for concurrency [8]. In addition, wWeveloped a
collection of pluggable aspects that can help ttegm@ammer to
convert a sequential application into a paralleliegient [36]. In

earlier work [15][37][38], we developed equivaldnnhctionality

using traditional OO framework (coding in C++, Javal C#).

Our previously implemented OO frameworks for paiall
computing (i.e., C++ and C# [37][38]) include suppor object

distribution and automatic optimizations. The latiém to relieve

the programmer from manual optimizing work asseclato

specific architectures. The goal is to obtain cdldat is more

platform-independent without losing efficiency assoa wide

range of platforms. The Java implementation [15fhe most

recent and complete OO implementation and benefited the

experience gained in developing the previous (Oid-@#) ones.
It provides all the features previously implementgdus an

additional feature, based on parallel skeletonggé¢ 2.1), which
helps the programmer to structure parallel apptioat

Previous OO framework implementations suffer fromassic
tangling problems as concurrency/parallelizatiastribution and
optimization concerns cut across multiple framewarfoponents.

One of our aims in developing an AspectJ implent@ntaof the

previous frameworks was to avoid this tangling, viding the

complete set of functionalities in a way that iscakasier to use,
maintain and evolve. Aspect] was selected due dowite

acceptance, maturity and tool support, as welloast$ support
being based on static weaving, as parallel comguis a

performance-centric field that requires the genenaof efficient

executables.

2.1 Framework overview

The purpose of all frameworks covered in this reperto ease
development of parallel applications by providinige tbasic
support infrastructure for parallel programs. Sirdhastructure is
implemented througlskeleton compositionThe termskeleton
[6][9][32] is widely used by the parallel computiegmmunity —
a skeleton implements a common parallelization raeidm and
encapsulates design decisions concerning the wsteuadf a

parallel application. Skeletons are akin to degigtterns [17],
though the term is generally used in the contextpafallel

programming and is more low level, as a skeletogeserally
associated to some concrete implementation. Inabigext, we
regard specific implementations of design patteinsjuding

Aspect] aspects, to be instances of skeletons. ehelap a
parallel application, the programmer selects atekeletons that
best fits application requirements and fills theke provided by
the skeletons with domain specific code. Usualtymust also
develop new code to instantiate the selected shedednd to start
skeleton activity, though in same cases the inistiéoh code can
be automatically generated.

Several well-known skeletons exist from some ti®g9]. These
include Farm, Pipe Divide/Conquer and Heartbeat One
important feature of skeleton approaches is thiyabd compose
skeletons [10] — either to achieve a more efficexgcution or to
obtain more complex parallelizations. For instaradéarm can be
combined with aPipe to yield a Pipeline of Farming (a Pipe in
which each element is a Farm). Another example hs t
composition of two Farms to yield a two-level Faifhis type of
structure closely matches an architecture compdsedeveral
machines (i.e., a cluster) in which each node impmsed by
multi-core processors.

Distribution is an important concern that, duettorature, must
be considered early in the design of the framewbiktribution

concerns include remote creation of objects, remothod

invocation and access to distributed data strustufach of the
framework skeletons must be suitably structuredhsd they can
be deployed in distributed machines. The framewoukt provide
efficient implementations of each skeleton on sthaneemory
machines (e.g., multi-core) as well as on distedumemory
machines (e.g., clusters).

In all frameworks discussed in this report, disitibn stands
apart from the other features in that it is implated through
code-generation techniques rather than skeletdnss, Twe avoid
the need to provide distribution-specific hooks, wasll as
providing a more efficient implementation — distrion
operations are inlined into the source.

Performance and scalability to a large numbers rotegssing
resources are fundamental concerns in all parapglications.
We address the scalability issue by supporting -direéned
parallelism and by incorporating mechanisms in® filamework

that reduce the excess of parallelism wheneverssacg Thus,
two mechanisms are used to control parallelism ngsie:
computation agglomerationand communication aggregation
Computation agglomeration combines parallel tasite larger
tasks by executing inter-object method calls syowcbusly.
Communication aggregation aggregates messages diayift
and) combining several inter-object method calts e single call
message. Implementations of these mechanisms eedhe
gathering of application execution profile during#time.

2.1.1 Farm skeleton

For illustration purposes, in this report, we useRarm skeleton,
one simple and popular parallelization mechanisime Farm
skeleton comprises a master entity and multiplekeusr (Figure
1). The master decomposes the input data in smatependent
data pieces and sends a piece to each worker. gkfteessing the
data, the workers send their partial results backhe master,
which merges them to yield the final result.

partial result

3 data piece
input data
—_— |

data piece

partial result

Figure 1: Farm skeleton

A farm skeleton risks being marred by paralleliswerbeads in
cases the task grain-size proves to be too smath $verheads
are due to communication costs and thread/procesagement.
The solution lies in mechanisms to reduce excegsavallelism.

A significant gain can be accomplished by incorgioma a

mechanism that automatically tunes the grain-sizasks and the
number of workers to use on each platform. Autoomafiees the
developer from dealing with these concerns directly

A single master can be a bottleneck in the presefice large
number of workers (i.e., computing resources). Gasiipn of
farm skeletons can address this issue as well,fasraskeleton
can use several masters to improve performance (g.gielding
a two level farm).

2.2 Java implementation

Development of the Java framework (JaSkel, seé [Ehkd on 3
independent techniques/tools. This decompositios mvativated
by the requirement that use of the different bitfumctionality
should be possible in a broad range of contextssé<ools are:

1. A skeleton library based on Java classes structured

according to théemplate methogdattern [17];

2. A source code generator which supports distributibn
selected object classes;

3. A run-time system that performs adaptive grain-size

control and run-time load and data scheduler.

The independence between these tools allows progeasnto
develop, test and run structured applications moa-distributed
environment, by using the skeleton library. It addlows the use
of the distribution generation tool as a stand-altwol to generate

methodseval and getResult This is due to the limitation of the
Java (as well as most other OO languages) to wfbbyet

modularize concurrency related code. Code in FiGuran extend

theFarmConcurrentinstead ofFarmto use a concurrent farm.

distributed applications on the basis of sequerdiéada code, or
combine this tool with the skeleton library to viestructured
parallel applications that run on distributed systeThe run-time
system is an additional tool that collects run-tireecution
profile information and performs run-time optimiats to adapt
the application to specific platforms. We choseptovide this

functionality as an additional tool to avoid exeontoverheads,
when grain-size control is not required (e.g., whéme

programmer is in charge of this task or when thaiegtion does
note require this feature).

2.2.1 Skeleton library

The JaSkel framework includes several common skedefor
parallel computing. We will focus on the implemeita of the
Farm skeleton (Figure 2) to illustrate how skeletonse ar
implemented in this framework. In JaSkel, skeletomposition
is supported by means of OO composition and polpimem: the
Farm class also extends tiBmmputeabstract class (see Figure 2).
Thus, it is possible to build a farm where eachkeoiis also a
farm.

Compute

_————

+compute(in : Object) : Object,

public class Worker extends Compute {
... // other local data

public Object compute(Object obj) {
return(/* processed obj */);

3

class Farmer extends Farm {

public Collection split(Object initialTask) {
return(/* split initialTask */);

}
public Object join(Collection partialResults) {
return(/*merge partialResults*/);
public class Main {

public static void main(String[] args) {

Worker worker = new Worker();

Object task = ... // new task to process
Farmer f = new Farmer(worker, numberOfWorkers, task);
f.eval();

... // other processing may be included here
Object result = f.getResult();

+clone() : Object
«uses»

Farm Skeleton

+Farm(in : Compute, in :int, in : Object)
+split(in : Object) : Collection

+join(in : Collection) : Object
_|+getResult() : Object

+eval() : void

+compute(in : Object) : Object

Figure 2: JaSkel farm skeleton

The farm constructor gets a reference for a clolee@ompute
worker, the number of workers (an optional paraneted the
initial data to process. Methodglit andjoin are hooks to plug
domain specific code. These methods perform thetiparof the
input data into pieces that can be processed allpband join the
collection of processed data pieces. Hwal method starts the
skeleton activity. It calls theplit method to get a collection of
pieces of data, calls theompute method on each worker to
process each datum and calls §loin method to merge the
processed data. methgdtResulprovides access to the processed
data. Methodsval and getResultare separate methods to allow
other tasks to execute while the farm is compufirgg, executing
the methockval)). Figure 3 presents a simple farm in JaSkel.

The JaSkeFarm class does not include concurrency related code.
FarmConcurrentprovides this functionality by extending=arm,
overridingeval andgetResulimethods to perform concurrent calls
to workerscomputemethods. Thesval method spawns a thread
per worker to call theomputemethod and thgetResulimethod
waits until all workers complete their tasks. Exterg theFarm

to aFarmConcurrentrequires complete new implementations of

Figure 3: Simple farm in JaSkel

The Farm skeleton is used mostly in the initial development
stages as it avoids the introduction of concurexecution in the
farm (and the consequent non-deterministic behayiotGhis
provides an easier way to trace an incorrect belawither to
sequential or to concurrency code.

2.2.2 Distribution tool

Although distribution could be implemented by extieg
skeletons to address distribution concerns, a3][a§], we opted
for a tool that generates source code. This brisgsgeral
advantages: (1) the distribution tool can be usihds alone,
which broadens the range of applications to coygplieations
that do not rely on skeletons, (2) distribution slo®t have to be
included into the application if it is not need¢8l) explicit hooks
to support distribution are avoided and (4) appiice that do not
use distribution do not incur any extra run-timenead.

The purpose of the distribution tool is to suppabject

distribution among multiple JVMs. A remote objestan object
that may reside in another Java Virtual Machinesyatem that
transparently distributes objects among several J¥khown as
a distributed JVM. A tool that implements a distitiéd JVM must
provide three basic services: remote object creati@mote
method invocation and access to remote data. @uist®ased on
a well known process [31][37][38] that performs auce code
transformation. It is based on 3 classes: proxyeabj (PO),
implementation objects (I0) and object managers YOMe code
generator analyses source classes retrieving iatism about
each class interface. Each class is renamed t®aiass and a
new PO class with the same interface as the otigitass

transparently replaces it. Each node has an OMithglements
local object factories to enable remote objectt@ea. A similar

strategy implemented through a bytecode rewrit@résented in
[12].

--> Call through RMI
— Method call

— Object creation

Figure 4: Run-time system for object distribution

Figure 4 presents an example of how PO, IO and OlAlworate
to implement remote object creation and remote atkttalls.
Whenever an object was created in the original @dew PO
object is created instead. This PO requests theré@tion to the
local node OM (JVM Ocall a) in the figure), which may locally
create the 10 object or forward the request tar@gote OM, which
locally creates the requested object (example shiowine figure,
call a)). After remote object creation the PO transpayentl
redirects local method calls to the remote I€all(b) in the
figure).

public class Server {
public void process(int[] num) {
... // method implementation
}

ImplementationServefactory (lines 11-15). The original Server
class is replaced by a PO (lines 17-27) that tramesply requests
the remote object creation to OMs (lines 20-23) esdirects the
processcalls for remote execution (lines 24-26).

2.2.3 Run-time system

The run time system is in charge of performing loéstribution
by selecting the most adequate JVM for the creatibreach
object. It also performs several optimizationsuport grain-size
control of parallel tasks.

public class Server { // PO class
IServer myRemoteServer;
ImplementionServer myLocalServer;

Server() {
if (agglomerateComputation()) { // locally create server object
myLocalServer = new ImplementationServer();

}else {
ObjectManager remoteOM = ... // get a reference a remote OM
myRemoteServer = remoteOM.factoryServer();

b

public void process(int[] num) { // performs local/ remote invocation
if (agglomerateComputation() {
myLocalServer.process(num);
}else {
myRemoteServer.process(num);
b
}
}

Figure 7: Generated code for computation agglomerain

Figure 5: Server class

01 public interface IServer {
02 public void process(int[] num) throws RemoteException;
03 }

05 public class ImplementionServer implements IServer { // IO class
06 public void process(int[] num) {
07 ... // original method implementation

09 }

11 public class ObjectManager { // OM class
12 IServer factoryServer() {

13 return(new ImplementationServer());

14 } // register server as OM is externally visible

15 }

16

17 public class Server { // PO class

18 IServer myRemoteServer;

19

20 Server() { // request remote object creation

21 ObjectManager remoteOM = ... // get reference to OM
22 myRemoteServer = remoteOM.factoryServer();

23

24 public void process(int[] num) { // remote method invocation
25 myRemoteServer.process(num);

26 >

27 }

Figure 6: Generated code for simple Server class

Figure 6 presents a simplified example of Java Rydherated
code for aServerclass (Figure 5). The interfatgerver(lines 01-
03) is created due to Java RMI requirements. Thgnad Server
class is rewritten ttmplementationServeaiass (lines 05-09). The
ObjectManager is an object that implements a remote

public class ImplementionServer implements IServer { // 10 class

i:?ublic void processN(Vector args) { // performs N calls to process
for(int i=0; i<args.size(); i++) {
process((int[]) Vector.elementAt(i))

3

public class Server { // PO class

"/
Vector args = new Vector();

public void process(int[] num) {
if (agglomerateComputation()) {
myLocalServer.process(num);
}else {
If (aggregateComunication()) {
args.add(num);
if (args.size() == callsPerMessageLimit) {
myRemoteServer.processN(args);
args.clear();

} else myRemoteServer.process(num);
}
}
}

Figure 8: Generated code for communication aggregein

The first optimization is computation aggregatiarhich locally
creates an object, without OM involvement. Thisniplemented
by allowing the PO object to directly create an V@thout
performing a request to the local OlR(c) in Figure 4). Latter
calls to this object are also performed directlyjrastandard Java
objects ¢all d) in Figure 4). Java RMI also performs a similar
optimization in RMI calls to local objects.

The implementation of local object creation regsirminor
changes to the distribution tool. It mainly invadvehanges into
the PO generated code to implement local 10 creatiod to
implement direct calls this local 10. Figure 7 mets these
changes in shaded. The generated code includesstatde
determine when to apply agglomeration. In thoses#@sgperforms
direct 10 creations and method callsnigLocalServer

Communication aggregation aims to reduce communitatosts
by packing several method calls into a single nétwoessage (a
similar functionality is provided by ARMI [39]). T&
optimization can take advantage of the increasenétwork
bandwidth (e.g., 10 Gbit/s Ethernet) and reducealties due to
network latencies, by using a smaller number afdamessages.
The framework implements communication aggregation
packing several remote method calls, performed twn dame
target object, into a single method. This is impmpated by
introducing a new method into the 10 class and &ling this
method in the PO class (Figure 8 in shaded).

2.2.4 Limitations of the OO implementations
Experience acquired during several years of ewwiutf the
parallel computing framework exposed several wesées of this
type of approach, most of which are related to &aork
limitations and excessive complexity to develop amntain the
proposed tools. The first limitation is relatedhe introduction of
concurrency concerns into JaSkel skeletons. Theseecns are
introduced by providing skeleton implementationattsupport
concurrent execution. Current implementation odesi specific
skeleton methods, leading to a considerable inergasode size
and harming skeleton implementation understandgpbhi serious
problem is that skeleton base classes must be rdesigpfront
(e.g., to include hooks) to allow concurrent ex@xutto be
composed through inheritance. Another limitatiorthiat it is not
possible to use concurrency as stand alone frankeveature.
This could be overcome through the use of an eatewol to
generate concurrency related code. However, thiddvmcrease
the complexity of the tools that generate souraeco

Generative patterns are an alternative implemeamtagirategy to
the skeleton library. Generating pattern code casidamethod

overriding as application specific code can be udetl by
modifying the implementation of specific methodspgorts more
flexible skeleton configurability (by means of telate

parameters) and can also generate concurrencyedelzide.
However, this strategy has two limitations: it educes another
source code generator and the changes to the ¢geth@ede are
non-reversible, which can lead to problems when, $ome

reason, the pattern code must be re-generated.

Implementation of the distribution tool requires tise of a parser
generator tool that analyses source code and dgesaraw case
specific classes. The tool must traverse the atistyntax tree
(built by the parser) several times to generate BDand OM
classes. A similar strategy is required to impletrtbe run-time
system (including generation of code to tune gsie of parallel
tasks) and to implement code to collect executiafilpng.

These code generator tools are independent fromasepoint of
view. However, at the level of the framework imptartation,
they are tightly coupled. Programmers extending tuale
generator tools must learn how to parse Java cadehaw to
traverse the generated syntax tree to generatedoéred code. It
also requires knowledge of all the generated cedg,(run-time

system implementations must be aware of minuteldetdated to
distribution generated code, see Figure 8). To saggport for a
new feature, the programmer must identify and editpoints

where code related to new features should be pla@ed of the
main sources of complexity is the generation ofkae code that
mixes distribution, profiling and optimization caras. This
imposes a limitation to independent developmenal(gion of the

distribution code and run-time system). Code geimaratools

also have problems to trace errors into the orlginde since they
rewrite the original code to new classes. This reakehard to
debug generated code and to trace errors to thespanding
location in the original code.

A minor problem arose in the Java implementatiavaloes not
include multi-inheritance, which makes it more cdemp to
generate RMI code. The application specific clagsast extend
both skeleton classes and RMI classes.

In summary, introducing new features requires caugfinning to
ensure non interference with current framework uiessgt that
requires knowledge about source code generationabndt the
structure of generated code. This is a consequeariceéhe
generation of tangled code, where distribution,fifimg and
optimization concerns are mixed in the generatedecdJsing
code generation tools instead of libraries pushnes tangling
effect from framework template classes to the gedrcode.

2.3 AspectJ implementation

The Aspect] implementation framework combines tibga of
reusable aspects [8][20] with generation of Aspactirce code
[5]. Aspectd enables the modularization of moreméeork
features than its Java counterpart. However, som@amefvork
features are not conveniently implemented by aitipof reusable
aspects. In some cases, that would entail extensae of
reflection and in others a library based approacisimply not
feasible. For instance, distribution related codeuires the
remote creation of an object, implemented by a tenubject
factory. The factory must be generated, since fitoispossible to
remotely create objects in AspectJ.

A library of reusable aspects brings the same litsna$ a tool
that generates source code to implement a spedc#inework
feature. In cases where an approach based on aylilm not
feasible, generation of Aspect] (rather than Jaede yields a
solution that is more modular. Generation of Aspemide can
also have a performance advantage over reusabéztasm@s it
avoids two of the three main costs of an asperarb retrieval of
joinpoint context and management of global joinpaiistory. See
[8] for a discussion of the performance costs imedlin a library
of reusable aspects. The source code generatogerserate an
aspect tailored for the specific case (for instan€gure 12
presents an aspect generated specifically foB#reerclass).

2.3.1 AspectJ Skeletons

An important issue is how to provide functionalgmilar to a
farm skeleton (Figure 2 and Figure 3) in Aspect]. Thadetkn is
based on a Compute class and a Felass. Our experience with
the JaSkel framework revealed that the Farm classlly has a
definingrole [20] in the pattern (i.e., the class onlyséiin the
context of the pattern and must be written fromattr), as it
plays a role of interfacing between domain spedafide and the
skeleton implementation. On the other hand, Compas a

superimposedole, as it usually results from an adaptatioraof
class that already plays a role in the domain §ipemde.

public abstract aspect Farm {
public abstract Collection split(Object initialTask);
public abstract Object join(Collection partialResults);

public abstract pointcut computeCall(Object task, Object tgt);
public abstract pointcut objectCreation();

Object around() : objectCreation() {
workers = ... // clone target object numberOfWorkers times
b
Object around(Object initialTask,Object target) :
computeCall(initialTask, target) {
workers = ... // get array of workers of target object
Collection tasks = split(initialTask);
Iterator i = tasks.iterator();
Collection oTasks = new Vector();
int taskld = 0;

while (i.hasNext()) {
int workerIndex = taskld % numberOfWorkers,
oTasks.add(proceed(i.next(), workers[workerIndex],));
i.remove();
taskld++;

b
return(join(oTasks));
b
}

Figure 9: Farm AOP skeleton

public aspect Farmer extends Farm {
public Collection split(Object initialTask) {
return(/* split initialTask */);

public Object join(Collection partialResults) {
return(/*merge partialResults*/);

¥

public pointcut objectCreation() :
call (SomeCoreClass.new()) && within(Main);

public pointcut computeCall(Object initialTask, Object tgt) :
call(* SomeCoreClass.someMethodCall(..)) &&
args(initialTask) && target(tgt) && within(Main);

public class Main {
public static void main(String[] args) {
SomeCoreClass worker = new SomeCoreClass();
Object task = ... // new task to process
Object result = worker.someMethodCall(task);
¥
}

Figure 10: Sample use of a farm AOP

In light of the above considerations, the Farm raedm is
implemented by an abstract aspect, with abstradhods to
providesplit andjoin functionality. The Compute functionality is
implemented by adapting a class from the domainipeode to
which the farm parallelization applies. The skatemmpute
method becomes becomes an abstract pointcut ttizaies the
point in the core functionality where the skeleswtivity should
start. Association between the class that implesnhie Compute
functionality and the farm aspect is provided bgther pointcut
that captures the joinpoints in which instanceghat class are
created. Whenever the domain specific code doeserpbse

joinpoints suitable to superimpose the Compuote, an approach
similar to JaSkel must be used (i.e., a class Ctenpwst be
created). Figure 9 presents a sketch of the Asjrepiémentation
of farm.

In the advice associated to pointanibjectCreation the farm
aspect clones an objectumberOfWorkergimes). In the advice
associated to pointcutomputeCall the aspect calls methaglit
to partition the original data into pieces that seat to workers.
Partial results are merged by calling metfaid.

Application of the farm AspectJ skeleton to a sfieciase entails
the implementation ofplit and joins methods by a concrete
aspect, as well as the specification of pointaaisputeCalland
objectCreation (see example in Figure 10). In AspectJ,
composition of skeletons is a bit tricky, as it uggs another
aspect to captungroceedcalls performed in an advice, something
that is not currently covered by the AspectJ joinpaodel. This
was implemented by resorting @hained Advicadiom [19] to
allow a reusable aspect to explicitly expose thisgoint.

Implementation of a concurrent farm entails crepgnthread per
each call to a worker object, to obtain concurmmtessing. This
must be performed in advice acting on pointcomputeCall
Extending theFarm abstract aspect to yield a concurrent farm is
not feasible in AspectJ as it is not possible tergde an advice.
The alternative and more effective way is to prevéch additional
aspect to plug concurrency into the farm skeleton[8], we
presented an AspectJ collection of concurrencyepat and
mechanisms. This collection includes tRetureReflectProtocol
aspect that can be plugged into tRarm aspect to yield a
concurrent farmFutureReflectProtocotequires the definition of
two pointcuts: futureMethodExecutionand useOfFuture The
former defines the points where the computationhoas are
invoked and the latter defines the joinpoints whigre result of
the computation is needed. . Unfortunately it 8abo tricky to
plug this functionality directly into the Farm relde aspect,
again due to AspectJ limitations, as now we neechfiiure two
different joinpoints (one is the proceed, the secoequires an
explicit joinpoint inside the abstract join methodjigure 11
presents an outline of an aspect that achievesheuo@nt farm
but it advises joinpoints from code functionalitye(, it is a case
specific aspect).We can also use aspettireReflectProtocolo
provide functionally similar to methodwvalandgetResul{i.e., to
perform other processing while the farm is commytsee section
2.2.1)

public aspect ServerConcurrency extends FutureReflectProtocol {

protected pointcut methodCall(Object servant) :
call(* SomeCoreClass.someMethodCall (..)) &&
target(servant);

protected pointcut useValuePoint(Object servant) :
call(/* some join specific hook*/) &&
withincode(Object Farmer.join(Collection)) &&
target(servant);

b

Figure 11: Introduction of concurrency into farm skeleton

There are two important advantages of AspectJ imptegations
relative to Java. First, concurrency can be used stand alone
framework feature (our concurrency library was prasly

presented and applied to several cases). Secomdpiils code

duplication present in Java implementation (ana&0O), since
concurrency can be plugged into the Farm withouwtriteng
aspect code.

2.3.2 Aspect] distribution

In the OO distribution tool we introduced proxy edtts,
implementation objects and object managers (Figlrethat
collaborate to transparently implement object distion. Proxy
objects and object managers play defining roles tliis
collaboration, as they are used only in the contéxtistribution.
On the other hand, distribution-aware objects ,(i.e.
implementation objects) that provide domain-specifi
functionality are generated by the tool, based lo@ original
classes. Thus, they have a superimposed role ircdhgext of
distribution.

Following a procedure similar to that of the prexscsection, the
proxy object becomes an aspect that must interaiémtomain-
specific object creations and method calls, to makelass
separate (i.e., distributed). Proxy object is th@mecof the
distribution concern as it implements the coderamdparently
distribute objects to remote machines. Implememtatibjects are
no longer required, as we can use an aspect toisymse that
role into domain specific classes. Object manalave a defining
role in the distribution context. However, these aot visible
outside the distribution aspect, which is why thebgects were
implemented as plain Java classes.

Implementation of distribution using Java RMI regsi the
generation of one interface per each remote clissalso need to
create a remote object factory (i.e., object marnageimplement
remote creation of objectThus, we still need to use a source
code parser and a source code generator. Figupgek2nts the
code equivalent to Figure 6 in the Aspect] implaatén. The
most significant differences between these versiwmashaded.

01 public interface IServer {
02 public void process(int[] num) throws RemoteException;
03 }
04
05 declare parents Server implements IServer; // replaces OM class
06
07 public class ObjectManager { // OM class
08 IServer factoryServer() {
09 return(new Server());
10 3
1 }
12
13 public aspect ServerDistribution { // replaces PO class
14 IServer myRemoteServer;
15
16 Object around() : call (Server.new(..)) && /* ... ¥/ {
17 ObjectManager remoteOM = ... // get a reference to OM
18 myRemoteServer = remoteOM.factoryServer();
19 return new Server(); // return a fake local
20
21 void around(int[] num): call(void Server.process(..))
&& args(num) && !within(*Distribution)) {
22 myRemoteServer.process(num);
23
24 }

Figure 12: Generated AspectJ code for simple Servetass

The code of the implementation object was simppfaged by an
Aspect] intertype declaration (line 5). We stiledeto generate
code for thdServerinterface and foObjectManagerlass. Proxy

objects were replaced by an aspect that interdep#s calls and
forwards them to the remote object (lines 16-23).

In spite of still requiring a source code generatimol, the
Aspect] implementation has the advantage of gengrat
modularized distribution code. As such, we do resichto change
any of the class implementations from the domaétsig code.

2.3.3 AspectJ run-time

The run-time system implements application proglin
computation agglomeration and communication agdi@galn

this section, we do not provide details concerrpngfiling since

there are several well known AspectJ implementati@2]. The

point is that profiling can be provided as a ligraf reusable
aspects that can also be used in a stand aloneowugside the
context of the framework’s run-time system.

Computation agglomeration is based on local creatiospecific
object instances instead of requesting these oreatio remote
JVMs (see Figure 7). To implement this feature distribution
aspect should not be applied when the object snded to be
created locally (e.g., to locally creat&Sarverobject we just need
to avoid the execution of both around advices guFé 12, lines
16-23). Thus, we can generate an aspect that esontthe same
joinpoints as the distribution aspect, but that Hagher
precedence and this way it can avoid the executibrthe
distribution related advices of Figure 12 (see Fégii3). In this
framework is not a problem for an aspect to perfproteed only
in some cases, since the distribution aspect ngrageeds the
original call. However, it can pose problems inestbases if we
need to have an aspect with lower precedence. Aasiproblem
was reported when trying to compose a cache asp#ich cache
profiling aspect [26], as the cache aspect doesimatys perform
a proceed.

01 public aspect ServerAgglomeration {
02 Object around() : call (Server.new(..)) {
03 if (! agglomerateComputation()) {

04 return(proceed()); // proceed to distribution concern
05 } else {

06 return(new Server()); // avoids distribution concern
07 >

08 ./

Figure 13: Alternative implementation of agglomeraton

Communication aggregation must generate an aspeattalso
specifically acts on the distribution aspect. Itanintroduce the
method processN into IServer and Server classlstht anust
overwrite implementation of both distributions azha.

2.3.4 Discussion of Aspect] implementation
Although Aspect] implementations attain greater eliev of
modularity, some hurdles are felt when trying tanpose these
aspects together. Aspect composition is an impbitane in the
design of the framework, as features can be pluggedhe same
core functionality (e.g., they must share joinpgimt domain
specific code). One solution to this compositiomipem is to
provide anchor pointcutsthat are captured by multiple aspects.
Aspect precedence is another important issue. Advimust
execute in a specific order: farm, concurrency, motation
agglomeration, communication aggregating and 8istion. To
ensure this order, all advices are of tyyeund since AspectJ
implements different execution orders for beforeuad and after
advices.

Some aspects depend on other aspects, which rebeirgesign
of specific hooks in aspect code to support aspeniposition

(e.g., composition of concurrency into the farmextp Some
framework features simply can not be implemented kiprary of

reusable aspects (e.g., communication aggregagqnires the
introduction of a new method in the target clads).other

features, we resorted to code generation to avied use of
refection and to provide maximum efficiency (eig.,Figure 12

we could provide a single advice to intercept alls; as proposed
in [34]). Framework extension hooks must be designgfront,

just as with OO frameworks (by providing abstraathods and
abstract pointcuts). This is a consequence of dimihs in

AspectJ’s joinpoint model as regards aspect-spdeifnpoints. In

addition, in Aspect] we can extend abstract aspmdatscannot
override advice implementation, which is proving be an

important constraint to framework evolution, sinegolution

paths must be anticipated.

Even if Aspect] does not fully support independimtelopment
of all framework features (e.g., the case with cotafon
agglomeration) we nevertheless think that Aspectdbles a
higher level reasoning about features than where ¢gedangled
(as is the case with OO). To understand this Agdfeatmework, it
is vital to understand the collaborations amongeeis Since
joinpoints in domain-specific code are captured royltiple
aspects in a very specific order, understanding edension of
this framework requires a grasp of this advice etien chain. To
correctly compose new functionality into the franoeky new
aspects must be plugged in the correct points f #avice
execution chain.

3. DISCUSSION

We base our discussion on the set of criteria megadn [35]

which were adopted by MacDonald for an ideal pattbased
parallel programming system [24]. Conceptually, Banald

treats patterns as modular units, in a way thakis to skeletons
[6] (and as we of course do with aspects), whidilifates the

comparison presented in this section. In [24], Mawcéld uses the
following 13 criteria:

Separation of specification
Hierarchical resolution of parallelism
Mutual Independence

Extendibility

Large collection of useful patterns
Openness

Correctness guarantees
Commonly—usethnguage

© ©® N s~ DN

Language Non-Intrusiveness
10. Performance

11. Tool Support

12. Tool Usability

13. Application Portability

In the remainder of this section, we discuss theioua
approaches to framework development on the basighef
aforementioned criteria and in the light of the exgnce gained
when developing the frameworks mentioned in thipore

However, as criteria 12 and 13 are out of scopgh@feport, they
are covered. The order of the criteria is the sasn@bove. Each of
the sub-sections that follow deals with one criteristarting with
brief a description of it.

3.1 Separation of specification

MacDonald states that there should be a clean apabetween
the parallel structure of a program and the apfitinacode as to
allow both parts of a parallel program to evolvedependently.
This closely corresponds to the classic tenet gassion of
concerns [29], applied to specific case of parglielgramming.
Both approaches achieve this separation, thouglea3$pgnables
us to go further than Java. The greater ease ioupting domain-
specific code from framework features facilitateslependent
development (though there are still problems, ascrileed in

[40]). Aspects allow for a less monolithic solutioA greater
independence and uncoupling between framework ¢kmdain-

specific) features can be observed (e.g., skeletomscurrency
and distribution features can be used stand alofte. use of
abstract pointcut hooks instead of template methmmebks

amounts to an easier way to experiment with differskeletons
(i.e., parallelization) as there are no explicitchetween domain
specific code and framework API (e.g., it avoids tise of object
factories to create objects). We consider it a equence of the
greater level of modularity and obliviousness aebik with

AspectJ.

3.2 Hierarchical resolution of parallelism

This is the ability to allow patterns to be compbbéerarchically,
refining the computation within a given pattern ngsianother
pattern [24]. In the limit, this criterion impliethe ability to
compose a framework with another, something that i hard
and sometimes impossible with traditional OO. WAdpectJ, this
is more feasible, though it can still be hard, asreport in this
report.

With OO, the Composite pattern [17] provides argaig way to
hierarchically structure solutions in many casesoweler,
composite structures whose elements are heterogenstl
require a common interface to all components. éngpecific case
of skeletons, all skeletons must provide a comnmderface to be
hierarchically composed. This can constrain skeleto
development. In JaSkel we had problems to compdaarawith

a pipeline, as the pipeline interface requires dditenal method
to connect pipeline elements. This is not necessihyAspectJ.

We use the termecursive pointcuto refer to the case in which
advice acting on the joinpoints captured by a moingive rise to
new joinpoints that can be captured by pointcuthiwithe same
aspect and/or other aspects. This process candettemultiple
levels. This kind of recursion is generally consédea bad thing,
particularly that involving the same pointcut. Hawee we
envision cases in which it may actually be des@abbr instance,
to hierarchically compose AOP skeletons we needpply the
same aspect or a combination of aspects to otlpects leading
to recursive pointcuts. It is still not clear wheththis solution
brings more advantages than that based on the Gitapattern.
Furthermore, Aspectd bears significant limitations the
quantification over aspect-originated joinpointsg(g it is not
possible to quantify over a specific aspect advideyrther
research is required on this front.

It is generally hard to compose various traditio&l frameworks
into a single system. One important cause for linigation is
inversion of control[13]. This problem can be ameliorated by
AOP as it can avoid inversion of control.

3.3 Mutual independence

According to [24], there should be no rules regagdihow

patterns (meaning features in this context) candmeposed, i.e.,
patterns should be context insensitive with resfecine another.
With OO, this can be partially achieved with upfralesign. Our
experience suggests that the same applies to Alsgbough to a
lesser extent. We conclude that the ideal mbgrammer
obliviousnesproposed in [16] is not (fully) realized by Aspé&ct

Skeletons cannot be considered to be mutually iexiégnt in that
all skeletons must be based on a common interfaemable the
various compositions. Aspects are more flexiblejtas enough

for them to define pointcuts that capture the rahtvevents,

regardless of interfaces. However, although the e8kb
framework attains a greater level of uncouplingueen features,
it also presents problems for the composition oftiple features

into a single, coherent system. Difficulties in quoeing multiple

reusable aspects that capture the same joinpairgs @s to resort
to AspectJ idioms such asmchor pointcut§19]. Hence the need
for some upfront design, which harms aspect indépece.

AOP’s mechanisms for quantification and implicitllgato

sections of behaviour hold the potential to deli@egreater level
of separation and independence between the frarkmarious
components, as well as between domain specificsetasThis
leads to the possibility that AOP frameworks may stiow some
of the defining characteristics of OO frameworks;tsas (1) tight
coupling between components, (2) inversion of anft3] and
(3) pattern density [33]. For instance, in the Agpegramework
we were able superimpose multiple roles to the sdomain
specific class without interference (e.g., compatel remote
object behavior) and each aspect could introdceviin defining
roles in a way that is independent of other aspgcts, farm and
proxy). On all three fronts, the Aspectd implemgatais a step
forward relative to all OO implementations mentidnien this

report, included the one in Java.

3.4 Extendibility

According to [24], a user should be able to incoap® new
patterns into the tool, in such a way that new goat are
indistinguishable from the ones originally supplieidh the tool.
This is a known problem in OO frameworks, as ihasd to deal
with unanticipated extensions and modifications. pétJ's
pointcut mechanism is advantageous in this regard does not
require explicit framework hooks. To some extenis possible to
extend components not specifically prepared fohsextension.
However, there are limits to this capability due Agpectd’'s
joinpoint model not covering the aspect space asotighly as it
covers the class space. For instance, it is ndilplesto capture
joinpoint originating from a specific advice. Sudiifficulties
motivate the use of some aspect-oriented patteicis @&Chained
Advice[19] and the express use of classes and interfaithm
the advice just to expose the required joinpoints.

3.5 Large collection of useful patterns

According to [24], the supplied patterns should evoa broad
range of applications. With AspectJ, we were ablerbaden the
applicability of various skeletons, some of whiabultl now be

used stand alone. However, further work is requicedssess the
extent to which AspectJ expands the applicabilitygamponents.

3.6 Openness

According to [24], the programmer should be abladoess low—
level mechanisms, such as the underlying messaggngesystem,
in their applications. Otherwise, the programmetinsited to
developing applications that can be expressed ubm@vailable
patterns.

We believe that the ability and desirability to wide access to
low-level mechanisms greatly depends on how theesyss

structured. The full impact of aspect mechanism srch

structures is not well known. The openness broughtAOP

seems to be an advantage in some situations {eig.easier to
replace a component of the framework with anothdgwever,

we defer such study to future work.

3.7 Correctness guarantees

According to [24], a good parallel programming systshould
provide some correctness guarantees, for instargainst
occurrences of deadlock, or to ensure that theagtjgih matches
the desired parallel structure, or that the cortgpe of data is
sent and received between processes. By MacDonaldis
admission, it is not likely that a tool will appetrat can fully
prevent users from introducing logic errors integmam code or
prevent the selection of inappropriate paralleictire.

The limitations of AspectJ make it ill-suited toadlevith this issue
effectively. This is partly due to the greater leskindependence
of aspects (i.e., not taking into account the ¢$fed other aspects
on the overall system), combined with poor supptortthe
management of aspect interactions. A global view tlo¢
complete/full system is lacking.

Generally, framework components need
assumptions about their surrounding environmentersion of
control provides that, as well as preventing vasikinds of client
errors. For instance, theemplate Methogbattern [17] provides a
rigorous mechanism to enforce rules, invariants eaodtracts.
That ability is absent in pointcuts, which agairsipes back to the
client of the framework the burden of following the This
requires a permanent conscious effort, which may tieo loose
and error-prone to a developer used to the disgpif traditional
OO frameworks. Instantiation provides one examp@0
frameworks often provide ready-made code for tisaimtiation of
objects, guaranteeing that are coherent and wetidd. In many
cases, AOP enables client code to instantiate bjes if the
aspects were not present. This freedom makes itl foar
impossible to generate framework instantiation cddes results
in a style of programming that has a more natweel, fout makes
the framework more vulnerable to badly-formed otgec

3.8 Commonly—-used language
According to [24], a system would ideally use anisemng,
commonly—used programming language, with no maatifims to

to have some

either syntax or semantics. This way, users wowddable to
directly reuse their existing sequential code inrajtel
applications and the system could take advantagexmértise in
an existing language.

Aspects and jointpoint models are relatively nosehcepts that
can pose problems to OO programmers. Clearly, @fspect]

(as opposed of Java) goes against this recommenddthe Java
system of course follows it, but the traditionalngmosition

mechanisms present serious disadvantages, as datahie this

report. Frameworks like JBoss AOP and Aspectwerek sto

have it both ways, by relying on plain Java andasajing most
aspect-specific specifications in separate filesmfodtunately,

these are usually represented usampther language (usually
XML). All approaches have their followers and itsisll not clear

which approach will emerge as the winner, if any.

3.9 Language non-intrusiveness

According to [24], the application code written &yrogrammer
should not have to accommodate the programming Imode
provided by the system. A negative example is asagEs-passing
library that requires the program to be restructur®o
accommodate the extra communication calls that needbe
inserted by the user.

The above concept is very close to thatcofle obliviousness
[16]. The Java approach is significantly invasivel &learly does
not meet this criterion. The Java framework presgrin this

report compels programmers to break the various ot

functionality throughout multiple classes, accogdito rules

dictated by the framework rather than by the chargstics of the
domain-specific code.

The Aspect] approach goes a long way to meet ftiterion,
though it also has its limits. With AspectJ, itafen possible —
though not always — to plug the aspect into théesysvithout the
need for invasive changes. However, cases arisghioh prior
refactoring is needed. We detect three distinctoea to refactor:
(1) to expose the desirable joinpoints, (3)to egub needed
context information and (2) to remove dependendiesveen
distinct stages of the algorithm to be parallelizedthe latter, it
may not be a realistic goal to achieve code ohlisiess, as many
modifications are a consequence of the naturesélorithm. In
the first two cases, AspectJ’s inter-type declaretiare helpful.
One instance is in the use of class adapters tee rmalomain
specific class amenable to quantification (e.g., fogviding
required joinpoints as well as context informatj8f])

3.10 Performance

According to [24], it should be possible to achiete best
possible performance for a program, subject tcsédection of the
parallel patterns. AOP languages such as Aspedy] o a
joinpoint model that statically resolves joinpoiimsa significant
number of cases. The Aspect) compiler generatescdnts
whose performance is acceptable when compareditmtiained
from traditional Java compilers In addition, thelueed level of
coupling between domain specific code and the |ghrstructure
allows for an easier way to experiment with alténea
parallelizations and pick the one with the bestqrarance.

With Java, various features such as the mechanssoceted to
the synchronized keyword incur overheads even whien

application runs in a sequential context. Thisas a problem in
the Java framework because additional features asdhese are
provided through source code generation. With Alhett is

possible to uncouple these features as well. Fstaite, it is
possible to define an aspect that performs syndraiton on a
given set method calls so that the synchronizedviey can be
absent from the base code. When the aspect isidatied in the
build, the system does not incur any additionalrbead [8].

Similar performance benefits were reported in tlatext of

middleware systems [42]. Use of reflection can insignificant

overheads (e.g., uses of thisJoinPoint) but thidblpm is more
acute in systems such as JAC [30] that heavilyaalyeflection.

3.11 Application portability

According to [24], the system should allow applicas to be
ported to diferent architectures. The performance of a program
may sufer on an inappropriate architecture, but the appto
should continue to run. Executable portability &t an issue in
current Aspect] compilers as they generate standafill
compatible bytecodes.

The reduced coupling between domain specific codkeparallel
structure in AspecJ allows for an easier way toectethe
parallelization with best performance for a specifilatform.
However, more dynamic AOP approaches that can aspgcts at
run-time can be helpful to implement frameworks ttha
automatically choose the best parallelization forspecific
platform.

4. RELATED WORK

In [20], Hannemann and Kiczales present a comparieb
implementations in Java and AspectJ of the Garfgeofr patterns
[17]. In our previous work [8] we presented a codilen of
reusable AspectJ implementations of well known cor@ncy
patterns and mechanisms. Both works focus on hampéement
each pattern in Aspectd and do not address the asitign of
these implementations. Work in [4] specifically bsas
composition problems among patterns. In our wodkmosition
of patterns as skeletons in the framework is egdertowever, as
the composition takes place in a framework contegtwere able
to use more case specific solutions.

Constantinides et al. [7]propose an OO framewosk pirovides
some of the services of aspect-orientation. Thoughvas

developed with concurrent applications in mind, &u¢hors hope
that the underlying ideas are applicable to othamoader range of
domains.

Several extensions to AOP where proposed to makwdre of
distribution issues [28][27]. These are based andbncept of
remote pointcyti.e., the ability to intercept a joinpoint in a
remote machine. With remote pointcuts, it is pdsstb execute
an advice on a different machine from the one thiginates the
joinpoint. We did not explore this concept in ourori
Furthermore, we would need a different perspectimeremote
pointcuts, as we would like to apply a proceed ospacific
remote machine (to implement a specific object ridhstion
strategy) and not the other way around (i.e., aotermachine to
execute an advice associated to a local joinpdi®.believe that
it easer to implement such a push model of advieewgion than
a pull method of remote advice, as it involves mmealized

decisions that contribute to scale parallel appites to a high
number of compute resources.

Previous works provide AOP solutions to moduladiribution
related concerns [34][41] and tools to generatecsogode for
distribution concerns [5]. Other frameworks supp@®me
features through AOP [1]. JAC [30] and COOL [23pwyide full
AOP frameworks that also address distribution aodcarrency
related concerns. Our work differs from these sgstén that we
provide a complete AOP framework for parallel comipy
developedisingAOP technology (e.g., AspectJ).

Frameworks for parallel computing built with OO heology
have been proposed in [24][3][18]. Harbulot [21]samong the
first to report on the use of aspects to modulanzeallel
structures.

5. FUTURE WORK

AOP enables client code to instantiate its objast#f the aspects
were not present. This makes the framework moreerable to
badly-formed objects. The concept of XPIs [40] nmagvide a

contribution to overcome this limitation, by proiid contracts
that serve the same purpose as hooks of traditidda@l

frameworks. Annotations can be an alternative waypitovide

hooks for aspects to compose. They also serve thgoge of
documenting the base code design decisions when cihile

becomes more oblivious of the framework context.

Dynamic proxies that were introduced in Java 1.Bnaie
unexplored as a means to simplify distribution telaconcerns.
For instance, with dynamic proxies it is no longequired to
generate an interface per remote object. This ceigdificantly
simplify aspects for distribution.

Aspect oriented frameworks, built with AOP techrplpare a
largely unexplored field of research. Longer tenpegience with
AOP frameworks is required to fully assess its capafor
evolution. Moreover, sets of rules to refactor [25jsting OO
frameworks can help to bring a broader acceptaricdGP in
framework development.

6. CONCLUSION

This report presents an AspectJ framework and coedgawith a
Java framework that provides equivalent functidgaliBoth
frameworks resort to source code generation to ewiently
implement various framework features, namely toictangling
and to achieve a greater level of unplugability abliviousness.

Use of source code generation tools to implemergcifip
framework features is widespread, as it yields irtgpd
advantages relative to traditional library OO apotees. Library
implementations are generally marred by tanglirghfgms. Code
generation brings the following advantages: (1)tbe@ can be
used stand alone and broadens the range of appticat?) a
given feature does not have to be included when neatded,
(3) explicit hooks to support the a specific featare avoided and
(4) applications not using the feature do not inextra run-time
overheads. A library of reusable aspects providegas benefits
without the need for source code analysis (see&tance [8]) In
light of these findings, we conclude that it is adtageous for
AOP frameworks to be structured around librariesrafsable
aspects.

Aspect] avoids use of source code generation i wases than
in the Java version, by supporting specific featuterough an
aspect library. However, some framework featuremotbe fully
implemented by an aspect library. In those casesemtion of
Aspect] code rather than Java brings similar adgast and
allows more independent development and eases \frarke
evolution.

AspectJ allows the superimposition of multiple sote the same
domain specific class, without the target objechp@ware of its
role in the framework context. This also allowsniework roles
to be implemented in a more independent way. Eapleca can
introduce its own defining roles in a way that nslépendent of
other aspects. However, we noticed interferencélpnass when
joinpoints originated by the defining roles must daptured by
multiple aspects, which had to be addressed bynopframework
design and by using AspecJ idioms to support coitippsof
specific aspects

Use of abstract pointcuts in framework design e$tef template
methods leads to new ways to design framework&i@sdo not
require explicit framework hooks. However, curreispect]
capabilities should be improved to support a mdexibfle

composition among aspects.

7. REFERENCES
[1] JB0SSAOP. http://jboss.com/products/aop.

[2] Spring AOP http://www.springframework.org/.

[3] Aldinucci M., Danelutto M., Teti P., An advanced
environment supporting structured parallel programgnmn
Java, Future Generation Computer Systems, vol3,9 n.
Elsevier, July 2003.

[4] Cacho N., Sant'Anna C, Figueiredo E, Garcia A.jBafT,
Lucena C., Composing design patterns: a scalabtiityly of
aspect-oriented programming. AOSD 2006, Bonn, Geymna
March 2006.

[5] Ceccato M., Tonella P., Adding Distribution to Biig
Applications by means of Aspect Oriented Prograngmitth
IEEE SCAM, Chicago, USA, September 2004.

6] Cole D., Algorithmic Skeletons: structured mana
9
parallel computation, Pitman/MIT press, 1989.

[7] Constantinides, C. A, Bader, A., Elrad, T. H.,iNeft, P.,
Fayad, M. E. Designing an aspect-oriented framewoda
object-oriented environment. ACM Computing Surveys,
32(1les): 41 (2000).

[8] Cunha C., Sobral J., Monteiro M., Reusable Aspe@ied
Implementation of Concurrency Patterns and Mechasis
AOSD'06, Bonn, Germany, March 2006.

[9] Darlington J., Field, A., Harrison, P., Kelly, Bharp, D.,
Wu, Q., Parallel Programming using Skeleton Fumstj&th
Conference on Parallel Architectures and Langu&gespe
(PARLE’93), LNCS vol. 396, Springer 1993.

[10] Darlington J., Guo Y., To H., J. Yang, Parallel Bkens for
Structured Composition, ACM PPoPP’95, Santa Clara,
USA, 1995.

[11] van Deursen A., Marin M., Moonen L., AJHotDraw: A
showcase for refactoring to aspects. In Linking ép
Technology and Evolution Workshop (LATE), March 300

[12] Factor M., Schuster A., Shagin K., JavaSplit: gime for
execution of monolithic Java programs on heterogeno
collections of commodity workstations, IEEE Cluster
Computing, Hong Kong, December 2003.

[13] Fayad M., Schmidt D., Object-Oriented Application
Frameworks, Communications of the ACM, 40(10):32—-38
1997.

[14] Fayad M., Schmidt D., Johnson R., Building Applicat
Frameworks: Object-Oriented Foundations of Fram&wor
Design, Wiley 1999.

[15] Fernando J., Sobral J., Proenca A., JaSkel: A Skeketon-
Based Framework for Structured Cluster and Grid
Computing, CCGrid'2006, Singapore, May 2006.

[16] Filman R., Friedman D., Aspect-oriented programnigng
guantification and obliviousness, Aspect-Orientefh@are
Development, pages 21-35. Addison-Wesley, 2005.

[17] Gamma, E., Helm, R., Johnson, R., Vlissides, Jsidgve
Patterns — Elements of Reusable Object-Orientetivard,
Addison-Wesley, 1995.

[18] Gorlatch S., Dunnweber J. From Grid Middleware t@G
Applications: Bridging the Gap with HOCs. In Future
Generation Grids, Springer, 2006.

[19] Hanenberg S., Schmidmeier A., Idioms for Building
Software Frameworks in AspectJ; 2nd AOSD Workshop o
Aspects, Components, and Patterns for Infrastractur
Software (ACP4IS), Boston, MA, March 17, 2003.

[20] Hannemann, J., Kiczales, G., Design Pattern Imphtatien
in Java and AspectJ, OOPSLA 2002, November 2002.

[21] Harbulot, B., Gurd, J., Using AspectJ to Separatrderns
in Parallel Scientific Java Code, AOSD 2004, LateradJK,
March 2004.

[22] Laddad R., AspectJ in Action — Practical Aspecte@ted
Programming, Manning 2003.

[23] Lopes C. V., D: A Language Framework for Distrililite
Computing, Ph.D. thesis, College of Computer S@enc
Northeastern University, Boston, USA, November 1997

[24] MacDonald S., From Patterns to Frameworks to Rarall
Programs, PhD thesis, Department of Computing $eien
University of Alberta, 2002.

[25] Monteiro M. P., Fernandes J. M., Towards a Cataamfu
Aspect-Oriented Refactorings. AOSD 2005, ChicagbAU
March 2005.

[26] Mortensen M., Ghosh S., Creating Pluggable and &tses
Non-functional Aspects in AspectC++, The 5th AOSD
Workshop on Aspects, Components, and Patterns for
Infrastructure Software (ACP4IS’06), Bonn, Germany,
March 2006.

[27] Navarro L., Stdholt M., Vanderperren W., Fraine Biyée
D., Explicitly distributed AOP using AWED, AOSD'06,
Bonn, Germany, March 2006.

[28] Nishizawa M., S. Shiba S., Tatsubori M., Remotentmit -
a language construct for distributed AOP, AOSD’2d04.

[29] Parnas D. L., On the criteria to be used in decimgo
systems into modules. Communications of the ACM115,
pp. 1053-1059, December 1972.

[30] Pawlak R., Seinturier L., Duchien L., Florin G.,dond-
Aubry F., Martelli L., JAC: an aspect-based disitézl
dynamic framework, Software: Practice and Expegerol.
34, no. 12, Oct. 2004.

[31] Philippsen M., Zenger M., JavaParty — transparemiote
objects in Java. Concurrency: Practice and Expegien
vol.19 n.11, November 1997.

[32] Rabhi F., Gorlatch S., (ed), Patterns and Skeletums
Parallel and Distributed Computing, Springer, 2003.

[33] Riehle D., Brudermann R., Gross T., Matzel K., &att
Density and Role Modeling of an Object Transporvige.
ACM Computing Surveys, 32(1es): 10, (March 2000).

[34] Soares S., Eduardo Laureano E., Borba P., Impléngent
distribution and persistence aspects with aspe@PSLA
02, Seattle, USA, November 2002.

[35] Singh A., Shaeffer J., Szafron D., Experience \wahallel
programming using code templates, Concurrency:tieeac
and Experience, vol.10, n.2, February 1998.

[36] Sobral J., Cunha C., Monteiro M., Aspect-Oriented
Pluggable Support for Parallel Computing, VecP&&W®Rio
de Janeiro, Brasil, June 2006.

[37] Sobral J., Fernando J., ParC#: Parallel Computiniyét,
Parallel Computing Technologies 2005 (PaCT'05) sRuis
September 2005, LNCS vol. 3606, Springer 2005.

[38] Saobral J., Proenca A., A Run-time System for Dyrtami
Grain Packing, Euro-Par'99, Toulouse, France, S#me
1999, LNCS vol. 1685, Springer 1999.

[39] Saunders S., Rauchwerger L., ARMI: an adaptivefqta
independent communication library, ACM PPoPR S&n
Diego, USA, 2003.

[40] Sullivan, K. J., Griswold, W. G., Song, Y., Cai, Bhonle
M., Tewari, N., Rajan, H., Information Hiding Infaces for
Aspect-Oriented Design, ESEC/FSE 2005, Lisbon,Rait
September 2005.

[41] Tilevich E., Urbanski S., Smaragdakis Y., Fleury M.
Aspectizing Server-Side Distribution, IEEE ASE 2003
Montreal, Canada, October 2003.

[42] Zhang C., Jacobsen H., Resolving Feature Convalitio
Middleware Systems, OOPSLA'04, Vancouver, Canada,
October 2004.

