An Exploratory Study of CaesarJ Based on
Implementations of the Gang-of-Four
patterns

TECHNICAL REPORT FCT-UNL-DI-SWE-2008-01
Draft, June 2008

Edgar Sousa
Miguel P. Monteiro

7&:§ Universidade Nova de Lisboa
:d Faculdade de Ciéncias e Tecnologia

CONTENTS

1. INTRODUCTION oottt e e et e e s b e e e e e e e eenan e 1
0 N AV, Fo 3 11V T PP 1
2. THE CAESARJI LANGUAGE ... oot 2
2.1.STRUCTURE OF ACAESARJI COMPONENT.cvtuieteeiteetieerteessieeesneessneeennneeesneesns 3
YA 1= B NN I o I N7] = 5
2.3. FAMILY POLYMORPHISM ...uuiituiiitneiiteetieeesieessieessneeesnsessnsessnaessnsessnessseessnsesnneees 5
2.4.COLLABORATION INTERFACES. .. .cuituiitiitieiniiteiteetiesnesnsssisesnssssssnessnsesaesnaesnes 6
2.5.CAESARI IMPLEMENTATIONS ... iituiitteeeteetteeeteeesteessaessneessnnasesnsesneesnreesnaesrnnss 7
2.6.CAESARI BINDINGS AND WRAPPERS. ... cuuittiittiitiitiiiieeieetieenistnsssassnaesnssnessnaeans 7
2.7.CAESARJWEAVELETS. SYNTHESIZING A COMPLETE COMPONENT......c0uviivneirnnennn. 8
2.7.1 MixXin COMPOSITION ...uuiiiiieie ettt e e e e e e e e e e eeeeeeeeeeees 8
2.7.2 Mixin cOmpOoSItioN IN CABSAId........ccciee e s eevveieneesea e e e e e eaeeeeeeeeeeeennnnn 8
2.8.STATUS OF CURRENT SUPPORT FOBAESARIivniiiiiiiiiiiieieee et ea s s s 9
2.8.1 Compiler effiCIENCYccccceeeiiiiiiieeeeeeem e s 9
P < T I [0 11 7= 1 (o 9
2.8.3 BUGS TOUNGuuiiiiiii i 9
2.9.PRELIMINARY COMPARISON BETWEENASPECTIAND CAESARIcviviiiiieiiiceieenn, 9
2.9.1 Asymmetry of the programming Models oo eeeeeiiiiiiiiiiiiiiieeeeeeee, 9
2.9.2 Support for Modularity and Module Reuse ... ceeeeeeeeeiiieenniinnnnee... 10
2.9.3 Support for component iNtegrationcccceeececiieiiiiieeeeeeeeeeeeeeeeeeennenns 11
3. APPROACH TAKEN ...t e e e ee 13
3.1.SCENARIOS BY INDEPENDENT AUTHORSuuiiteitieittieerteeetneeetneesnnesrnneenesneeenns 13
3.2.MULTIPLE EXAMPLES PER SCENARIO.....cuuiitiiitiitiitieetieseiieetesnesnnssnsessneenaens 14
4, [LLUSTRATIVE EXAMPLE: OBSERVER.......cciiiiiii e, 14
4. 1. THE OBSERVER PATTERN. .. ctuituiitiittittiteitieetiesneeteesssnsasnstnertsrsssnessneenaenns 15
4.2.A CONCRETEOBSERVER SCENARIO......0uiittuiirteirtersieeetniersneestnesrnnseessneeesneeennns 15
4. 3.OBSERVER INASPECT .ouiitiitiiiiiieiie et et ettt et eaa s s i s s s s s s st s sbssenssbaeeanaeass 16
4.4.OBSERVERIMPLEMENTED INCAESARJutiiiiiiiii it e e st e 20
5. OTHER PATTERNS ..ot et e et e e s e e s eens 24
5. L. ABSTRACT FACTORY. ..etuutttuteetueetteeeteesteestaeesnaessaesantaseeteesteesnaerrneeereeeraaeennns 24
T2 = 1 =11 = 25
5.3.CHAIN OF RESPONSIBILITY 1uuettuiitieeetiieeteeeteeeteestaeesnnesranessssnesssesssessnaeesnaeesns 25
LT VA 1 0] = T 31
TSI T I = o] N PP RSTR 31
ST T B (0l 0] =7 1] = 34
B. DISCUSSION . ..ot e et et e et e et e et e e st e e e e esn e eennneesanns 35
6.1.REUSABLE MODULES OBTAINED FROM THE EXAMPLES......ctviieniiiiiieeniieneesneennans 35
5. 2. USE OF POINTCUT S .t tttuneittieetieeetneeetneesteestaetsaerrnnaeestsesneesnaessaesseesraresnaeernnns 35
6.3.REASONING WITHCOLLABORATION INTERFACES......iitiitiieiiieiineeieie e eeenns 36
T. FUTURE WORK ..ottt e e e et e et e et e e e e e e e eenneees 37
7.1.PREPARATION FOR SYSTEMATIC STUDIES ...ituituiiniinitnitnitnetetnetesesnesesnnsnnasnaes 38
8. CONCLUSION ..ottt rmm et ettt e e e e e e e e e e rnneeeeanns 38
9. ACKNOWLEDGEMENTS ...t 39

10. REFERENCES ..ot 39

FIGURES

FIGURE 1. GENERAL STRUCTURE OFCAESARJ COMPONENTcvviiieteeeeiteeeeeteeeeesseeeeereeeeessnseeeseseessssenesens 4
FIGURE 2. MECHANISMS FOR REUSE FOR ASPECTJ AND CAESARJ. c.cceeuiririieeeeeiirireeee e 11
FIGURE 3. MECHANISMS OF ASPECTJ AND CAESARJ FOR INTEGRATING WITH AN APPLICATION. ...eeveeeeeiirieereeeeeeireneeaaeean 12
FIGURE 4. STRUCTURE FOR THE OBSERVER PATTERN ..eeeeieiiuttteeeeeeeiiurueeeeeeeeninsssseesssasesasssssssssessasssssssssessensssssssseseans 15
FIGURE 5. CLASS DIAGRAM FOR THE SCENARIO FOR OBSERVER BY BRUCE ECKEL, INJAVAuvviiieeeiciiiieeeeeeeeciieeeee e 16
FIGURE 6. ABSTRACT FACTORY: CLASS DIAGRAM FOR THE FLUFFYCAT SCENARIO IN JAVA.......cuviiiiieeiieiiieeeeeeescinnneeseeenes 26
FIGURE 7. ABSTRACT FACTORY: CLASS DIAGRAM FOR THE FLUFFYCAT SCENARIO IN CAESARJ.....uvtvieeeiiiiriieeeeeercireneeneeenes 26
FIGURE 8.ABSTRACT FACTORY: CLASS DIAGRAM FOR THE JAMES COOPER SCENARIO IN JAVA. .27
FIGURE 9. ABSTRACT FACTORY: CLASS DIAGRAM FOR THE JAMES COOPER SCENARIO IN CAESARJ. .oeeeveieriieeeeeeeeiiieeeeeane 27
FIGURE 10. BRIDGE: CLASS DIAGRAM FOR THE VINCE HUSTON SCENARIO INJAVA.oceiiiiieiiiiieeeeeeeeciirreeeeeeeeevnveeeeeee s 28
FIGURE 11. BRIDGE: CLASS DIAGRAM FOR THE VINCE HUSTON SCENARIO IN CAESARJ. ..ccciiiiiiiiiiiee et eecnvaee e 28
FIGURE 12. BRIDGE: CLASS DIAGRAM FOR THE FLUFFYCAT SCENARIO INJAVA.cuuiiiiiieeeeeiiiieee e e e eeeirrree e e e e e annneee s 29
FIGURE 13. BRIDGE: CLASS DIAGRAM FOR THE FLUFFYCAT SCENARIO IN CAESARI.cc....... .29
FIGURE 14. CHAIN OF RESPONSIBILITY: CLASS DIAGRAM FOR THE HUSTON SCENARIO IN JAVA. ...ccvveiieiiriieeeeeeseineneeneeens 30
FIGURE 15. CHAIN OF RESPONSIBILITY: CLASS DIAGRAM FOR THE HUSTON SCENARIO IN CAESARJ. ..ccovivviiieieeeeeieieeeeee 30
FIGURE 16. VISITOR: CLASS DIAGRAM FOR THE HUSTON SCENARIO INJAVA. .cciieiiiiieeieeeieiiiieeeeeesesiereeese e s s ssnvnnneeee s 32
FIGURE 17. VISITOR: CLASS DIAGRAM FOR THE HUSTON SCENARIO IN CAESARJ. «..uuviiieieeiieiiiieeeeeeeeciirree e e e e e cveeananeee s 32
FIGURE 18. VISITOR: CLASS DIAGRAM FOR THE ECKEL SCENARIO IN JAVA.

FIGURE 19. VISITOR: CLASS DIAGRAM FOR THE ECKEL SCENARIO IN CAESARJ. c.cctiiiiiiiieieiiieieeeieeeeeeeeeee e ee e eeeeeeeeeeees 33

CODE LISTINGS

LISTING 1. EMULATING MIXINS IN CH4 1.utiieeieeeieiiriieeeesesesutteeseseseaseseseseeeessssssaseessssssansssseessssssssssneessesesessssssssseeses 8
LISTING 2. HIPOTHETICAL EMULATION OF MIXINS INJAVA 5...euiiiiiiii ittt eesiteee e e e e e s s svnneee e e s s senaneeaeeeens 8
LISTING 3. REUSABLE ASPECTJ ASPECT FOR OBSERVERccccuurirreeeeeerirrereeeeeeeanreneeaeens .17
LISTING 4. CONCRETE ASPECT IN ASPECTJ FOR ECKEL’S FLOWER SCENARIO FOR OBSERVER.......cueeieeeieiurreeeeeeeeerneneeseeenns 18
LISTING 5. CASE-SPECIFIC ASPECT FOR AN OBSERVER SCENARIO BY HANNEMANN AND KICZALESccccuvviereeeeeeiirieeeeenan. 18
LISTING 6. CLASS FLOWER IN JAVA — SUBJECT PARTICIPANT IN ECKEL'S OBSERVER.....uvveeererreeeaereeesrneeessnreesensesessnnnnns 19
LISTING 7. CLASS BEE IN JAVA — OBSERVER PARTICIPANT IN ECKEL'S EXAMPLE. ...vvveeevreeerereeeeeereeesnsneeessnessensnesesssnnnnas 20
LISTING 8. COLLABORATION INTERFACE FOR THE OBSERVER PATTERN. ...uvvveereeeieiurereeeeesssannrreesessssssneneesneesessssssssneeeses 20
LISTING 9. A CAESARJ IMPLEMENTATION BASED ON THE STANDARD JAVA AP| OBSERVER/OBSERVABLE .. .21
LISTING 10. A SIMPLE CAESARJ IMPLEMENTATION FOR OBSERVER.uvvvuturrerereerererererereseeeeeseseseseseessmsmmmmssmssssmmrmmmmmmne 22
LISTING 11. WEAVELET FOR THE CAESARJ COMPONENT FOR ECKEL’S FLOWER SCENARIO FOR OBSERVER.....ccccceeeuvrreenennn. 22
LISTING 12. FLOWER AND BEE PARTICIPANTS DEVOID OF SECONDARY CONCERNSvverieeeeeiurreereeeeeasinsreeseessesnnseesseeeens 22

LISTING 13. A CAESARJ BINDING FOR THE FLOWER EXAMPLE ...uuuuieeeerrerttieeeeeeeressnnnaeeeeessesssnnnesssesssmnnesesessssssnnnneeeeeees 23

An Exploratory Study of CaesarJ Based on
Implementations of the Gang-of-Four patterns

Technical Report— draft, June 2008

Edgar Sousa Miguel Pessoa Monteiro
Departamento de Informética Departamento de Informética
Escola de Engenharia Faculdade de Ciéncia e Tecnologia
Universidade do Minho Universidade Nova de Lisboa
PORTUGAL PORTUGAL

edgarfdi.uminho.pt mmonteirofdi.fot.unl. pt

Abstract
This report presents the results of an explorastydy of the aspect-oriented
programming language CaesarJ. The study is basddhglementations of seven
Gang-of-Four design patterns. The report describesimplementations and then
provides a short analysis. A preliminary assessmérfaesarJ is made in which
Aspect] is used as a basis for comparison.

1. INTRODUCTION

This report documents the results of an effortedgrm an initial assessment of the capabilities
of the CaesarJ language, in which several exampléise CaesarJ programming language [4]
were developed. The focus of the work was on thesttocts and mechanisms that classify
CaesarJ as aspect-oriented, as well as to its gugggmaration of concerns and module reuse. To
this effect, seven of the well-known Gang-of-Fowsign patterns [12] were developed in

CaesarJ. This report describes the implementatidegeloped and refers to Aspect]

implementations of the same patterns for the p@pmdsa comparison [1] that uses as criteria
flexibility of support for modularity and separatiaf concerns and direct support to a given
effect.

The complete code is available at the following URL
http://ctp.di.fct.unl.pt/~mpm/CaesarJGoFv0.5.rar

1.1. Motivation

Many languages faaspect-oriented programmin@OP) [20] were proposed in recent years [8].
For each language it is usual for one or severaligations to be available, describing its
distinguishing characteristics, usually with regpecAspect]. However, reports describing the
use of an AOP language in practice are less frequerrecent years, the CaesarJ language
attracted attention among researchers of Aspeer®@d Software Development, due to its
promising features and the claims stated of theatdges over Aspectd in relation to flexible
support for modularity and separation of conced44.[Few studies are available on the use of
CaesarJ in practice, the one by Schwaninger &3lijeing the only exception of which we are
aware. This scarcity motivates the work descrilmeithis report.

To adequately assess the capabilities of Caesagleetion of the Gang-of-Four patterns is used
as a case study. Design patterns are a distillasfomany real systems for the purpose of
cataloguing and categorizing common programming @egign practice. The most well-known
patterns are the 23 Gang-of-four (GoF) patternsichvipropose flexible solutions for many

design and structural issues [12]. A repositoryngflementations of the GoF patterns comprises
an interesting case study for the practical assessof a programming language. In the GoF
book, the examples are coded in languages that mamestream (mostly C++) at the time in
which the book was published. It was later notitteat the patterns provide many insights on the
strengths and weaknesses of languages, as wetbeislipg hints as to what language features
could overcome the limitations [6]. The GoF patsewere also used as case studies for research
on AOP languages from its early days [21]. Seeifstance the page on Subject-oriented
Programming (SOP) in which several GoF patterruaesl as case studies to assess and illustrate
the advantages of SOP over traditional techniglse of the GoF includes showcase some AOP
languages [16], illustrate the advantages of angA@®P language over some other language used
as benchmark [26][32], and as a basis for tutofi&f$. Probably the most cited example is that
of Hannemann and Kiczales [16], in whialh 23 GoF patterns were implemented in both Java
and AspectJ and the corresponding source code wds Available onlirieA substantial part of

the Miles’ book on AspectJ techniques [27] is basadthose examples. In addition, public
availability of the examples opened the way foruse in further research [13][30]. Use of the
GoF patterns as a case study also has the advahttgeach pattern can be tackled separately
and each individual example can be kept simpleclieiases the task of someone approaching
the examples.

Despite the benefits brought by that example aedojportunities it provided, presently most
AOP languages lack its own repository of GoF immatmtions. To our knowledge, just one
complete repository was developed in addition & tf AspectJ — using the EOS language [32]
— and it was not made publicly available. If we kee mind that there are how many AOP
languages available [8], this gap is more glarivg. believe that it would be beneficial if a wider
range of AOP languages was used to develop implatens of patterns such as the GoF. If
such repositories were available, they would prevddse studies for various kinds of research as
well as facilitating various kinds of comparativieidies and assessments. This report presents
example for seven patterns.

The rest of this report is structured as followsctn 2 describes the main mechanisms and
constructs of CaesarJ. Section 2.9.1 describegppach taken for the study. Section 4 focuses
on the particular case of tlbserverpattern, which is used to illustrate how Caesanlle used

to develop a reusable software component. Sectioavers the remaining patterns covered by
the study. Section 6 provides a discussion ondhelts obtained. Section 7 provides suggestions
for future work. Finally, section 8 concludes theport.

2. THE CAESARJ LANGUAGE

In this section, an overview is provided of somehs mechanisms of CaesarJ. Caeshaies
some important similarities with AspectJ, presentlg most popular and widely used aspect-
oriented programming language. HowevEgesarkhlso has some important differences from
AspectJ. Since most potential readers of this tega likely to be familiar with AspectJ, this
reports assumes such familiarggd outlines the main characteristics of Caelsgninderlining
the differences relative to AspectJ [1P]. For a comprehensive and up to date overviéw o
CaesarJ, see Aracic et al [5].

Like AspectJ,Caesards also a backwards compatible extension to Jawaveder, CaesarJ
extends Java 2, whereas AspectJ is kept up tovddiethe latest versions of Java. Aspectd is
already available as an extension to Java 6. Chelkss not support constructs introduced to

1 http://www.research.ibm.com/sop/sopdpats.htm
2 http://ww.cs.ubc.callabs/spl/projects/aodps.html

Java in versions after Java 2, such as annotatgereric types and the generalized for loop.
CaesarJ uses a joinpoint model similar to that gpextJ, with the exception that Aspectf’s
pointcut designator is not supported. Unlike Aspediowever, CaesarJ suppordgnamic
deploymentof advice, meaning that all advice of a Caesapecscan be activated and
deactivated. In addition, CaesarJ suppddploy on objecti.e. the possibility to constrain the
captured joinpoints to those that originate frogiven target object.

In addition to plain-Java classes, CaesarJ provadescond kind of class-like module, the
CaesarJ classhat is roughly equivalent to the aspect modules ofeksh CaesarJ classes are
representedhrough thecclasskeyword. An important feature of CaesarJ is theeinclasses of
cclassmodules, which are also declared and defined girdiecclasskeyword.

2.1.Structure of a CaesarJ component

With CaesarJ, the emphasis is not so muchagpects(and classes) as aomponentsThe
features that CaesarJ shares with AspectJ are ynaighrded as a means to compose modules
and components. CaesarJ was designed to suppaietiebopment and integration of software
components and to the flexible reuse of the modihiascomprise the structure of a component.
In this regard, CaesarJ goes further than maimati@gject-oriented (OO) languages and older
AO languages such as AspectJ. Figure 1 outlinesstieture of a CaesarJ component. The
names shown are abstract and not related to atigydar case.

The design of CaesarJ takes into account that coempantegration typically comprises several
parts which developers wish to keep separate amableeto evolve separately. In CaesarJd it is
possible to represent the design-level structura obmponent to some extent, by means of a
CaesarJ class. One such class is shown at thef teiguoe 1 and usually callecbllaboration
interface(section 2.4).

CaesarJ takes into account that there are two priparts in the structure of a component:
(1) the internal implementation of the componeselit and (2) the glue that integrates it to a
specific application. Concrete implementations admponents are placed irCaesarJ
implementations(section 2.5), represented at the left side ofufggl. CaesarJ supports
polymorphism in such a way that it is possible wotch from one implementation to another
without the need to perform invasive changes orréh®aining parts of the system. In addition to
collaboration interfaces and CaesarJ implementsitione often needs some glue that binds a
component to a specific application. CaesarJ pesvidupport to this kind of glue through
CaesarJ bindingg¢section 2.6), represented at the right side gfifg 1.

As regards component integration, it is importanhote that any component comprises a set of
abstractions that must somehow be mapped to thetstal elements of the application. The glue
becomes particularly important in cases in whick #pplication does not have first-class
representations (typically classes) of the abstmaston which the component is based. One
example of this problem, mentioned by Mezini ande@sann [26], is that of a component that
supports the notification of changes in lines andifte segments from an application. If the
application does not include a class represeniires Ibut just individual points, some glue must
be created to map pairs of points to lines. Indbetext of CaesarJ, this mapping is caled
demand remodularizatiof25]. In CaesarJ, it is supported by a mechanimrappers(section
2.6) that is represented at the bottom right otiFedL.

Finally, all implementations and bindings are cosgmbtogether by declaring a concrete CaesarJ
class calledveavelet(section 2.7) that usawixin compositionto integrate all modules into a
component (section 2.7.1). This module is showthabottom left of Figure 1.

«Collaboration Interface»

Abstraction 2 —=>| Abstraction 2

JAN

Abstraction 3

«Implementation» «Binding»
Definition for Definition for
Abstraction 1 Abstraction 2

A

Definition for
Abstraction 3

Complete definition for
the Caesar] component

Application
specific class 1

Application
specific class 2

- em e === —

= = e e m = = === -

~

Domain specific application’ .

Figure 1. General structure of CaesarJ component.

The component structure supported by CaesarJ m®wadlear guide as to where each piece of
code is to be placed and suggests the followinggas
1. First, analyze of the original example, with théphef a class diagram. In some cases, the
abstract part of the structure maps directly in@l.a

2. Next, place all implementation code not dependérase-specific types in the CaesarJ
implementation.

3. Place of all code depending on case-specific typdse CaesarJ binding.

Create the complete component through an empty aChedass (the weavelet) that
extends the implementation and the binding.

2.2.Virtual classes

Virtual classeg23] comprise the capability to treat inner, ndstdasses, polymorphically. We
give to the termvirtual the same meaning as in the context of the C++ulage, i.e. class
members that can be overridden in subclasses andendictual implementation dynamically
bound orlate bound according to the actual type of the object atinue. In plain Java, methods
are virtual by default, unless marked by timal keyword. Plain Java inner classes, however, are
not virtual. They cannot be overridden and aresabject to dynamic binding. If an inner class is
declared in a subclass with the same name asrtbe aass of the super-class, this gives rise to a
shadowingphenomenon. Shadowing occurs when a variable orbeedeclared in a given scope
hides a different variable or member with an ideaitiname declared in a broader, enclosing
scope. Shadowing occurs most often with fields eatdhbles and is generally considered bad-
style, as it results in obscure code. For thisaeagrogrammers strive to avoid them.

CaesarJ supports virtual classes, with the conseguinat the name of an inner class does not
uniquely identify a specific class, as is the catemainstream OO languages. Instead, any
CaesarJ class nested within another CaesarJ slagsual, i.e., its name can be dynamically
bound to multiple, different classes, dependinghenspecific instance of the enclosing CaesarJ
class. Thus, CaesarJ can be said to sumbass name polymorphisin addition to theobject
reference polymorphismf mainstream OO languages. This provides oppiisrfor reuse that
are absent from traditional languages, as a canctass name comprisesextension point

Any class nested within a CaesarJ class is a Vidaas and thus can be dynamically bound to
different concrete classes in different circumséasnt¢he same way method calls are late bound to
the most specific implementation in plain Java.

Traditionally, instantiation of inner classes irvdds done the same way as top-level classes,
using thenew keyword followed byTopLevelClassnnerClass() However, for instantiating
virtual classes, thaew keyword is placedfter the complete path to the instance of enclosing
type (i.e., family object):

object = OuterCClass. new InnerCClass();

2.3.Family polymorphism

A top-level CaesarJ class is the construct thraugith CaesarJ supports a mechanism termed
family polimorphisni11] Family polymorphism is the ability to group set of distinct,
collaborating classes into a larger class, suchtiieamember classes, and hence their instances,
are uniquely owned by the enclosiingtance The type system enables the set of inner cldeses
be refined but at the same time statically enstinas objects from different families are not
confused. In CaesarJ, refinement of member classesried out by the virtual class mechanism.
The refinement is also performed in such a way ithigthidden from external clients, enabling
the whole group to be handled polymorphically.

Many problems are described in terms of a familydistinct, collaborating classes that can be
realized through many different implementationsimodern software, cases often arise in which
several such implementations co-exist in the sayat). This gives rise to the problem of how
to ensure consistency. Each of the collaboratingsels can be refined along parallel inheritance
chains, which results in multiple possible combmad of class implementations. Some
combinations are consistent and therefore shouldllogved by the type system, while other
combinations are inconsistent and should not benipled. In his seminal work on family

polymorphism [11], Ernst analyses how the typeesyst of various mainstream languages cope
with this problem.

Mainstream type systems either allow too much oclltoo much. As a result, either safety or
flexibility is lost. If it leans on the side of ¥, it blocks many situations that would be safé a
consistent, thus compromising reuse. On the otard hif the type checker leans on the side of
flexibility, it also allows for many unsound or eneous combinations. Neither scenario is
satisfactory. Programmers using mainstream languagenot enjoy the support of the type
checker and therefore must deal with those casewally, through techniques such as the
Abstract Factory pattern [12].

Ernst notes that in traditional OO languages, apligk representation of class families is
lacking. Mainstream languages are not expressivegnto provide type systems with enough
information to provide adequate support to mulfiegbstructures [11]. His proposal to cope with
these problems is a language mechanism compriamdy classesandfamily objects A family
class specifies a family of collaborating classesabstract terms. There are many different
possible variant implementations of the family,ledeing an instance of the family class. These
instances — the family objects — act as reposgarfeconcrete classes that comprise one possible
implementation. The type system relies on the itdewnf the family object, meaning that two
different family objects are considered by the tybecker as two different implementations,
whose members are not allowed to mix. Thus, theliizsrof implementation types are associated
with theinstancesof the class family, not with class family itsefs a consequence of the type
checker relying on instances, the family object nalways be passed as an argument along with
the instance types of the family. In order for thgpe checker to guarantee that the enclosing
(family) object is the same in all situations, sositeations associated to the handling of object
references are prohibited. For instance, an oligeabt even “equal to itself” in a scenario in
which it is passed twice to a method, in the fofntwo different arguments. This is due to the
existence of multithreading in which the referenoegect may be changed between two different
accesses. For this reason, the reference to thiyfalopect must be declardthal and propagated
as such from its definition to any point in the gnam that uses parts of the family.

In CaesarJ, any top-level CaesarJ class is a fartags. Any nested CaesarJ class is a virtual
class that can be overridden and whose name igdulg polymorphism. This way, CaesarJ
enables the developer to incrementally refine ataiaborations.

2.4.Collaboration interfaces

In CaesarJ, aollaboration interfacgCl) [25] is an approach proposed by the authbGamsarJ,

in which an abstract CaesarJ class is used tofgpatiabstract terms, a collaboration between
several abstractions. Cls represent design-levielrnmation akin to that represented by the
abstract classes in many class diagrams of thegatErns. In CaesarJ, such design knowledge
can directly be represented through abstract Chetasses. Cls are a characteristic of CaesarJ,
not of languages supporting family polymorphisng@neral.

A collaboration of abstractions usually involves ltiple, different classes. In mainstream OO
languages, this means that collaborations are wctstal manifestation of crosscutting. In
CaesarJ, participants in collaborations are dettJdah®ugh not necessarily defined, in the ClI as
inner, nested, virtual classes. Only top-level @akslasses can be Cls. Each different system of
concrete classes that represents the collaboratomprises one of possibly many
implementations of the Cl. In CaesarJ, the elemefhta system of concrete classes can be
polymorphically bound to the names of the nestadsds declared in the CI.

Listing 8 shows the CI for the Observer patternsTl represents the abstract roles of Observer
(note that different operations names are use@dch ease). In addition to specifying the internal
structure a software component, Cls can also lietsapecify its interface. Keeping in mind that

it is possible to approach a collaboration as geds it is worth noting that the interface of a
CaesarJ aspect is quite different from that of Aspaspects, as proposed by Gudmundson and
Kiczales [15]. The CaesarJ approach focuses ontstge) while the AspectJ approach focuses on
dynamic events as represented by abstract pointcuts

In software component engineering, the conceptsrovided and expectedinterfaces, or
contracts, are often used. Thmvidedpart represents what the component provides émtslj
i.e., what a client of the component can expechfiowhen using it. Thexpectedart represents
the assumptions that a component can make fromnikgonment and that can be used in its
implementation. When they were initially propos€ds usedrequired andexpectedkeywords,

to represent these concepts. These keywords wetetagag the operations declared in the CI.
These were later dropped as it was deemed notaesrepugh: each case could find a different
variant of what is provided and what is expectdd Fowever, this division of the parts of a
component is still present at the conceptual leth@ugh no longer explicitly represented in
CaesarJ source code. This division also providearhtivation for distinguishing between the
bindingsandimplementationparts of a CaesarJ component.

2.5.CaesarJ implementations

A Caesardmplementatioris a top-level CaesarJ class that encloses allegitsrof the concrete
implementation of the component that are potegtiadusable across multiple cases and
scenarios. It inherits from a Cl when one suchtexiBhough it usually specifies concrete state
and behaviour, it is often abstract. Typically, @e€arJ implementation provides implementations
to some, though not necessarily all, the innerselasleclared in the Cl. Conceptually, these parts
relate to theprovidedpart of the component (section 2.4). A CaesarJeémentation carries out
the same role as an abstract aspect in Aspecttind.is0 shows one example of a CaesarJ
implementation. Note that there is no need for asarl implementation to define all members
declared in the CI. Some of the members may baelein other CaesarJ classes that also inherit
from the CI. All is required is that a definitios provided along one of the inheritance paths that
take the CI as root, so that all names are resofvédte weavelet.

2.6.CaesarJ bindings and wrappers

A CaesarJ bindings a top-level CaesarJ class that inherits froen@lh (when one such exists)
and encloses the logic that glues the componert $pecific application. Thus, application-
specific elements should be placed in a CaesadlnginA CaesarJ binding corresponds to the
expectedpart of the component (section 2.4). It perforims $ame role as a concrete sub-aspect
in AspectJ.

Code within a CaesarJ binding must map the nesiddal classes declared in the CI to the
concrete classes of the application. In Caesael ptimary mechanisms to perform an actual
mapping arevrappers Virtual classes can be declaredw@p one or several objects of arbitrary
types, which become itarrappees Through access to the public methods and fieldghe
wrappees, the virtual class can extend the behawgiahe wrappees in order to adapt them to the
component. Wrappers hold any extra members that lmeagecessary for the purposes of the
integration between the component and the apphicatiisting 13 shows a CaesarJ binding with
wrappers.

The binding also handles the cases in which thdicagion does not have classes that directly
correspond to the abstract roles declared in thei.€l, when the application lacks some

abstraction that plays a role in the componensuch cases, the binding defines nested classes
that hold together the various objects that comeptisee missing abstraction (abn-demand
remodularization25]).

2.7.CaesarJ weavelets: synthesizing a complete compomen

Both implementations and bindings are subclassethefCl. Thus, we need a mechanism to
compose them to yield the complete, unified compariEhe mechanism provided by CaesarJ is
a form ofmixin compositior7].

2.7.1 Mixin composition

The main idea of mixins is to specify additionahdtionality to not just one, but to an open-
ended set of existing modules in a transparentnamdinvasive way. Mixins are also known as
abstract subclassd3]. In this context, mixins are approached as ecmanism to specify a
subclass that can be used to extend more than lags. Gome programming languages can
emulate this effect, including C++ and CLOS. C++ @nulate mixins using parameterized
inheritance, i.e., a template subclass that ggisen type as a parameter and afdeerits from

the parameter type. Listing 1 shows a C++ examptheotechnique. In the C++ community, the
technique is also known &siits classe$31].

template <class Super> class Mixin : public Super {
/I mixin body

h
Listing 1. Emulating mixins in C++

Though Java 5 supports generic types that are takid++ templates, the Java variant is not
expressive enough to emulate mixins. In Javais, nibt possible to use a type parameter in the
extendsclause. In the example shown in Listing 2, if teenments in the first line are removed,
the Java compiler issues an error.

public class Template<T> /* extends T */ {
/I class body

}
Listing 2. Hipothetical emulation of mixins in Java5

In Java, each subclass presets the class thaends It is not possible to pick a Java class that
extends some Java class with some additional fumatity and reuse it to extend a different Java
class with the same functionality. In such casesgqammers must create a different subclass for
each class they want to extend, which often resaltsiuch duplication. Another option is to
resort to the Decorator pattern [12].

Mixin composition is often approached as a variahtnheritance, and described in terms of
inheritance, more specifically in the context ofltiple inheritance. However, mixin compaosition
can take other forms that do not correspond to ritdmee. For instance, the inter-type
declarations of AspectJ are a form of mixin composi

2.7.2 Mixin composition in CaesarJ

In CaesarJ, a component can be created by compesieyal CaesarJ classes. Using mixin
composition, different components can be composdulitid more complex components without
compromising the independence of each componentinMiomposition is the way by which

CaesarJ creates complete components out of vapaus. The CI provides the general

framework, the CaesarJ implementation provides rd@dization of specific implementation
decisions and the binding provides the glue taother components and/or applications.

Listing 11 shows a weavelet for one example of Qlese

2.8. Status of current support for CaesarJ

The version of CaesarJ used comprises eclipse [2RWith the CaesarJ Development Tools
(CJIDT) plug-in [4], version 0.8.7. Later versionsezlipse do not seem to be compatible with
CJDT.

2.8.1 Compiler efficiency

The CaesarJ compiler was noticeably slow even keittively small code bases. For this reason
we found it necessary to disable the automaticdbaption in the eclipse environment. The
program launcher was also very slow to launch a run

2.8.2 Limitations

Package-level visibility of CaesarJ class membersoi allowed. If the default package is used,
the CaesarJ compiler refuses to compile the profadgrammers are advised to use separate
packages for each abstract implementation of @lsvbid conflicts with the scope of pointcut
definitions.

A limitation of CaesarJ that placed some constsaot some programming solutions is that
CaesarJ class cannot extend regular Java clagsseniy, the best available option to compose
additional functionality to plain Java classes seéorbe by means of wrappers.

One other absent but missed feature is arrays es&$d's objects. The workaround used is to use
references of type java.lang.Object and performagipropriate casts to the desired type.

2.8.3 Bugs found

None of the CJDT problems found is really criticihe most notable defect we found is
attributable to the compiler. Around advice caret flaced on CaesarJ classes that implements
interface PerThisDeployable (or sub-classes of stlabses). The CaesarJ compiler fails by
throwing ArraylndexOutOfBoundsException. The foliogy code illustrates the problem:
public cclass SomeClass implements PerThisDeployabl ef

Il...

around() : somePointcut(){
/ldo something

}
}

After some time, we noticed that syntax highlightimehaves strangely, as well as the graphical
representation of pointcuts.

2.9.Preliminary comparison between AspectJ and CaesarJ
2.9.1 Asymmetry of the programming models

Both Aspect] and CaesarJ a®ymmetriclanguages, meaning that they support more than a
single kind of module and each kind has differeaqpabilities and is subject to differing rules.
This is undesirable, because whenever exceptiongds arise, this always increases complexity,
as exceptional cases and corresponding rules neusbrsidered. All rules and mechanisms in a
language would ideally apply in the same way taaltistructs. In practice, many limitations and
exceptions must be tolerated, due to technologic@onceptual considerations. Languages that

extend existing languages, such as Aspactd CaesarJ, are especially prone to the occa@@nc
exceptions and special cases. Such languages addamstructs and features that may not be
applicable to the constructs and libraries from ¢bee language. In the case of AspectJ, many
asymmetries are well-known, for instance moduléamsation (explicit in Java and implicit in
AspectJ).

CaesarJ shares with AspectJ one particularly impbfborm of asymmetry. AspectJ advices are
namelessand therefore not first-class entities. For tlegson, visibility rules and polymorphism
are not applicable for advice. CaesarJ basicalligee the pointcut and advice mechanisms of
AspectJ, and therefore also has this asymmetrgddition, CaesarJ adds new asymmetries of its
own, many of which seem motivated either becauseecu support for the language is not
complete (the latest version number is 0.87) or thuencompatibilities with existing Java
constructs.

Another important asymmetry in CaesarJ is the emcst of two kinds of module (as is the case
with Aspectd): plain Java classes and CaesarJesla§hough CaesarJ classes are different from
Aspect] aspects, it is also the case in CaesarXdifferent rules apply to different modules.
Plain-Java classes cannot hotdlassspecific members apart from enabling/disabling the
composition of CaesarJ classes. Only inner Caedas$es, though not Java classes, can be
virtual. CaesarJ classes cannot inherit from ckag®sen the Java standard APIs (though curiously
CaesarJ classes possess all state and behaviouijava.lang.Object) and it is not possible to
declare an array of CaesarJ class types.

2.9.2 Support for Modularity and Module Reuse

Figure 2 summarizes the differences between AsmettJCaesarJ as regards support for reuse,
abstracting from the specific constructs and meshas Parta of Figure 2 outlines AspectJ’s
separation between a reusable abstract aspecteaspacific concrete aspect and the specific
case, the application to which aspect functionabtyo be composed. The parts of the aspect
component that are potentially reusable are plateaeh abstract aspect, which can be used in all
different systems to which we want to compose #peet functionality.

The fact that the abstract aspect is reusable doesmply the absence of many possible
alternative implementations. Different implemerda may be desirable for different concrete
cases (performance considerations are one realson)any cases, the implementation of the
generally applicable part is orthogonal to the ienpéntation of the case-specific part. In such
cases, one would like to vary the two independengy that the boundary between the generally
applicable and the case-specific parts comprisaration point That is indeed the case of
CaesarJ though not of Java or AspectJ.

For independent evolution of modules to be possibte various parts would ideally be
polymorphic relative to each other. That is not tase with AspectJ, as the mechanism to
compose an abstract aspect to concrete aspectdoisnaof inheritance akin to that of Java
(though devoid of reference polymorphism). Only teeminal nodes, or “leaves”, of an aspect
inheritance hierarchy can be concrete. As a coresey no polymorphism is possible as regards
aspects. Concrete aspects are statically boungitogyke abstract aspect and that is why there is a
single abstract aspect at the top of jpaot Figure 2. It is not possible to replace theestgspect
without performing invasive changes on the sub-etsp®y contrast, in CaesarJ it is possible to
polymorphically switch implementations of a givearipof a component without impact on the
remaining modules of the component. This is illat&d in parb of Figure 2.

® In the case of Aspect] some asymmetries seem igh kx design. See, for instance, the post on nasmbdce in:
http://dev.eclipse.org/mhonarc/lists/aspectj-usesg03730.html

10

(a) AspectJ

Abstract aspect

BN

ssnnnmnnmnmnm Staticinheritance 1amwemsmmmmn=m

¢

Concrete aspect A Concrete aspect B Concrete aspect C

ssnnsnnmnmnmnn Staticinheritance 1mmswemmmmmmn=m

Application A Application B Application C

(b) CaesarJ

Component implemen- Component implemen- Component implemen-

tation m 2

ssmmmnnmmmmnm polymorphiclayer 1mmememssmmmnm

‘ Binding for A \ Binding for B Binding for C

EEEEEEEEEEEER polymorphiclayer IEEEEEEEEEEER

‘ Application A \ Application B Application C

Figure 2. Mechanisms for reuse for AspectJ and Caasl.

2.9.3 Support for component integration

The differences between the AspectJ and Caesatdamiems to support module and component
integration are represented in Figure 3. Part afigfire 3 shows the mechanisms of AspectJ,
which are based on ITDs and marker interfaces. &3psupports ITDs for two kinds of
members: fields and methods. ITDs are used to ceenpoch members to target classes from the
specific application. Often, the mapping is not @atrectly, but rather in “two phases”. The
usual approach is to declare inner, often emptgrfimces within the abstract aspect to represent
the concepts from the internal implementation & #spectThese interfaces are often called
marker interfacesDeclare implementslauses are then used to carry out the actual imgpin
Aspectd, when aeclare implementsclause makes a class implement a marker intertaee,
target class also acquires all members composedetanarker interface, through ITDs. Thus,
declare parentsclauses bind the marker interfaces, as well asnémbers it acquired through
ITDs, to the classes from the application. ITDs dedlare implementsamount to a form of
mixin composition [7]. ITDs are potentially applida to multiple cases and placed in the
abstract aspect for this reason. Tdexlare implementsclauses are specific to a particular
combination of aspect and application, and theegfdaced in the concrete sub-aspect.

11

It also usual for the abstract aspect to includeete advice that refers to the marker interfaces.
In the concrete sub-aspect, inherited code thargdb the marker interfaces also refers to the
classes that are the target of tleelare implementsclauses. This way, no code from the abstract
aspect needs to refer to case-specific classesg. tRat in AspectJ (and CaesarJ), advice are not
first-class entities. Advice do not have name tdcWwithey can be referred and therefore the

concept of member visibility does not apply to thdfor the same reason, it would be hard to

enable advice to be overridden and be subjectrt@dorm of polymorphism.

A consequence of the AspectJ mechanism is thatods dnot distinguish between the

implementation and binding parts of a componenbufin pointcuts are primarily a mechanism
to compose an aspect or component to an applicatimy are usually present as abstract
pointcuts in the (supposedly reusable) abstracasprDs are usually top-level members within

the abstract aspect, lacking a proper “home” tapsglate them. There is no additional internal
structure to organize them or to relate to the foois and advice also found in the aspect
hierarchy. As a result, Aspect]J aspects tend t@ laaflat internal structure [24]. The reusable
abstract aspects for Observer and Visitor pattaresgypical examples of this trait.

Another consequence is that the target objectdafioes of the original, target classes) and
additional members share tek@me identityMechanisms to distinguish what is originally def
in the target class from what aspects add as IT®p@or or non existent.

(2) ASpecCt] s,

Members for the
aspects’s internal
implementation

Objects from the
domain specific
application

Inter-type
declarations

4

Marker interfaces

declare parents >

" Extra state
and behaviour

Reusable part of
the component’s

Objects from the
domain specific

implementation application
" Glue to bind the ° Caesar]
component to wrappers
the application
—" 4
;| / K .:
- ¥

Figure 3. Mechanisms of AspectJ and CaesarJ for iegrating with an application.

Unlike AspectJ, CaesarJ does not prouigelare warning anddeclare error clauses, neither
does CaesarJ providieclare parentsclauses that enable aspects to augment the imhegit
hierarchy of existing, target types (e.g., to makeyiven class to implement an additional
interface). Relative to AspectJ, CaesarJ modulge haricher internal structure, as each add-on

12

to a target class is enclosed in a separate mddatdas its proper place within the component’s
internal structure. A potential drawback is thatirgle identity for target objects and additional
state and behaviour is lost. An open guestion istiadr this proves to be inconvenient in some
cases.

3. APPROACH TAKEN

3.1.Scenarios by independent authors

Since the start of this project, the aim was tceelthe CaesarJ examples on the scenarios found in
existing examples, rather than invent new scenddoshe purposes of this study. We give the
namescenarioto a specific example implementation of a givettgra. Different authors chose
different scenarios for the various patterns. Fmstance, to illustrate Abstract Factory, James
Cooper uses scenarios based on various kinds mtisglaa garden and multiple kinds of garden.
On the other hand, Larry Trudtuffycal illustrates Abstract Factory with a scenario lolasa
various kinds of soups and soup factories.

Use of independently developed scenarios and imgéations yields results that are less

vulnerable to bias. The examples are also mordylilkeexpose hurdles and situations that test
the limits and capabilities of the subject langudgm this reason, all scenarios used to illustrate
the GoF patterns were derived from existing repos$ of examples freely available on the

Internet. These are shown in Table 1.

Adopted name of Author Language URL of the page from which the repsitory was
the repository extracted
Thinking in patterns Bruce Eckel Java 2| http://www.mindview.net/Books/TIPatterns/
Design pattern Javg James Coope Java 2| http://www.patterndepot.com/put/8/JavaPatterns.htm
companion
Fluffy cat Larry Truett Java 2 | http://www.fluffycat.com/Java-Design-Patterns/

Hannemann Java 2/ | http://hannemann.pbwiki.com/Design+Patterns

Hannemann et al and Kiczales | AspectJ

Huston Vince Huston Java 2 | http://www.vincehuston.org/dp/

Franco Guidi Java 2 http://eii.ucv.cl/pers/guidi/documentos/ Guidi-

Guidi Polanco Polanco GoFDesignPatternsInJava.pdf

Table 1 — Repositories of implementations of GoF pieérns found in the Net

The scenarios, implementation approaches andfsiyle in the various repositories vary widely
across the examples. For instance, some authovdyhesly on graphics objects from the Java
standard APIs while other repositories are moglt based. In some cases, the participants in
the pattern are instances of classes from the d@ralard API, though more often these are
represented by specific classes for a simple smerfss would be expected, data structures used
in implementations also vary and in some casesréugctionality from the standard Java API.
For instance, Eckel resorts to Java’'s Observer/®@abke API to implement Observer, while
Hannemann and Kiczales use weak hash maps whaserdke are array lists. There is a wide
range in style and implementations.

In order to explore the most promising featurepreaselection work had to be done. From the
classical patterns from the Gang-of-Four (GoF) [th2]following were chosen:

* Observer is one of the few patterns for which previous @a&simplementations are
known [24]. Thus, Observer represents an idealygmbint to someone learning CaesarJ.
Chain of Responsibility is structurally similar to Observer, though sinmplgust one
participant instead of two) and thus looked a difelikow up during training.

* Abstract Factory seemed the ideal candidate to test family polymismp and virtual

13

classes, as Abstract Factory is really about emmgléhese features.

» Singleton is simple and generally one’s favourite entry pdm the GoF, being selected
partly for these reason, and also for training pags.

* Decorator looked the most suitable vehicle to test the Hypsis whether the wrapper
mechanism can emulate mixin composition.

e Visitor and Bridge were selected because the patterns represenestigy structural
problems suitable for testing CaesarJ’s composdapabilities.

3.2.Multiple Examples per scenario

Though both AspectJ and CaesarJ provide featuseparate the parts of a component so as to
enable some to be reusable, CaesarJ goes sigtlifib@amher than AspectJ in some respects. The
internal roles within a component are more clealbjineated in Caesar and benefit from a

dimension of polymorphism absent in AspectJ. As possibilities opened by these features

became clear, we concluded that presentirgingle CaesarJ implementation of each pattern

wouldn’t illustrate the full extent of the featuréihus, we decided to developultiple examples

of each selected pattern, to assess whether dssille to re-use all potentially applicable parts.

Thinking DP Java Hannemann Guidi
in patterns | companion Fluffy cat et al Huston Polanco
Observer X X X X
e x| x
Decorator X
Visitor X
Bridge X X
rescfor:)ar:gigiflity X
Singleton X

Table 2 — Implementations presented in this report

Ideally, the CaesarJ implementations would coveheand every scenario from the available
repositories. Due to the time constraints of thdemgraduate project, just the variations shown in
Table 2 were developed.

4. ILLUSTRATIVE EXAMPLE: OBSERVER

This section illustrates the use of CaesarJ in emginting Observer. The use of Observer as a
showcase for AOP is widespread [26][30], even iesaal). Observer also has the advantage that
it is relatively independent of implementationsibfand can be described independent of the
programming language used. For these reasonsysers in this report as an illustrative example
of CaesarJ. Structurally, all CaesarJ examplemare or less complex variants of the framework
outlined in Figure 1. Thanks to the enhanced pohpiism, we managed to hold multiple
implementations and bindings in the same systerh [21

4 Two scenarios of Observer by Eckel were implennte

14

4.1.The Observer pattern

The intent of Observer — also known Bsblish-Subscribe- is to “define a one-to-many
dependency between objects so that when one albjanges state, all its dependents are notified
and updated automatically” [12]. The pattern issaample of a crosscutting concern connecting
sets of otherwise unrelated classes, implementead sasiple framework. Observer defines two
roles that are superimposed on existing objecta gfven application: the role @&ubjectfor
objects generating events of interest to otheratbjavhich play the role afbserver Figure 4
shows the original class diagram for Observer shiomthe GoF book [12].

Many OO implementations of Observer provide suljedth an extra field holding the list of
their registered observers. Observers are regis{ese, added to the list) by attach operation
and are removed from the list bydatachoperation. When a subject gives rise to an intexgs
event — usually a change in its state — it cali®@fy operation, which in turn calls thedate
operation of each registered observer.

Subject Observer

observers

attach (Observer) update()
detach(Observer)

| I | N 1

notify() O ______ ____1 foralloin observers { -B:
! A
1

o.update(); |

ConcreteSubject observers ConcreteObserver

subjectState update() 0

1

getState() j
setState() o R ittt S , :
"""""" T 771 retum subjectState; -B: !

1

—————————————————

: observerState =
I subject - getState(); |
L

Figure 4. Structure for the Observer pattern

4.2.A concrete Observer scenario

To illustrate the CaesarJ mechanisms, a concretm@e is described next, taken from Eckel’s
(incomplete) online book “Thinking in Patterns” [10’he scenario by Eckel uses a flovas
subject, shown in Listing 6. Its interesting evearts the operations to open and close the petals,
whose observers are one instance each of two teuleigpes: a bee, shown in Listing 7, and a
humming bird. Unlike in most toy examples of Obserfrom the repositoriesywo observing
relationships are supported and the observers Hdfezent reactions to each, represented by
messages sent to the console. In both listingse celdted to the pattern role is shaded. Also
unlike most available examples, Eckel's exampleObkerveruses the java.util standard API
comprising interface Observer for observers andsclabservable holding the logic of subjects.
Since Java supports only single inheritance, thissgrise to a problem: what if subject classes
need to inherit some other class other Observabtk®| overcomes it by emulating multiple
inheritance througlelosures We use the definition déxical closureproposed by Baumgartner

et al [6]: a “mechanism for creating behaviour ba fly that can be invoked at a later time but
has access to the lexical environment current vihisnbehaviour was created.” Since version 2,
Java supports closures in the form of inner clasSash classes have access to all members of
the enclosing class, including private members.

15

Eckel's example resorts to inner classes that regkéend Observable or implement Observer.
See in Figure 5 the class diagram for Eckel’'s exantpach participant contains one inner class
for each of the observing relationships that pastyate the code related to the role played in the
pattern. Participant classes remain free to intieih some other class, though this particular
example does not take advantage of this.

java.util.Observable . <<interface>>
bZotlfy Java.util.Observer
; observers
vo!d set_Changed() void update(Observable, Object)
void notifyObservers() boolean equals(Object)

Bee

Flower <<virtual>> OpenObserver

void open() void update(Observable, Object)

void close()

<<virtual>> OpenObserver
<<virtual>>
OpenNotifier

void update(Observable, Object)

void notifyObservers()
void close()

<<virtual>>
CloseNotifier

Hummingbird

void notifyObservers()

void open() <<virtual>> OpenObserver

void update(Observable, Object)

B e e T

< <virtual>> OpenObserver

void update(Observable, Object)

Figure 5. Class diagram for the scenario for Obserr by Bruce Eckel, in Java

Despite the clever design, a tight structural retethip between participants and the roles they
play in the pattern remains in place. Participdasses betray theouble Personalitysmell [30].
Any method of the subject performing an interestipgration must still include code related to
its role in the pattern. Due to the requirement ti@servers only react to the first of multiple
consecutive occurrences of the same operation, @astrving relationship must monitor both
operations. For this reason, observerspgnneed to be notified aflose to determine whether a
call toopenbelongs to a sequence of callofmen without calls teclosein between. Duplication

is particularly noticeable in the ugeur inner classes between the two observers. Eack clas
duplicates the code related to the two observitgtiomships and each observing relationship
requires a duplication of essentially the sameclolisting 7 shows how classes Flower and Bee
look like when devoid of the secondary concernjsathe case of both Aspect] and CaesarJ
examples described in this section.

4.3.0bserver in AspectJ

The implementation of Observer proposed by Hannenzerd Kiczales is well-known. Since it
illustrates the typical approach for structuringo@stJ aspects, code listings are included in this
section. The structure of the AspectJ implementagiactly conforms to the critique presented in
sections 2.9.2 and 2.9.3.

Listing 3 shows abstract reusable ObserverProtdtas identical to the aspect proposed by
Hannemann and Kiczales [16], with the exception shelearObservers operation. That operation
was added by Monteiro and Fernandes so as to §ji@min the aspect’s functionality that was

16

needed to apply it to Eckel's scenario [28]. Ligtdhand Listing 5 show two concrete aspects that
extends ObserverProtocol. The aspect shown innigst is used for Eckel's scenario for
Observer, and which is also used to illustrate ube of CaesarJ in section 4.4. Listing 5 is a
concrete aspect for a simpler scenario createdamneéimann and Kiczales.

public abstract aspect ObserverProtocol {

/** This interface is used by extending aspects to say what types
* can be subjects. It models the subject role. */

protected interface Subject {}

/** This interface is used by extending aspects to say what types
* can be observers. It models the observer role . */

protected interface Observer { }

/** Stores the mapping between <code>Subject</code
* Observer</code>s. For each subject, a <code>L
* is of its observers is stored. */

private WeakHashMap perSubjectObservers;

/** Returns a <code>Collection</code> of the obser
* a particular subject. Used internally.
protected List getObservers(Subject s) {
if (perSubjectObservers == null) {
perSubjectObservers = new WeakHashMap();

List observers = (List)perSubjectObservers.get(s)
if (observers == null) {
observers = new LinkedList();
perSubjectObservers.put(s, observers);

}

return observers;

}

/** Adds an observer to a subject. This is the equ

* attach(), but is a method on the pattern aspec

public void addObserver(Subject s, Observer o) {
getObservers(s).add(o);

}

/** Removes an observer from a subject. This is th
* detach(), but is a method on the pattern aspe
public void removeObserver(Subject s, Observer 0)
getObservers(s).remove(0);

public void clearObservers(Subject s) {
getObservers(s).clear();

/** The join points after which to do the update.
* |t replaces the normally scattered calls to <
* concretized by sub-aspects. */
protected abstract pointcut subjectChange(Subject

/** Defines how each <code>Observer</code> isto b
* to a Subject occurs. To be concretized by sub-
* @param s the subject on which a change of inte
* @param o the observer to be notifed of the cha
protected abstract void updateObserver(Subject s,

>s and <code>
inkedList</code>

vers of

ivalent of
t, not the subject.

e equivalent of
ct, not the subject.

{

i>notify(). To be
s);

e updated when a change
aspects.

rest occurred

nge */

Observer 0);

Listing 3. Reusable AspectJ aspect for Observer

17

public aspect ObservingOpen extends ObserverProtoco I{
declare parents: Flower implements Subject;
declare parents: (Bee || Hummingbird) implements O bserver;

public abstract void Observer.breakfastTime();
private boolean Subject.alreadyOpen = false;

protected pointcut subjectChange(Subject subject):
execution(void Subject+.open()) && this(subject);
after(Subject s): subjectChange(s) {
Flower f = (Flower)s;
if(f.isOpen() && !f.alreadyOpen) {
Iterator iter = getObservers(s).iterator();
while (iter.hasNext()) {
updateObserver(s, ((Observer)iter.next()));
}
}
}

pointcut flowerClose(Subject flower):
execution(void close()) && this(flower);
after(Subject subject): flowerClose(subject) {
if (subject instanceof Flower) {
((Flower)subject).alreadyOpen = false;

}

protected void updateObserver(Subject s, Observer 0){
o.breakfastTime();
((Flower)s).alreadyOpen = true;

Listing 4. Concrete aspect in AspectJ for Eckel'sldwer scenario for Observer

public aspect ColorObserver extends ObserverProtoco K
/**
* Assings the Subject role to the Point class.
* Roles are modeled as (empty) interfaces. */
declare parents: Point implements Subject;

/**
* Assings the Observer role to the Screen class.

* Roles are modeled as (empty) interfaces. */
declare parents: Screen implements Observer;

/**
* Specifies the join points that represent a chan ge to the
* Subject. Captures calls to Point.setColor(Color)
* @param subject the Point acting as Subject */
protected pointcut subjectChange(Subject subject):
call(void Point.setColor(Color)) && target(subjec t);

/**
* Defines how Observers are to be updated when a change
* to a Subject occurs.
protected void updateObserver(Subject subject, Obs erver 0) {
((Screen)o).display("Screen updated " +
"(point subject changed color).");

Listing 5. Case-specific aspect for an Observer stario by Hannemann and Kiczales

18

public class Flower {
private boolean isOpen;
private OpenNotifier oNotify = new OpenNotifier();
private CloseNotifier cNotify = new CloseNotifier();
public Flower() {
isOpen = false;

public void open() { // Opens its petals
System.out.printin("Flower open.");
isOpen = true;
oNotify.notifyObservers();
cNotify.open();

public void close() { // Closes its petals
System.out.printin("Flower close.");
isOpen = false;
cNotify.notifyObservers();
oNotify.close();

}
public Observable opening() {
return oNotify;

}
public Observable closing() {
return cNotify;
}
private class OpenNotifier extends Observable{
private boolean alreadyOpen = false;
public void notifyObservers() {
if(isOpen && 'alreadyOpen) {
setChanged();
super.notifyObservers();
alreadyOpen = true;

}

public void close() {
alreadyOpen = false;

}

private class CloseNotifier extends Observable{
/I similar to OpenNotifier, but focusing on opera tion close.

}
}

Listing 6. Class Flower in Java — subject participat in Eckel’'s Observer.

19

public class Bee {
private String name;
private OpenObserver openObsrv = new OpenObserver();
private CloseObserver closeObsrv = new CloseObserv er();
public Bee(String nm) { name = nm; }
/I An inner class for observing openings:
private class OpenObserver implements Observer {
public void update(Observable ob, Object a) {
System.out.printin("Bee " + name + "'s breakfast time!");
}

/I Another inner class for closings:
private class CloseObserver implements Observer{
public void update(Observable ob, Object a) {
System.out.printin("Bee " + name + "'s bed time! ");
}

public Observer openObserver() { return openObsrv; }
public Observer closeObserver() {
return closeObsrv;

}
}

Listing 7. Class Bee in Java — observer participanh Eckel’s example.

4.4.0bserver Implemented in CaesarJ

The CaesarJ component implementing Observer hasmadtituent modules referred in section 2

(Figure 1). The overall design is represented B},avhose code is shown in Listing 8 devoid of

comments. The names used are different from thesd un the GoF book but the semantics are
the same.

public abstract cclass ObserverProtocol {
public abstract cclass Subject {
public abstract void addObserver(Observer obs);
public abstract void removeObserver(Observer obs) ;
public abstract void removeObserver();
public abstract void notifyObservers();
public abstract Object getState();

public abstract cclass Observer {
public abstract void refresh(Subject s);
}

}
Listing 8. Collaboration interface for the Observerpattern.

Many different implementations of the component bancreated, by extending the CI. Three
CaesarJ implementations were developed for the woekented in this report. Two of them
differ in just the type of the field that maps thebject to its observers. Listing 10 shows one of
these, based on an ArrayList object. Note that trual class enclosed by CaesarJ
implementation only extends virtual class declare@l ObserverProtocol. From Listing 10, we
can see that no explicit use of thetends keyword is necessary. Listing 9 shows a different
CaesarJ implementation directly based on Eckeés iof using the standard Java API Observer/
Observable. In this particular implementation, #ddal logic is necessary to adapt the
Observable and Observer types to those declardueb@l. Since a CaesarJ class cannot extend a
regular Java class, adapter classes are used@wmas Using Aspectd, such an adaptation would
be done througHdeclare parentsclauses.

20

class Notifier extends Observable {
private ObserverProtocol.Subject sub;

public Notifier(ObserverProtocol.Subject sub){
super();
this.sub = sub;

public void observer_notify() {
super.setChanged();
super.notifyObservers();

public ObserverProtocol.Subject getSubject(){
return sub;

}
}

class ObserverBox implements java.util.Observer {
private ObserverProtocol.Observer o;

public ObserverBox(ObserverProtocol.Observer obs){
this.o=obs;

public void update(Observable obs, Object arg) {
this.o.refresh(((Notifier)obs).getSubject());

}

public boolean equals(Object other){
return (other instanceof ObserverBox) &&
this.o.equals(((ObserverBox)other).0);
}

}

public abstract cclass Obsimpl3 extends ObserverPro tocol {
public cclass Subject {
private Notifier notifier;

public Subject() {
this.notifier=new Notifier(this);

public void addObserver(Observer obs){
notifier.addObserver(new ObserverBox(obs));

public void removeObserver(Observer obs){
notifier.deleteObserver(new ObserverBox(obs));

public void removeObserver(){
notifier.deleteObservers();

}
public void notifyObservers(){
notifier.observer_notify();

}
public Object getState() {
return null;

}
}

}
Listing 9. A CaesarJ implementation based on the ahdard Java API Observer/Observable

21

public abstract cclass Obsimpll extends ObserverPro tocol {
public cclass Subject {
private ArrayList observers = new ArrayList();

public void addObserver(Observer obs){
this.observers.add(obs);

public void removeObserver(Observer obs){
this.observers.remove(obs);

public void removeObserver(){
this.observers.clear();

}
public void notifyObservers(){
Iterator it = this.observers.iterator();
while(it.hasNext())
((Observer)it.next()).refresh(this);

}
public Object getState(){
return null;

}
}
}

Listing 10. A simple CaesarJ implementation for Oberver.

public cclass FlowerObserverDeploy
extends Obsimpl3 & ObserverFlowerBinding {
}

Listing 11. Weavelet for the CaesarJ component fdeckels flower scenario for Observer

public class Flower { public class Bee {
private boolean isOpen; private String name;
public boolean isOpen() { public Bee(String name){
return this.isOpen; this.name = name;
} }
public Flower() { public void dinner(){
this.isOpen=false; System.out.printin("Bee " + name +

} "'s breakfast time!");
public void open() {

this.isOpen=true; public void rest(){
System.out.printin("Bee " + name +
public void close() { "'s bed time!");
this.isOpen=false; }
} }

}

Listing 12. Flower and Bee participants devoid ofecondary concerns

22

public abstract cclass ObserverFlowerBinding extend s ObserverProtocol

public cclass FlowerOpening extends Subject wraps Flower {}
public cclass FlowerClosing extends Subject wraps Flower {}
public cclass BeelsOpenObserver extends Observer w raps Bee {

public void refresh(Subject s) {
wrappee.dinner();

}
}

public cclass BeelsCloseObserver extends Observer wraps Bee {
public void refresh(Subject s) {
wrappee.rest();

}

public cclass HummingbirdlsOpenObserver
extends Observer wraps Hummingbird {
public void refresh(Subject s) {
wrappee.dinner();
}
}

public HummingbirdlsCloseObserver
extends Observer wraps Hummingbird {
public void refresh(Subject s) {
wrappee.rest();

}

pointcut openCloseEvents(Flower f):
(set(* Flower.isOpen)) && this(f);

void around(Flower f, boolean new_val) :
openCloseEvents(f) && args(new_val) {
boolean old_val = f.isOpen();
proceed(f,new_val);
if(old_val != new_val)
if(new_val)
FlowerOpening(f).notifyObservers();
else FlowerClosing(f).notifyObservers();

Listing 13. A CaesarJ binding for the flower exampé.

23

5. OTHER PATTERNS

5.1.Abstract factory

The original intent oAbstract Factoryis to “provide an interface for creating familierelated

or dependent objects without specifying their ceterclasses” [12]. The solution originally
proposed for the pattern is to use objects whosporesibility is to create all the objects of a
given family, calledoroducts Each different implementation of the family comsps a different
set ofconcrete productswvhich is created by a different factory objeair Each scenario, there is
a single abstract factory representation, to whiltlconcrete families are related. The abstract
representation of the factory is calledabstract factoryand the concrete objects that conform to
that representation are calledncrete factoriesThe abstract factory also declares the methods
that yield the objects from the family of produetshefactory methodsDifferent scenarios lead
to different sets of products and therefore toetléht definitions of the abstract factory. The poin
of the pattern is that client objects depend orathsract factory but not the concrete factories.

The pattern derives its motivation from the exattly same problem that family polymorphism
(section 2.3) is meant to tackle: to ensure thatsisbent combinations, or families, of
collaborating objects are created while guarantg#iat objects from different families are not
mixed. Thus, Abstract Factory can be said to bectly supported by mechanisms of CaesarJ.
However, this also means that no reusable codeowt@sned. Each scenario maps to different,
case-specific code. The main advantage over JamhAapect)) is the type-checking protection
against mixing objects from different factory instas, which enables one to write simpler and
more flexible code.

The approach taken was to use an abstract Cadassta represent the factory in abstract terms,
not relating it to a specific scenario for produdibe CaesarJ class declares a virtual class that
representgny product fromany scenario: it just represents the general condeptanluct. Note
that the virtual class in the topmost CaesarJ daggsponds to concrete products.

Figure 6 and Figure 8 show class diagrams of tiggnad Java examples for Abstract Factory,
from the fluffycat and Cooper repositories respegii. Consider the CaesarJ implementation of
the fluffycat scenario, shown in Figure 7. The tgsinCaesarJ class is AbstractSoupFactory,
which declares an abstract virtual class Souprd@esents any product from this scenario. This
topmost CaesarJ class occupies the place of at@ bpecific to this particular scenario and thus
not reusable. The two concrete CaesarJ classeso(fBmupFactory and HonoluluSoupFactory)
that inherit from the topmost CaesarJ class cooras$ppo two different concrete factories. Each
CaesarJ class declares the actual products as aseits corresponding factory methods,
represented as top-level methods. In terms of #res f a CaesarJ component, these CaesarJ
classes are CaesarJ bindings. There are no Camepéeihentations either, so no code is reusable.

The CaesarJ example for the James Cooper sceaaimwn in Figure 9. The topmost CaesarJ
class is AbstractGardenFactory, again not reusdlhls. scenario differs from that fluffycat in
that just one class is used to represent the cienpreducts. For this reason it possible for virtua
class Plant in AbstractGardenFactory to be conctetike the corresponding from the fluffycat
scenario — virtual class Soup. Again, there ar€aesarJ implementations.

As regards the AspectJ approach to Abstract Fadttagnemann and Kiczales group this pattern
with Bridge (see also section 5.2), Factory Methbeinplate Method and Builder. The authors
consider these patterns to be structurally simé&tive to the solutions in AspectJ they propose.
Hannemann and Kiczales say that these patternsal@et using inheritance to distinguish

between different but related implementations. Taleyp say that this is already nicely realized in
0O, something to which we do not subscribe, inti@fato at least Abstract Factory and Factory

24

Method. The AspectJ approach proposed by HanneraadnKiczales is about replacing the
abstract class (from their Java example) with @erface and resorting to inter-type declarations
(ITDs — also known amtroductionsor open class mechanigno compose concrete members to
the interface. The aspect that does this is caseifgpand there is no reusable code. Hannemann
and Kiczales claim that this approach has the adgenof freeing concrete factories to inherit
from some other class. However, this strikes ua b& beside the point in the case of Abstract
Factory. Moreover, the scenario of Observer by Edkenonstrates that Java provides the means
to overcome this “multiple inheritance” problemsitome extent.

5.2.Bridge

The purpose oBridgeis to “decouple an abstraction from its implema&ataso that the two can
vary independently” [12]. The pattern defines mdpants abstraction which defines the
interface of the abstraction, anchplementor which defines the interface for implementing
classes. Naturally, client classes should depehdamthe abstraction.

5.3.Chain of Responsibility

The purpose o€hain of ResponsibilitfCoR) is to “avoid coupling the sender of a requests
receiver by giving more than one object a chandeatwdle a request; chain the receiving objects
and pass the request along the chain until an bbgdles it” [12]. The pattern defines the role
of handler, which declares an interface common to all objelcts are potentially capable of
handling the request. Concrete handler objects fhlayrole ofconcrete handlerAs in many
patterns, there is alsoddiient object, which naturally should depend on handldrrimt on any
specific concrete handler.

The role of handler is superimposed and therefaelavideally be separated from case-specific
classes that play the role. In the Java examples,chase-specific classes betray the usual
symptoms ofDouble Personality code tangling and scattering. After taking intc@unt the
differences between AspectJ and CaesarJ, the egarfpl CoR from both languages are very
similar. Both solutions successfully modularize tbeR concern, yield reusable modules and
resort to pointcuts and advice to capture requasits.

The differences between the Aspect] and Caesardpées are what one would expect. The
AspectJ examples are structured as a reusablaetbaspect and one case-specific concrete sub-
aspect for each example. The CaesarJ example ustisgd as a Cl, a reusable CaesarJ
implementation, and one case-specific CaesarJrigrfdr each example.

The Aspect] example is typical. The abstract agpees inner marker interfaces to represent the
pattern roles and ITDs to compose state and belmatodhe marker interfaces. The concrete sub-
aspects usdeclare parentsclauses to that state and behaviour to the cassfigpclasses. The
pointcut is declared in the abstract aspect anohet:fin each concrete aspect. The advice that
acts upon the captured joinpoints is placed irathsract aspect.

The CaesarJ example is also typical of our appradchsing CaesarJ and conforms to the
description of section 2. Figure 14 shows one seefar CoR and Figure 15 shows the CaesarJ
example for the same scenario. The CI specifieabstract roles (handler and request, though
only handler is important), which are used throirdteritance by the remaining top-level CaesarJ
classes. The CaesarJ bindings are the only mothulese pointcuts and advice, which in CaesarJ
are exclusively used as glue code and never pdfteointerface of component. Extra state and
behaviour to be composed to case-specific objeatefined in the virtual classes of the CaesarJ
bindings, which are in turn wrapping the case-dpeclasses. The case-specific objects are
passed to the wrappers upon their creation, agroets arguments.

25

AbstractSoupFactory Main Soup

ChickenSoup makeChickenSoup() A
ClamChowder make ClamChowder()

FishChowder makefFishChow der()
Minnestrone makeMinnestrone()

Pastafazul makePastafazul() ChickenSoup |
TofuSoup makeTofuSoup()
VegetableSoup makeVegetableSoup()
D ClamChowder |
Z‘l I > FishChowder |
BostonSoupFactory HonoluluSoupFactory Minnestrone |
+ ClamChowder make ClamChowder() + ClamChowder makeClamChowder() Pastafazul —
+ FishChowder makeFishChowder() + FishChowder makeFishChowder()
TofuSoup |
|
BostonClamChowder HonoluluClamChowder [||
VegetableSoup
BostonFishChowder HonoluluFishChowder

Figure 6. Abstract Factory: class diagram for the luffycat scenario in Java.

AbstractSoupFactory

String getLocation()
Soup makeSoup()

<<virtual>>
— sowp S —

BostonSoupFactory HonoluluSoupFactory
Soup makeSoup() Soup makeSoup()
FishChowder FishChowder
ClamChowder ClamChowder
ChickenSoup ChickenSoup
Pastafazul Minnestrone
TofuSoup VegetableSoup
VegetableSoup
Main

Figure 7. Abstract Factory: class diagram for the luffycat scenario in CaesarJ.

26

<<interface>>
AbstractGardenFactory

Plant makeShade

Plat makeCenter
Plant makeBorder

\

GardenFactory I_Main_l
void setFactory(String)
Y boolean isActive()
Plant makeShade() %wFrame I
Plat makeCenter()
Plant makeBorder()

AnnualGardenFactory

AnnualGardenFactory

AnnualGardenFactory

—]

Plant I

Plant makeShade
Plat makeCenter
Plant makeBorder

Plant makeShade
Plat makeCenter
Plant makeBorder

Plant makeShade
Plat makeCenter
Plant makeBorder

I WindowPanel I

Figure 8.Abstract Factory: class diagram for the Janes Cooper scenario in Java.

A

AbstractGardenFactory GardenFactory I Main I
void setFactory(String)
p boolean isActive()
<<virtual>>
Plant Plant makeShade() %wFrame
Plat makeCenter()
Plant makeShade Plant makeBorder()
Plat makeCenter
Plant makeBorder ’ I WindowPanel I

AnnualGardenFactory

AnnualGardenFactory

AnnualGardenFactory

Plant makeShade
Plat makeCenter
Plant makeBorder

Plant makeShade
Plat makeCenter
Plant makeBorder

Plant makeShade
Plat makeCenter
Plant makeBorder

Figure 9. Abstract Factory: class diagram for the dmes Cooper scenario in CaesarJ.

T

27

Main

Stack StackImplementor
|mprI1()_ t </¥ abstract push(int)
ip::s (';()) abstract int pop()
int fgp() abstract int top()
bstract boolean isEm
boolean isEmpty() :bst::zt boole:n EFUJSYO
boolean isFull()
A\ !
-
' X
! |
StackArray StackList
StackHanoi StackFIFO
int reportRejected() int pop() abstract _push(mt) abstract _push(lnt)
void push(int) abstract int pop() abstract int pop()
P abstract int top() abstract int top()
abstract boolean isEmpty() abstract boolean isEmpty()
abstract boolean isFull() abstract boolean isFull()

Figure 10. Bridge: class diagram for the Vince Hugin scenario in Java.

«Collaboration Interface»
BridgeProtocol
Abstraction Implementor
> getImplementor
setImplementor le
«Caesar] Implementation» <<Caesar] binding> >
BridgeImplementation StackFamily
Stack StackImplementor
Abstraction
void setImplementor(Implementor) |mpl(). pus i)
Implementor getImplementor() Push(mt) /'nt Pon()
int pop() int pop()
int top() int top()
> boolean isEmpty() boolean isEmpty()
ZX boolean isFull() boolean isFull()

Main

<< let>>

StacksDeploy

StackSubtypes StackImpls
[1 | 1
StackHanoi StackFIFO StackList StackList
reportRejected() int pop() ,pUSh(mt) ,pUSh(mt)
push(int) int pop() int pop()
int top() int top()
boolean isEmpty() boolean isEmpty()
boolean isFull() boolean isFull()
Object clone() Object clone()
| >

Figure 11. Bridge: class diagram for the Vince Hugin scenario in CaesarJ.

28

<<abstract>> <<abstract>>
sodalmplementor
Soda o — P Soda
_sodaImplementor

getSodaImplementor() abstract pourSodaImp()

setSodalmplementor()

abstract pourSoda() Zx

MediumSoda SuperSizeSoda MediumSoda GrapeSoda SuperSizeSoda
pour Soda() pour Soda() pour SodaImp() pour SodaImp() pour SodaImp()
SodaImplementorSingleton Main
< <static>> SodaImplementor getTheSodaImp()

Figure 12. Bridge: class diagram for the fluffycatscenario in Java.

«Collaboration Interface» < <Caesar] implementation>>
BridgeProtocol Sodalnterfaces
<<virtual>> <<virtual>> <<virtual>>
Abstraction Implementor Soda
L~ :
getImplementor Q void pourSoda()
setImplementor 4
ZX <<virtual>>
Soaalmp
void pourSodaImp()
«Caesar] Implementation»
BridgeImplementation
Abstraction

void setImplementor(Implementor)
Implementor getImplementor()

<<weavelet>>
SodaDeploy

SodaFlavours SodaFlavours
<<virtual>> <<virtual>>
CherrySoda MediumSoda

void pourSodalmp ()

<<virtual>>
GrapeSoda

void pourSodalmp()

<<virtual>>
OrangeSoda

void pourSodalmp()

void pourSoda ()

<<virtual>>
SuperSizeSoda

void pourSoda()

Figure 13. Bridge: class diagram for the fluffycatscenario in CaesarJ.

29

<<interface>>
TopTitle

Main

String getTopTitle()
String getAllCategories()

String getTopTitle()

void setTopSubCategoryTitle(String)
String getTopSubCategoryTitle()

DvdCategory DvdSubCategory DvdSubSubCategory
- String category - String subCategory - String subSubCategory
- String topCategoryTitle - String topSubCategoryTitle - String topSubSubCategoryTitle
- DvdSubCategory parent
. setSubCategory(String)
set_Category(Strmg) String getSubCategory() setSubSubCate gory(String)
String getCategory() ’ h String getSubSubCategory()
. - void setCategory(String)
String getAllCategories() ; setSubCategory(String)
.) String getCategory()
void setTopCategoryTitle() ' g String getSubCategory()
String getTopCategoryTitle() String getAllCategories() :
void setTopSubCategoryTitle() set_Category(Strmg)
String getTopSubCategoryTitle() String getCategory()

String getAllCategories()

void setTopSubSubCategoryTitle()
String get TopSubSubCategoryTitle()
void setTopSubCategoryTitle(String)
String getTopSubCategoryTitle()
String getTopTitle()

Figure 14. Chain of Responsibility: class diagramdr the Huston scenario in Java.

<<C>>

ChainOfResponsibility Protocol

void handle(Handler, Request)

<<virtual>> <<virtual>>
Handler Request
boolean handle(Request) Object getMe() <}
void setSuccessor(Handler)
Handler getSuccessor()

A

T

< <Caesar] implementation> > < <Caesar] binding>>
ChainOfResponsibilityImplementation DVDChain
void handle(Handler, Request) <<around advice>> m e m e m e e m e mmmm e m = R

/
\

1
<<virtual>> <<virtual>> \ <<interface>> '
Handler StringBox h TopTitle :

U
o . Handler succ - String name d :
\ String getTopTitle() '
void setSuccessor(Handler) void setSuccessor(Handler) ! String getAllCategories() i
Handler getSuccessor() Handler getSuccessor() \ 1
’

A -
wraps
<<virtual>>
DVDHandler | | |
boolean handle(Request)
DvdCategory DvdSubCategory DvdSubSubCategory

Figure 15. Chain of Responsibility: class diagramdr the Huston scenario in CaesarJ.

30

5.4 Visitor

The purpose oYisitor is to “represent an operation to be performedheneiements of an object
structure. Visitor lets you define a new operatigthout changing the classes of the elements on
which it operates” [12]. Visitor is about a treeusture to whose nodes one may want to add
various different additional operations. It quicklgcomes cumbersome to place the logic for
many different operations in the nodes of the stmecVisitor embodies the problem abuble
dispatch i.e., the ability to select a given block of cdagsed on two different types that can
evolve independently. This is an instance of theengeneral case ofiultiple dispatcH9].

It should be noted that CaesarJ supports only esidiglpatch based on the type of the family
object associated with the concrete family at h&nmk could conjecture that if CaesarJ supported
multiple dispatch relative to a family of typeswibuld directly support the effect that motivates
the use of Visitor, which is not currently the ca3éis limitation motivated the proposal by
Gasiunas et al [14] of multiple dispatch on virtiigbes. Presently, however, this remains an
issue left to future work.

The OO implementation originally proposed by Visite to define the rolelement or node
which represents a node of the tree and declaras@ptoperation that takes a as argument an
object playing the role ofisitor. The interface of Visitor declares a differesit operation for
each concrete subclass of element. The visit dpemsmttake an element as argument and
implement the additional operation to be executeélement. Often, the visit operations differ in
the argument type only. Thus, there is some ndtieeduplication.

Figure 16 and Figure 18 show two Java examplesisifov, by Vince Huston and Bruce Eckel
respectively. Figure 17 and Figure 19 show theesponding examples in CaesarJ. Neither Java,
nor AspectJ nor CaesarJ provide completely sat@mfasolutions for this pattern. In all cases, the
duplication of the visit operation is not eliminatd he Java implementations have the additional
drawback that concrete elements must define thepacoperation — a instance @fouble
Personality[30]. The AspectJ and CaesarJ implementations gearta separate theisit
operations from the element objects, through thespective means for composing extra
members to domain-specific objects: ITDs in theecak Aspect] and wrappers in the case of
CaesarJ. The CaesarJ implementation has the adearteer AspectJ in that wrapper
composition is performed on an object by objectdashile the AspectJ intertype declarations
apply statically, tall instances of the target class.

5.5.Singleton

The purpose ofingletonis to “ensure a class only has one instance, emdde a global point of
access to it” [12]. The usual OO approach is to enalk constructors private, provide the class
with a static field referring to the unique instarend provide the class with a creation method
the always returns that instance. It is also uBwrahe creation method to instantiate the instance
when first called.

The CaesarJ Singleton closely resembles that ir@&3psince it is based on pointcut and advice,
just like the Aspect] example. However, even irs thimple example CaesarJ provides an
opportunity to separate a reusable advice intargoleémentation module. Since the example does
not include a Cl, the CaesarJ implementation teatop of the inheritance hierarchy.

31

AbstractTitlelnfo

void setTitleName(String)
String getTitleName()
abstract void accept(TitleBlurbVisitor)

TitleBlurbVisitor

BookInfo DvdInfo Gamelnfo
void setAuthor(String) void setStar(String) void accept(TitleBlurbVisitor)
String getAuthor() Strj\’ng getStarQ .
void accept(TitleBlurbVisitor) void setEncodingRegion(char)

void accept(TitleBlurbVisitor)

1

T

abstract void

void setTitleBlurb(String)
String get TitleBlurb()
it(BookInfo bookInfo)
abstract void visit(DvdInfo dvdInfo)
abstract void visit(Gamelnfo gamelnfo)

TitleBlurbVisitor

TitleBlurbVisitor

void setTitleBlurb(String)

String getTitleBlurb()

abstract void visit(BookInfo bookInfo)
abstract void visit(DvdInfo dvdInfo)
abstract void visit(Gamelnfo gamelnfo)

void setTitleBlurb(String)

String getTitleBlurb()

abstract void visit(BookInfo bookInfo)
abstract void visit(DvdInfo dvdInfo)
abstract void visit(Gamelnfo gamelnfo)

Figure 16. Visitor: class diagram for the Huston senario in Java.

TitleLongBlurbVisitor

Visitor

<<CI>>
VisitorProtocol

void visit(BookInfo)
void visit(DvdInfo)

void visit(Gamelnfo)

TitleLongBlurbVisitor

Visitor

void visit(BookInfo)
void visit(DvdInfo)

void visit(Gamelnfo)

void accept(Visitor)

Visited
- |1
Iﬁmﬁo{r’% abstract void accept(Visitor) N
TitleBlurbVisitor
wraps | m - - - - -------- \
BookVisited y 1
1 I BookInfo I 1
void accept(Visitor) L —— /'
(- T TS TT T T \
_— wraps 1 1
void setTitleBlurb(String) Bookvisited ; Dvdinfo H
INJ String getTitleBlurb() _ L e mmmmmm - ’
L~ abstract void visit(BookInfo) void accept(Visitor)
abstract void visit(DvdInfo)
abstract void visit(Gamelnfo) T m \
wraps |
1 1
= —— - /

Figure 17. Visitor: class diagram for the Huston senario in CaesarJ.

32

< <interface>> <<interface>>
Flower Visitor
creates
FlowerGenerator void accept(Visitor) void visit(Gladiolus)
void visit(Runuculus)
A void visit(Chrysanthemum)
1
] . | JAN
1
1 \ !
! : | Tttt T tommmmmm
1
Gladiolus Runuculus Chrysanthemum . "
Bee StringVal
void accept(Visitor) void accept(Visitor) void accept(Visitor)
void visit(Gladiolus) void visit(Gladiolus)
void visit(Runuculus) void visit(Runuculus)
void visit(Chrysanthemum) void visit(Chrysanthemum)
String toString()

Figure 18. Visitor: class diagram for the Eckel sagario in Java.

VisitorProtocol

Visited

Visitor

JAN

abstract void accept(Visitor)

JAN

FlowerGenerator

JAN

FlowerVisitor creates

Visitor FlowerVisited

abstract void visit(Flower) void accept(Visitor)

L A

4 Chrysanthemum

| | 1

|

BeeVisitor StringValueVisitor :
Gladiolus | _

1

1

ConcreteVisitor ConcreteVisitor :

1

void visit(Flower) void visit(Flower) Runuculus F—-

Figure 19. Visitor: class diagram for the Eckel sagario in CaesarJ.

33

5.6.Decorator

The purpose oDecorator is to “attach additional responsibilities to anjemv dynamically.
Decorators provide a flexible alternative to sudssing for extending functionality” [12].
Decorator is about wrapping an object with anothigiect that exposes the same interface and
adds functionality to operations declared in thencwn interface. Decorator defines the roles of
componentwhich defines the common interface; anddetorator which is the role played by
wrapper objects. Each wrapper isancrete decoratgri.e. an object that maintains a reference to
the component, conforms to the common interfaceaalals responsibilities to the component.

One issue related to this pattern is whether thggnad identity of component is preserved. This is
not the case of traditional OO languages, in withehuse of decorators entails creating additional
identities. This has the consequence that certaignfents of code cannot be reused as the
meaning of the self variable (i.e¢his in the case of Java) corresponds to differentatdjel his
problem is well-known and is usually referred ag tiself problem” and was thoroughly
discussed in the context of delegation-based OQuiages, which are known to be free of this
problem [22].

In addition to the self problem, relevant consitierss in this pattern relate to the various ways in
which modules can be composed. These includehélpossibility to apply a decorator more
than once; (2) apply multiple decorators to a congnd, in which case some decorators are really
decorating other decorators rather the original mament; and (3) the order with which
decorators are composed: differences in the orfleoraposition should impact on the resulting
behaviour.

The AspectJ approach proposed by Hanneman and|&scmato use pointcuts and advice to
mimic the effect of decorators. This approach Hes advantages that composition is totally
transparent to the component and preserves itdityleihe disadvantages are the loss of
dynamic flexibility: the composition applies to atistances of the class of the component rather
than to single objects. It is also possible to manthe order of composition, through the
mechanism of aspect precedence. However, thifléxible, as it cannot be done dynamically.

A straightforward use of pointcuts and advice, sashound in the example by Hannemann and
Kiczales, does not deal with the issue of decagatinly individual instances of the component

class. However, it is relatively simple to solvestiproblem through a slightly more complex

implementation, as proposed by Monteiro and Fereafi29]. Their proposal is for the aspect to
register the component and for its advice to chiéekt the target object corresponds to the
component.

As regards composing the same decorator more the®, the AspectJ approach fails to some
extent. AspectJ does not provide mechanisms teaehhis effect in a simple way, because one
different aspect is required for each decoratoramse. At the very least, an instantiation mode
other than the default (singleton) must be speadifigprogrammed for the aspect.

Two different implementations of Decorator were e€leped in CaesarJ. The first replicates the
approach based on a pointcut and an around adbidetaking advantage of the dynamic
deployment features of CaesarJ, which bring a nurob@advantages. CaesarJ aspects can be
instantiated usingew and therefore it is straightforward to composevar decorator as many
times as wanted. All is needed is to create as nmatgnces of the decorator as wanted. Dynamic
deployment is supported and thus it is also stthaghard to control the moments in which a
decorator is active. Multiple activations and deations of the same aspect are also
straightforward. CaesarJ also provides direct laggusupport to effect of decorating just a
specific instance of the component class, by meétise deploy on objecteature. However, the

34

order with which aspects compose their functiopasitnot under control of the programmer and
no way was found to control the order of compositmf decorators. Neither the dynamic
deployment nor the order with which the CaesarJ pmmants are instantiated provided a
solution. In this respect, AspectJ is more flexibblan CaesarJ.

The second CaesarJ implementation is based on rdggper mechanism and without pointcuts
and advice. The use of wrappers conforms more lgidsethe original intent of the pattern,

namely in the dynamic nature of the compositior®§ find in the possibility of varying the order
with which decorators are composed [29]. Howeverddes not bring any advantage over
traditional OO implementations. CaesarJ wrappex® lzadifferent identity than the wrappees,
with the consequence that the self problem is mdgsolved.

6. DISCUSSION

This section presents the conclusions derived ftom effort of developing the examples
described in the previous section. It is structuasdollows. Section 6.1 presents a short analysis
of what reusable modules were derived from therefffection 6.2 analyses differences between
CaesarJ and AspectJ with respect to use pointSetdion 6.3 analyses the impact that Cls can
have on the reasoning at the design level.

6.1.Reusable modules obtained from the examples

Table 3 shows what direct language support is peaiby Aspect] and CaesarJ to the patterns
covered in the study, as well as an overview oftwlasable modules were derived. In the case
of AspectJ the reusable modules are abstract aspacthe case of CaesarJ, Cls and CaesarJ
implementations are considered. Depending on the&eaf the pattern, different levels of reuse
are obtained. In some cases, only the high leva&fddi.e., the CI) is reusable and in others only
the implementation is reusable.

Table 3. Reusable modules in AspectJ and CaesarJ

Direct language support
Direct support and for the pattern AspectJ CaesarJ E:(?:essa;;\r].]
reusable parts: (abstract aspects (Cls) . -
AspectJ CaesarJ implementations)
Abstract Factory No Yes No No No
Bridge No No No Yes Yes
Chain of Responsibility No No Yes Yes Yes
Decorator With limitations | With limitations No No No
Observer No No Yes Yes Yes
Singleton No No Yes No Yes
Visitor No No Yes Yes No

6.2.Use of pointcuts

The fact that CaesarJ shares with AspectJ the misthaof pointcuts and advice invites some
comparisons. One interesting question is whethertqas are used the same way as in AspectJ,
or the CaesarJ-specific mechanisms have an inffluemcthe use patterns for pointcuts and
advice. It turns out that in CaesarJ, pointcuts addice feature less prominently than with
AspectJ. Thanks to CaesarJ’s more sophisticatettanesms to deal with structure, it is possible
to separate the various parts of a component ferdiit modules to a greater extent than with
AspectJ. One is thus more sparing in the use aftpais and advice, whose use is relegated to

35

that of glue code (i.e., in the CaesarJ bindingihe experience gained so far suggests that in
CaesarJ, pointcuts and advice should be left tsetrsituations in which the behaviour to be

composed does not follow an identifiable patternthe static structure of the system, e.g.,

scattered calls to a method or constructor. Th#tascase in all uses of pointcuts and advice in
the examples presented in Table 4.

Table 4 presents a summary of the use of Caesarttpis, Cls, implementations and bindings,

in the implementations referred in Table 2. As auhd be expected, not all examples include all
features. The bindings are the exception, whickise what we expected. Note that some of the
constructs available in CaesarJ are not coverethigh paper (e.g., deploy on object) as the
implementations from Table 2 do not comprise sidfit material to perform an assessment.

Table 4. Use of mechanisms in the CaesarJ examples.

Use of the mechanism: pointcut/advice qulaboration . Caesar.]. C.aegar\]
interface implementation binding
Abstract Factory No No No Yes
Bridge No Yes Yes Yes
Chain of Responsibility Yes Yes Yes Yes
Decorator No") No No Yes
Observer Yes Yes Yes Yes
Singleton Yes No Yes Yes
Visitor No Yes No Yes

® One scenario does use pointcuts/ advice but inctse we do not consider it good practice and docoant it for this reasan

Since the ITDs of AspectJ can be regarded as danices of mixin composition, we initially
hypothesised that mixins could be used as a mosetsted alternative to AspectJ ITDs, as well
as providing direct language support to decoratbi®wvever, mixin composition in CaesarJ
cannot be used “on the fly”: a specific declaratmina CaesarJ class extending the desired
modules must be created for each different comioinatn our view, this defeats the aim by
Decorator of preventing a combinatorial explosidnctass declarations. In addition, mixin
composition is restricted to top-level CaesarJsdas For these reasons, the primary use of
mixins is to yield the weavelets that integratethaous modules of the component.

6.3.Reasoning with Collaboration Interfaces

One advantage of CaesarJ clearly felt relativedin Wava and AspectJ was when reasoning
about the examples through class diagrams. Clsgeav design-level view of a component or
sub-system found in class diagrams but generafigrattin mainstream languages. For this reason
we initially expected that Cls would be of help reason with the overall structure of the
component when looking at the code. It turned datt tclass diagrams of CaesarJ designs
provided significant benefits as regards comprebaditg. The diagrams representing the CaesarJ
designs are conceptually closer to the originalgiemtentions than traditional class diagrams,
exposing the relationships between classes andiidudil operations more faithfully than
traditional class diagrams (e.g., those represgritie Java implementations shown in Table 1).
The distinction between top-level classes and deskasses facilitated the reasoning with the
overall design, as well facilitating the task of ppang the original Java designs to CaesarJ
designs. The enhanced clarity also applies toggptimethods. For instance, the factory method
from the CaesarJ design for Abstract Factory (seeexample Figure 7) is a top level method
placed on the same level as the virtual classds.eXposes a design decision that is absent from
traditional designs because nested classes arptdiis® traditional class diagrams and top-level

36

methods do not carry the same meaning.

7. FUTURE WORK

The preliminary work documented in this report banfurther developed in many directions. For
the immediate future, we identify the following ffits:

Complete the GoF repository.Completing the GoF repository seems the obvious ne
step, though not necessarily the most fruitful. 8gmatterns cover situations in which
AOP is not expected to improve on traditional Johsg. CaesarJ implementations of
some patterns are likely to be identical to thasdava (e.g., Facade) or perhaps worse
(e.g., lterator in Java 5). On the other hand, mpdete GoF repository would provide
more material for comparisons with other languages.

Develop comparisons with AspectJThe focus of this report is on the descriptiortha
implementations of the seven patterns selectedses studies. Though some comparisons
between CaesarJ and Aspect] are made, these aesvisaingeneral in nature. More
thorough and comprehensive comparative analysisthef Aspect] and CaesarJ]
implementations could to be carried out.

Further explore CaesarJ features. Some features of CaesarJ are not thoroughly
explored in this study. One example is dynamic etsgeployment. Another interesting
iIssue is to assess the comparative advantage® ofrlpper mechanism with respect to
AspectJ-style ITDs. The targets of ITDs and adddaianembers share the same identity.
Though ITDs are structurally poorer than wrappigngmains an open question whether a
single identity brings benefits in some cases.

Further explore CaesarJ designsEven in the scope of the seven patterns coveras] he
there is room to further explore the possibilitiéered by CaesarJ to derive new, better
designs. One example is the dichotomy between #wgad approach based on the
systematic use of CaesarJ classes to represeaisatbctions (i.e., without wrappers) and
the more asymmetric approach of designing an sol&@aesarJ component that must
integrate with plain Java classes (through wrappers

Derive Refactorings for CaesarJIn the past, availability of a GoF repository igigen
language was used as a basis for pinpointing wafags [30] for that language. This
work provides similar opportunities for CaesarJ.

Extend Work to Other AOP Languages. We aim to cover more aspect-oriented
languages. The planned first stage is to focus ©OF Aanguages that extend Java, as is the
case with Object Teams [17]. Object Teams wouldnfan interesting triangle of AOP
languages. AspectJ has a rich pointcut languag@ameless advice but no constructs for
adequately structure the internals of aspects. &addwms such constructs in the form of
virtual classes, family polymorphism and wrappes,well as a pointcut protocol and
nameless advice just like Aspectd. Object Teams dafacility that mimics the
quantification capabilities of AspectJ pointcutspugh with a much more coarse-grained
joinpoint model (just method calls) and uses meshmather than nameless advice. In
addition, Object Teams also supports virtual classed family polymorphism. To our
knowledge, there are no studies assessing theveetaerits of these language designs.

Quantitative studies. Availability of examples simultaneously coded iagSarJ and in

other languages opens the way to perform quangtastudies that assess CaesarJ
characteristics with respect to those other langsa@hus, the collection of examples
described in this report could be used for quantagastudies such as those performed by

37

Garcia et al [13].

7.1.Preparation for systematic studies

On the basis of the experience gained, the decisiobase all scenarios on examples from
independent authors proved advantageous. Therexigtiailable repositories already provide a
significant variety of styles and approaches cosipgi much richer material than could be
obtained by developing new examples in-house. Adopif independently developed examples
also provides a stronger guarantee that scenaeasoa biased.

However, the experience gained in dealing with stisparate repositories called into attention
the need to carry out various kinds of adaptatemprior work to more thorough and systematic
studies. Such preparatory work will be essentialnfiany of the fronts identified at the start of
this section. The more rigorous the work to be grened, the greater will be the need for some
prior adaptation and standardization. We identiffezifollowing desirable procedures:

» Standardize the code styleEnsure that all versions are using the same gosliyles.
This can be done with the assistance of the autorfmimnatter of the eclipse/JDT plug-
in, after some suitable configuration. Consisteatygode style is essential for deriving
conclusions based of certain kinds of metrics, agthe number of lines of code.

» Extract the client participant from the driver of t he pattern. Many patterns define a
client participant that represents the objects that usetibnality provided the primary
participants in the pattern. This participant isportant to assess whether certain
independencies and variation points are achievkdt is why the client often appears in
class diagrams from the GoF book [12]. Howewdignt is often overlooked by the
authors of the repositories. Many examples simpbjuide a class containing the main
method that acts as the driver for the examples Ehdifferent fromclient and naturally
betrays dependencies on the remaining particighatswould not be found in a genuine
client Thus, that participant must be extracted in mzases.

* Increase the number of participants for each role For each repository, develop a
version of the examples with a larger number otiggants in each role. The version
with fewer participants should be preserved, adability of smaller and larger versions
provides an opportunity to perform scalability asseents based on the comparison of
metrics derived from both versions [13].

« Develop unit tests In some cases, unit tests may provide a usefaptament to a driver
class for the example. For instance, availabilityiit tests may be useful in refactoring
experiments based on the examples [30].

» Ensure consistency of the language versioin cases of AOP extensions to Java, there is
the issue of which version of Java the languagerneld. For instance, CaesarJ is available
as an extension to Java 2 only, while Object Tesnavailable as an extension to Java 5
and there are multiple AspectJ versions that exahthe main versions of Java from
Java 2 to and including Java 6. Since Java 2 i€dh@mon denominator, the need may
occasionally arise to translate examples to a ¢psliyle compatible with Java 2 to enable
comparisons with the various languages.

8. CONCLUSION

This report presents the first results of an ongowffort to develop a repository of
implementations of the GoF patterns in CaesarJmiples for seven patterns are presented and a
short comparative analysis is made with an exisfisgectJ repository. The experience gained

38

suggests that CaesarJ’ features to deal with gtticture, namely family polymorphism and a
clear separation of implementations and bindingadIto a more flexible management of the
constituent parts of a component and avoids oweguppintcuts and advice, which are used
primarily for glue code.

From the experience gained in developing the exesndescribed in this report, as well as
carrying out the preliminary analysis, we concltldat the language model CaesarJ proposed by
CaesarJ provides better support for modularizagioa flexible module reuse that mainstream
OO languages and Aspect]. However, more systersaidies are required to obtain clear
evidence of these claims. This report providesradeggestions on how that could be done.

9. ACKNOWLEDGEMENTS

Work described in this report was carried out ia tontext of a scholarshipolsa de Iniciacéao
Cientifica(BIC) to initiate undergraduates in research ptsjeThe scholarship was financed by
project SOFTAS (POSC/EIA/60189/2004), workpackadg\P (Programming Languages for
Aspect-Programming).

10REFERENCES

[1] Aspectj project home page, http://www.eclipse.org/aspectj/.

[2] eclipse archive download page, http:/ /archive.eclipse.org/eclipse/downloads/index.php.
[3] Aspect] project, http://www.eclipse.otg/aspectj/.

[4] CAESAR] homepage, http://caesatj.org.

[5] Aracic 1., Gasiunas V., Mezini M., Ostermann K. An Overview of Caesar]. Transactions of Aspect-
Oriented Software Development, vol.l, Springer, 2000.

[6] Baumgartner G., Liufer K., Russo V. F. On the interaction of Object-oriented Design Patterns and
Programming Languages. Technical report CSD-TR-96-020, Purdue University, Feburary 1996.

[7]1 Bracha G., Cook W. Mixin-Based Inheritance. Proceedings of ECOOP/OOPSLA 1990, pp.303-311, 1990.

[8] Brichau J., Haupt M. Report describing survey of aspect languages and models. AOSD-Europe
Deliverable D12, AOSD-Europe-VUB-01, May 2005.

[9] Chambers C. Object-oriented multi-methods in Cecil. ECOOP ’92, Utrecht, The Netherlands, 1992.

[10] Eckel B. Thinking in Patterns, revision 0.9. Book in progress, May 20, 2003. Available at
64.78.49.204/ T1Patterns-0.9.zip

[11] Ernst E. Family polymorphism, Proceedings of ECOOP 2001 (Heidelberg, Germany) (Jorgen Lindskov
Knudsen, ed.), LNCS 2072, Springer-Verlag, June 2001, pp. 303-326.

[12] Gamma E., Helm R., Johnson R., Vlissides]. Design patterns: Elements of reusable object-oriented sofware,
Addison Wesley, 1995.

[13] Garcia A., Sant'Anna C., Figueiredo E., Kulesza U., Lucena C., Staa A. Modularizing Design Patterns
with Aspects: A Quantitative Study. LNCS TAOSD 1, Springer vol. 3880, 2000.

[14] Gasiunas V., Mezini M., Ostermann K. Dependent types. ooPSLA 2007, Montréal, Canada 2007.

[15] Gudmundson S., Kiczales G., Addressing practical software development issues in Aspect] with a
pointcut interface. Workshop on Advanced Separation of Concerns at ECOOP 2001, June 2001.

[16] Hannemann J., Kiczales G. Design pattern implementation in Java and Aspect], Proceedings of OOPSLA 2002,
pp. 161-173, 2002.

[17] Herrmann S. Object teams: Improving modularity for crosscutting collaborations. Net. Object Days,
Erfurt, Germany, 2002.

39

[18] Hirschfeld R., Limmel R., Wagner M. Design Patterns and Aspects — Modular Designs with Seamless
Run-Time Integration. 3rd German GI Workshop on AOSD, 2003.

[19] Kiczales G., Hilsdale E., Hugunin J., Kersten M., Palm J., Griswold W. G. An Overview of Aspect].
Proceedings of ECOOP 2001, pp. 327-353, Budapest, Hungary, June 2001.

[20] Kiczales G., Lamping J., Mendhekar A., Maeda C., Lopes C., Loingtier]., Irwin |]. Aspect-Oriented
Programming. Proceedings of ECOOP’97, Jyviskyld, Finland, Springer-Verlag Lecture Notes in Computer
Science, vol. 1241, pp. 220-242, June 1997.

[21] Lieberherr K., Lorenz D.H., Mezini M. Programming with Aspectual Components. Technical report NU-CCS-
99-01, Northeastern University, Boston, USA, March 1999.

[22] Lieberman H., Using Prototypical Objects to Implement Shared Behavior in Object Oriented Systems.
Proceedings of OOPSLA'806, Portland, USA, ACM press, pp. 214-223, September 29-October 2 1986.

[23] Madsen O. L., Moller-Pedersen B., Virtual classes: a powerful mechanism in object-oriented programming.
Proceedings of OOPSLA’89, pp. 397-406, New Orleans, Louisiana, United States, 1989.

[24] Mezini M., Ostermann K. Conguering aspects with Caesar. Proceedings of AOSD 2003, pp. 90-99, Boston,
USA, March 2003.

[25] Mezini M., Ostermann M. Integrating independent components with on-demand remodularization, Proceedings of
OOPSLA 2002, pp. 52-67, 2002.

[26] Mezini M., Ostermann K. Untangling Crosseutting Concerns with Caesar. Chapter 8 of Aspect-Oriented Software
Development (Filman R. E., Elrad T, Clarke S., Aksit M., editors), Addison Wesley 2005.

[27] Miles R. Aspect] Cookbook. O'Reilly 2004.

[28] Monteiro M. P., Fernandes J. M., An illustrative example of refactoring object-oriented source code with
aspect-oriented mechanisms. Software: Practice and Experience 38(4): pp.361-396, 2008.

[29] Monteiro M. P., Fernandes J. M., Pitfalls of Aspect] Implementations of Some of the Gang-of-Four
Design Patterns. DSOA’2004 workshop, Malaga, Spain, 2004.

[30] Monteiro M.P., Fernandes J.M. Towards a Catalogue of Refactorings and Code Smells for Aspect].
LNCS TAOSD 1, Springer vol. 3880, 2006.

[31] Myers N. C. Traits: a new and useful template technigne. In C++ Report, June 1995.
http:/ /www.cantrip.org/ traits.html

[32] Rajan H., Design Patterns in Eos, PLoP '07, Monticello, Illinois USA, September 2007.

[33] Schwaninger C., Groher 1., Meunier R., Hohenstein U. Empirical Study for Evaluating Evolvability
Requirements. LATEr workshop at AOSD 2006, Bonn, Germany, 20 March 2006.

[34] Suvée D., Vanderperren W., Jonckers V. [AsCo: An Aspect-Oriented Approach Tailored for Component-Based
Software Development. Proceedings of AOSD’03, pp. 21-29, 2003.

40

