SOFTWARE: PRACTICE AND EXPERIENCE
Softw. Pract. Exper. (2012)
Published online in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/spe.2154

Implementing design patterns in Object Teams

Miguel P. Monteiro*" and Jodo Gomes

CITI, Departamento de Informdtica, Faculdade de Ciéncias e Tecnologia da Universidade Nova de Lisboa,
2829-516 Caparica Portugal

SUMMARY

This paper presents a study of the support for modularity of Object Teams, an aspect-oriented language
backwards compatible with Java. The study is based on implementations in Object Teams of two complete
collections of the Gang-of-Four design patterns. An analysis of the implementations is provided, in terms
of advantages of Object Teams over Java with respect to modularity, module composition and reuse. We
present a systematic comparison with a functionally equivalent collection of implementations in Aspect],
regarding five modularity properties: locality, reusability, composition transparency, (un)pluggability and
extensibility. Object Teams yields broadly comparable results in terms of the first four properties. Object
Teams yields better results as regards flexible module extensibility, composition at the instance level and
enclosing multiple pattern participants into a larger, cohesive module. Aspect] is more successful than
Object Teams in the Singleton pattern because of its ability to intercept constructor events. Copyright ©
2012 John Wiley & Sons, Ltd.

KEY WORDS: aspect-oriented programming; design patterns; modularity; extensibility; reusability

1. INTRODUCTION

Aspect-oriented programming (AOP) is an emerging programming model primarily focused on the
modularization of crosscutting concerns [1-5]. AOP is undergoing maturation, and many aspect-
oriented programming languages (AOPLs) have been proposed [6]. Most of such languages are
backwards-compatible extensions to existing languages, among which, Java features prominently.
There is a significant variety in AOPLs as regards language features and supported composition
mechanisms, even in languages that extend a common base language. For instance, both Aspect]
and Object Teams/Java (OT/J) are backwards-compatible extensions to Java and are both labelled
aspect oriented. Yet, the mechanisms provided by the two languages are markedly different. Given
the wide variety of proposals for AOPLs, it would be desirable that studies were made reporting on
the relative strengths and limitations of the various languages. However, few studies were made
comparing aspect-oriented languages. The few reports available are by the creators of the language
concerned. For most AOPLs, there is a dearth of studies by independent authors. Although a few
independent studies comparing representatives of the object-oriented programming (OOP) and AOP
approaches were carried out, they are geared for comparisons across paradigms [7-10]. There have
been very few examples reporting on comparisons among AOPLs [11,12]. Among the AOPLs
compared, Aspect] features prominently.

This paper presents a study of the AOPL OT/J [13—-17]. It discusses OT/J by comparing it with Java — its
base language — and AspectJ [18-20], which is used as the reference AOPL. The comparisons of OT/J
with both languages are driven by implementations of the Gang-of-Four (GoF) design patterns [21].

*Correspondence to: Miguel P. Monteiro, CITI, Departamento de Informadtica, Faculdade de Ciéncias e Tecnologia da
Universidade Nova de Lisboa, 2829-516, Caparica, Portugal.
FE-mail: mtpm@fct.unl.pt

Copyright © 2012 John Wiley & Sons, Ltd.

M. P. MONTEIRO AND J. GOMES

Design patterns comprise a suitable material to assess and compare languages for various reasons.
The GoF patterns are very well known and implemented in many different languages [22-24]. The
GoF patterns present a significant variety and richness of composition and design problems even with
relatively simple examples. Often, the composition effects illustrated by patterns come handy in real
systems but are not directly supported by the language used. For instance, Decorator relates to mixin
composition [25], and Visitor relates to double dispatch, none of which are directly supported by Java.
Patterns provide commonly practised solutions on how to achieve those composition effects with
languages that lack the appropriate features. Examining how such patterns can be implemented using
AOPLs is a good way to evaluate them. Collections of functionally equivalent pattern implementations
form a good basis for comparing them.

The potential of design patterns for illustrating and/or assessing the relative advantages of an AOPL
was explored in the past [26-28,11,29], although few previous studies involve the full GoF collection
of 23 patterns. To our knowledge, there are two systematic studies of AOPLs involving all GoF
patterns: those by Hannemann and Kiczales (HK) on Aspect] [30] and those by Rajan on Eos [11].
Only the code examples from the HK study are publicly available. These were subsequently used as
a basis for independent research [31,7,8,32]. Previous systematic studies based on GoF patterns use
examples created by people with a stake on the language under study [30,11], which makes them
vulnerable to suspicions of bias. To avoid that shortcoming as much as possible, we avoided creating
our own examples. Instead, the OT/J examples are re-implementations of two existing collections of
Java examples freely available on the Web.* Both collections were posted long before the setup of
the present study, by people that are independent of the present authors. The newly developed
examples in OT/J are functionally equivalent to the corresponding original Java examples. Three
examples from our collections were implemented in two different ways because OT/J provides several
options for some patterns, some of which are more suitable than others for some specific comparisons.

The rest of this paper is structured as follows. Section 2 presents the study setup. Section 3
provides an overview of OT/J, with an emphasis on those language features and techniques that
have an impact on the implementations. To illustrate the various features, an OT/J implementa-
tion of Observer is discussed. Section 4 establishes some parallels between OT/J and Java and
Aspect] by proposing a set of guidelines on how to convert Java and Aspect] programs into
OT/]. Section 5 discusses the pattern implementations, with a focus on the contributions that
OT/J brings relative to Java and Aspect]. A few OT/J features and techniques of narrower applicability
are also mentioned when discussing specific patterns. Section 6 presents a systematic comparison
between the OT/J and Aspect] implementations, using as a basis the set of modularity properties from
the HK study. Section 7 surveys related work, Section 8 outlines opportunities for future work and
Section 9 concludes.

2. STUDY SETUP

To ensure consistency across an entire collection of the patterns, we strove to redevelop complete Java
repositories rather than pick ad hoc examples from many different sources. The two repositories on
which the OT/J examples are based are the following:

* The collection by HK® was selected owing to the availability of functionally equivalent imple-
mentations of all GoF patterns in both Java and Aspect] [30]. The Java versions formed the
basis for the OT/J implementations. The Aspect] versions are used in the comparisons discussed
in Sections 5 and 6.

e The collection of Java examples by Cooper® [33]. Using a second complete collection was important
for our study. Cooper’s collection was selected on account of the challenges it poses. Almost all

“Full sources are available for download as an Eclipse/OTDT project at https:/projectos.fct.unl.pt/attachments/download/
590/0TIGoF4SPE.zip

"The original eclipse project with the AJDT plug-in for Aspect] is available at http:/hannemann.pbworks.com/
f/gofl.11.zip

“The refactored version used as a basis for this work is available as an eclipse project at https:/projectos.fct.unl.pt/attachments/
download/591/JavaGoFJamesCooper.zip

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2012
DOI: 10.1002/spe

http://hannemann.pbworks.com/f/gof1.11.zip
http://hannemann.pbworks.com/f/gof1.11.zip
https://projectos.fct.unl.pt/attachments/download/591/JavaGoFJamesCooper.zip
https://projectos.fct.unl.pt/attachments/download/591/JavaGoFJamesCooper.zip

SOFTWARE: PRACTICE AND EXPERIENCE

implementations are based on GUI classes from the standard Java swing library. The licence under
which classes from Java standard APIs are available forbids modifying byte codes, which precludes
some kinds of composition carried out by typical implementations of AOPLs. These hurdles make
for slightly more realistic and interesting examples.

2.1. Terminology

Each design pattern prescribes roles for the concrete objects and/or modules (e.g. classes and Java
interfaces) that participate in the pattern. Unfortunately, the term role is important in the context of
OT/J as well [14]. To avoid confusion, this paper uses role to refer to the role classes of OT/J and
participant or pattern role to refer to a role in a pattern [21].

Throughout the paper, we use the term scenario to refer to the idea or metaphor used to set up the
classes of which a given pattern example is comprised. For instance, Cooper’s scenario for Visitor is
based on the idea of computing the vacation days of employees. The HK study uses a very dif-
ferent scenario about traversing a tree structure. Each implementation of a given pattern requires a
suitable scenario. We use the term example to refer to a specific implementation in a given language
of a scenario for a pattern. Each scenario gives rise to at least one example for each different language. The
collection from the HK study comprises 23 scenarios — one per pattern — and 46 examples — one each in
Java and Aspect]. The collection by Cooper comprises 23 scenarios and examples — one for each pattern.
We developed at least one OT/J example for each example, giving rise to 46 examples corresponding to
one example for each of the 23 GoF patterns and for each of the collections. A scenario can give rise to
more than one example even with a single language when it is possible to implement it in different ways.
Alternative examples were developed for the scenarios of Composite, Prototype and Visitor. In each
pattern, one of the examples mimics the Aspect] approach and is used for the comparative analysis
presented in Section 6.

2.2. Preparation of the material for the study

The Java collection by Cooper was subject to a number of refactorings [34] prior to the study. This was
important because good OOP decomposition is an important prerequisite for applying AOP effectively
[35]. As the Cooper collection originally stood, many Main classes used as drivers for the example
doubled as GUI class, for example, extending JFrame from the standard swing API and implementing swing
interfaces such as ActionListener. The refactorings were mostly to ensure each class has a single set of
responsibilities and comprised the extraction of a number of simple classes (e.g. for button actions), includ-
ing a class representing the example’s GUI The observable behaviour of the examples was not changed.

Our approach was to produce an OT/J implementation for each HK scenario and next try to reuse it
in the Cooper scenario for the same pattern — possibly with some adaptation to generalize it. Only the
modules used in examples from both scenarios were classified as reusable. It was also established that
modules with only abstract declarations would not count as a reusable module. This rule is important
because when OT/J is used, it is easy to create abstract modules that can be used in multiple examples
but add little functionality.

2.3. Classification of pattern roles as superimposed and defining

For the analysis of the various patterns and respective implementations, it is helpful to distinguish
between the following two kinds of pattern roles:

e Superimposed roles are assigned to class modules that have functionality and responsibilities
outside the pattern. In such cases, the participant class has a core set of responsibilities, and ideally,
no other code should be found in it. The pattern role the class plays in the pattern is an additional, or
secondary, role that should be moved to a separate module. Superimposed roles are indicative of the
presence of crosscutting concerns, as the participation in a given pattern often cuts across multiple
classes [30].

e Defining roles are completely defined by the pattern, with no functionality outside that context.
Removing a pattern implementation from a system entails removing that class as well.

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2012
DOI: 10.1002/spe

M. P. MONTEIRO AND J. GOMES

ObserverProtocol ConcreteObserverl
® Subject @ Subject Window4Observer
- voi K— «playedB
addObserver(Observer): void) changeRadioButton(ltemEvent): void Peyery itemStateChanged
removeObserver(Observer): void Lo
- (ItemEvent): void
removeAllObservers(): void changeRadioButton «
notifyObservers(): void before itemStateChanged
® ColorFrameObserver «playedBy» ColorFrame
T uodat n ol changeColor
RT—— update — changeColor (String): void
update(Subject): void <5 @ ColorListObserver ColorList
| | « playedBy
update — writeColorOnWindow writeColorOnWindow
(String): void

Figure 1. Example of a concrete scenario for Observer.

It is important to note that it is not always clear whether a pattern role should be classified as defining or
superimposed. In general, a specific judgement influences the resulting design — see also Sections 4, 5 and 6.

3. THE OBJECT TEAMS PROGRAMMING MODEL

This section describes the OT/J language in some detail. Some parallels between OT/J and Aspect] are
provided to clarify the various points. We assume the reader is familiar with Aspect], as it is a well-
known language, having been documented in many papers, tutorials and books (e.g. [19,20]). This
section uses an example for Observer to illustrate the various features of OT/J. To distinguish between
the modules supported by Aspect] and OT/J, the remainder of this paper uses the term ‘aspect’ to refer
to the former and the term ‘team’ to the latter.

3.1. The language

The OT/J language was branded aspect-oriented from the start [15,36], but unlike Aspect]-like
languages, it does not rely on an explicit notion of joinpoint and does not provide constructs for
specifying or capturing joinpoints. Instead, OT/J provides language support to role-based programming
[37,16]. Its approach can be characterized by multiple dimensions of polymorphism and support for
composition at the instance level. In practice, this approach is equivalent to a joinpoint model comprising
just method calls and field accesses.

Object Teams/Java adds to Java a new kind of module, the feam, which roughly corresponds to Aspect]
aspects. The most prominent feature of teams is that they enclose roles, that is, inner classes that represent
the internal concepts of a collaboration of objects. Roles are virfual classes [38], that is, classes that are
members of instances and subject to overriding and dynamic dispatch in the same way as methods. Teams
provide the context within which a collaboration of roles takes place, which can include state and behaviour
pertaining to the context of the collaboration. OT/J supports family polymorphism [39], that is, the ability to
group a set of virtual classes into a larger package-like class — the team — such that consistency between all
member classes and their instances can be enforced by the type checker. Team instances are used as type
anchors to ensure that role instances from different team instances are not mixed.

Figure 1 outlines an example for Observer. Listings 1 and 2 show the code for the two teams from
Figure 1. The notation used is UFA (UML for Aspects), an extension of UML proposed by Herrmann
[40] to express the new kinds of module and module compositions that OT/J adds to Java. A key
addition is the use of a package-like diagram representing a team — identified with “T” at the top label.
It aims to express a module capable of enclosing a set of collaborating classes. Figure 1 includes two
teams: ObserverProtocol and ConcreteObserver. Any class within a team is a role, which is identified
with an ‘R’ inside the name area for the class. In Figure 1, team ObserverProtocol encloses two roles —
Subject and Observer. In Listing 1, these correspond to lines 04—11 and 12-16, respectively. The other
key element is the role playing relationship, which is modelled as a dependence relationship with
the <<playedBy>> stereotype.

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2012
DOI: 10.1002/spe

SOFTWARE: PRACTICE AND EXPERIENCE

01 //The roles do not really need to be abstract. They are declared so to signal that

02 //specific applications using the pattern should provide a refinement of these roles.
03 public abstract team class ObserverProtocol {

04 protected abstract class Subject {

05 /** Registry of known Observers: */

06 private LinkedList<Observer> observers = new LinkedList<Observer>();

07 public void addObserver (Observer o) { observers.add(o); }

08 public void removeObserver (Observer o) { observers.remove (o); }

09 public void removeAllObservers () { observers.removeAll (observers); }

10 public void changeOp () { for (Observer observer: observers) observer.update (this);
11 }

12 protected abstract class Observer {

13 protected abstract void update (Subject s);

14 public void start (Subject s) { s.addObserver (this); }

15 public void stop (Subject s) { s.removeObserver (this); }

16 }

17 }

Listing 1. Example of a reusable team for the Observer pattern.

01 | public team class ConcreteObserver extends ObserverProtocol {

02

03 protected class Subject playedBy Window4Observer {

04 private String selectedColor = "none";

05

06 public String getSelectedColor () { return selectedColor; }

07

08 public void changeRadioButton (ItemEvent e)

09 //Guard predicate: if enabled, blocks callin when subject is in "Red" state)
10 //when (((JRadioButton)e.getSource()).getText () != "Red")

11 {

12 if (e.getStateChange() == ItemEvent.SELECTED) {

13 selectedColor = ((JRadioButton)e.getSource()) .getText();

14 System.out.println (selectedColor) ;

15 this.notifyObservers();

16 }

17 }

18 changeRadioButton <- before itemStateChanged;

19 }

20

21 //Obtain String from the chain of responsibility chain of subject

22 private String getColorFromSubject (Subject s){ return s.getSelectedColor(); }
23

24 protected class ColorFrameObserver extends Observer playedBy ColorFrame {
25 void update (Subject s) -> wvoid changeColor (String selectedColor) with {
26 getColorFromSubject (s) -> selectedColor

27 }

28 private abstract Color getColorFromColorFrame () ;

29 getColorFromColorFrame -> get _color;

30

31 private abstract void setColorFromColorFrame (Color c);

32 setColorFromColorFrame -> set color;

33 }

34

35 protected class ColorListObserver extends Observer playedBy ColorList ({
36 void update (Subject s) -> wvoid writeColorOnWindow (String s) with {

37 getColorFromSubject (s)-> s

38 }

39 }

40

41 //Declared lifting: uses AnyBase to represent any base class playing Observer
42 public <AnyBase base Observer>

43 void addObserver (AnyBase as Observer obs, Window4Observer as Subject sub) {
44 sub.addObserver (obs) ;

45 }

46

47 public <AnyBase base Observer>

48 void remObserver (AnyBase as Observer obs, Window4Observer as Subject sub) {
49 sub.removeObserver (obs) ;

50 }

51 }

Listing 2. A concrete sub-team for a specific example of Observer.

In Figure 1, each role within the ConcreteObserver team has a role playing relationship with a
traditional class. Classes involved in such relationships are base classes, but no special notation is
used to distinguish them from non-base classes.

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2012
DOI: 10.1002/spe

M. P. MONTEIRO AND J. GOMES

All potentially reusable logic pertaining to the collaboration between subjects and observers is enclosed in
the team. Note that both roles have protected visibility. For roles, this means that only the team and sub-teams
can see them. This is independently of the package where they are deployed: even other modules in the same
package cannot see a protected role. Composing the team ObserverProtocol to a specific application is
carried out by creating case-specific sub-teams. The present example includes classes Window4Observer
as subject and classes ColorFrame and ColorList as observers (shown only in Figure 1). Composing Obser-
verProtocol to this example entails adding a sub-team such as that from Listing 2 (see also Figure 1).The sub-
team encloses the case-specific parts, comprising bindings between the roles and example-specific classes.
This approach is similar to that used with aspects [30], although Aspect] has limitations as concrete aspects
cannot be extended. In OT/J, all possibilities of traditional class inheritance apply to teams and roles.

A role can extend another role from the same team or from some super-team along the team inheritance
chain. For example, roles ColorFrameObserver (Listing 2, lines 24-33) and ColorListObserver (Listing 2,
35-39) inherit from ObserverProtocol.Observer using an explicit extends clause (Listing 2, lines 24 and 35).
A role also inherits from roles of the same name in super-teams without using extends, a form of inheritance
known as implicit inheritance. For example, ConcreteObserver.Subject (Listing 2, lines 3—19) inherits from
ObserverProtocol.Subject (Listing 1, lines 4-11). Member overriding and late binding is supported in all cases.

A role can declare a role playing relation to a given base class — usually a plain Java class but can also be
a team. This relation expresses a conceptual connection between the internal participant of the object
collaboration represented within the team and some external module from a specific application. Roles Sub-
ject, ColorFrameObserver and ColorListObserver declare such relations — through the ‘playedBy’ keyword —
to classes Window4Observer, ColorFrame and ColorList, respectively (Listing 2, lines 3, 24 and 35).

Each role can specialize only one base, but multiple roles can specialize the same base simultaneously.
Role playing relations are inherited by sub-roles, independently of the variety of inheritance used, and can
be refined, subject to typing rules. For technical reasons, proprietary classes such as those from the Java
standard APIs cannot be bases. A role that declares (or inherits) a playedBy relation with some class is
a bound role. A role can also be unbound, which is often the case of roles within abstract teams such as
ObserverProtocol (Listing 1). Unbound roles are also used to represent concepts within the collaborations
that have no counterpart outside the team.

Role playing resembles inheritance to some extent but differs in two important ways. First, role
playing works at the instance level rather than at the class level. Roles can be added and removed to
specialize object instances at any moment during program execution. Second, role playing makes a
distinction between acquisition of members and overriding of member definitions, treating them
separately and on a case-by-case basis. In traditional inheritance, a subclass acquires all super-class
members without exception — essential to ensure the full substitutability that is prerequisite for type—
subtype relationships. However, role playing relations do not require full substitutability. A role
acquires base members selectively, and each acquisition is made explicitly. Role instances and base
instances are substitutable in relation to code that uses those acquired members.

Although it has no effect on its own, a playedBy declaration provides the context for two kinds of
bindings between role members and base members: callouts and callins. The ‘in” and ‘out’ are to be
seen from the perspective of the role. A callout binding (henceforth just ‘callout’) enables a role to
acquire an implementation available in the base instance for one of its abstract declarations — the role
object is said to ‘call out’ to the base object. Listing 2 shows two examples of callouts of fields (lines 29
and 32). The modifiers get and set serve to distinguish between field accesses for reading and for writing —
similarly to the get and set pointcut designators of Aspect]. Thus, role methods getColorFromColorFrame
and setColorFromColorFrame are bound to accesses to the field _color of base class ColorFrame to
become a getter and a setter, respectively.

The notation for callouts to methods is often very simple. When the parameter lists and return types are
identical, callouts can be specified without them:

roleMethodName — baseMethodName;

Object Teams/Java supports an optional ‘with’ {...} sub-clause within roles to specify mappings
between role members and base members when names and/or signatures are different. They also can
specify certain adaptations, for example, order of parameters, type conversions or some short glue-
code expression. Listing 2 also shows two such cases (lines 25-27 and 36-38).

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2012
DOI: 10.1002/spe

SOFTWARE: PRACTICE AND EXPERIENCE

A concrete role must define all of its members but can leave some of them as abstract and acquire the
corresponding definitions from the base by means of callouts. Role ColorFrameObserver (Listing 2,
lines 24-33) provides an example: it acquires definitions for two of its methods (Listing 2, lines 29
and 32). By default, a role acquires nothing from its base: all acquisitions must be explicit.

Callouts are a means of communication from role to base. Callin bindings (henceforth just ‘callins’)
support communication in the opposite direction. Callins are also the means through which a role overrides
base behaviour, by specifying that the methods of its role be implicitly called whenever certain events from
the associated base object take place. Callins are the rough equivalent to Aspect] advice, although they work
more narrowly, along the channel of communication between role and base. The notation for callins is
similar to that for callouts, with the arrow pointing from base to role. See Listing 2 (line 18) for an example.

The execution events supported by callins are the execution of methods and access to fields. Whenever
the target of a callin is executed, the control flow is passed to the team, and if a role corresponding to the
base object does not exist, it is implicitly created at that point. This is the default way to create role instances.
Callins can distinguish between field accesses for reading and for writing, like in AspectJ pointcuts. Callins
can execute before, after or instead of the captured event, similarly to Aspect] advice. To that effect, role
methods bound through callins must have one of three modifiers ‘before’, ‘after’ and ‘replace’, respectively.
Listing 2 line 18 shows an example of a before callin.

The callin modifier is required for each role method that overrides a base method, that is, is bound with the
‘replace’ modifier (not shown in Listing 2). Callin methods are a special kind of role method that can invoke
the base method using a base call, using the ‘base’ keyword, in a way that resembles proceed calls within
around advice in Aspect]. Note that the method name used in the base call is that of role method so that the
namespace of the role is kept self-contained, which is essential to ensure a complete independence of teams
and roles from specific bases:

callin type roleMethod(parameter) {
/...
...=base.roleMethod();
/...
}
type roleMethod() <- replace rype baseMethod(parameter) ;

Listing 3 shows the driver for the Observer example (the rest of the class is not relevant). It
illustrates that unlike aspects, teams can be freely instantiated using ‘new’. For callins to take effect,
the enclosing team instance must be activated, for which methods activate and deactivate are available
to all teams. Method activate can be called without arguments, for events originating from the current
thread only, or with the predefined constant org.objectteams.Team.ALL_THREADS (Listing 3, line 3)
to make the team respond to events from any thread. This contrasts with aspects, whose advice cannot
be activated or deactivated dynamically. This limitation tends to make the Aspect] implementation of
some patterns more complex than they would otherwise be [41,11].

01 public static void main(String[] args) {

02 ConcreteObserverTeam observationTeam = new ConcreteObserverTeam() ;
03 observationTeam.activate (Team.ALL THREADS) ;

04

05 // subject

06 Window4Observer mainWindow = new Window4Observer () ;
07

08 // observers

09 ColorFrame colorFramel = new ColorFrame();

10 ColorFrame colorFrame2 = new ColorFrame();

11 ColorFrame colorFrame3 = new ColorFrame () ;

12 ColorList colorList = new ColorList();

13

14 observationTeam.addObserver (colorFramel, mainWindow) ;
15 observationTeam.addObserver (colorFrame2, mainWindow) ;
16 observationTeam.addObserver (colorFrame3, mainWindow) ;
17 observationTeam.addObserver (colorList, mainWindow) ;
18 }

Listing 3. Driver for the Observer example.

9The OT/J compiler can be configured to support inferred callouts so that it does not issue errors when finding
undeclared references to base members. However, in general, that is not the recommended style.

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2012
DOI: 10.1002/spe

M. P. MONTEIRO AND J. GOMES

Object Teams/Java also provides additional control for callin activation in the form of
guard predicates, which comprise declarative clauses that restrict the effect of callins to specific
situations. OT/J supports several levels of control: callin binding, role method, role class and team.
Line 10 of Listing 2 shows a role method-level guard predicate (within a line comment).

Instances of role classes and base classes comprise separate object identities, but in some
situations, their instances can be interchanged in ways that are transparent to the type checker
— this is called translation polymorphism [36]. When the flow of control crosses the base—team
boundary in the base-role direction (e.g. by way of callin), the role instance automatically
replaces the base object. This translation is called lifting. Likewise, when a role instance crosses
the team—base boundary, it is automatically replaced by its corresponding base instance, a trans-
lation called lowering. It is possible to specify a lifting explicitly in team-level methods using a
signature that specifies both the base and the role types. This is called declared lifting and opens
the way for team-level methods that map base objects to their role instances while avoiding
exposing roles to details from outside the team boundaries. Listing 2 (lines 41-45 and 47-50)
shows two team methods using declared lifting. The base type can be a concrete, specific type,
but in those examples, AnyBase is a type parameter whose instantiations must all be bases
liftable to role Observer.

Finally, OT/J automatically synthesizes a special lifting constructor for each bound role, which
accepts a base instance. It is used in cases that require an explicit instantiation of a bound role —
although this is supposed to occur infrequently.

3.2. Object Teams idioms

As in most modern programming languages, a number of design problems surfaced that are not
solved by a direct, straightforward use of OT/J’s mechanisms but can be addressed through
idioms, that is, pattern-like techniques that are specific to the features of a particular language.
Three idioms are used in some of the pattern implementations — Transparent Role, Object
Registration and Double Dispatch. The latter is discussed in the context of the Visifor pattern
(Section 5.4).

The Transparent Role is the idiom most often used in our collections of examples. It addresses
the problem of exposing role functionality to the outside of the team instance without exposing
details of the role, which should be considered part of the team’s private implementation. An
option would be to use team-level methods to forward calls from outside the team to the role
instance within the team. However, that can be verbose as it entails creating a different
team-level method for each role method (possibly using declared lifting). The key idea of
Transparent Role is to make both role and base implement a common top-level Java interface
and make clients access the role only through that interface. This way, the role need never be
exposed outside of the team.

The Object Registration idiom is about restricting the set of base objects that have role coun-
terparts. When no explicit restrictions are programmed, a role instance is created for every base
instance that crosses the team boundary in a program’s control flow — usually when a callin is
activated. Object Registration uses guard predicates — at the role level: there are other levels —
to restrict activation of the callin to a set of registered base instances. A team method is used
to explicitly register all intended base instances. Unregistered base instances do not trigger the
callins.

Listing 4 illustrates the use of Object Registration, using the OT/J example for the Cooper
scenario for Decorator. A team encloses two decorator roles. Team-level methods (Listing 4,
lines 14-17 and 18-21) create the roles explicitly, using their lifting constructors (Listing 4, lines
15 and 19). To ensure callins are triggered for just those registered objects, the roles declare the
appropriate guard predicates (Listing 4, lines 5 and 10). The example from Listing 4 also
illustrates the use of a clause to control precedence between callins bound to the same target
event (Listing 4, line 2). These are similar to aspect precedence in Aspect], which provides a
measure of control over the order of advice acting on the same joinpoint.

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2012
DOI: 10.1002/spe

SOFTWARE: PRACTICE AND EXPERIENCE

01l public team class ButtonDecoratorTeam {

02 precedence CoolDecorator, SlashDecorator;

03

04 public class CoolDecorator playedBy MyButton

05 base when (ButtonDecoratorTeam.this.hasRole (base, CoolDecorator.class)) {
06 /).

07 }

08

09 public class SlashDecorator playedBy MyButton
10 base when (ButtonDecoratorTeam.this.hasRole (base, SlashDecorator.class)) {
11 /]

12}

13

14 public MyButton addSlashDecorator (MyButton c) {
15 new SlashDecorator(c);

16 return c;

17 }

18 public MyButton addCoolDecorator (MyButton c) {
19 new CoolDecorator (c);

20 return c;

21 }

22}

Listing 4. Illustration of the implementation of Decorator for the example by Cooper.
4. CONVERTING JAVA AND ASPECTIJ DESIGNS TO OBJECT TEAMS

This section sums up the topics about OT/J covered in the previous section, by proposing a set of
guidelines on how to convert Java and Aspect] programs to OT/J. The guidelines are not intended
to be precise or applicable in every situation — that would entail developing a catalogue of refactorings
along the lines of [31], which is out of the scope of this paper. They should be approached as ‘rules of
thumb’ about how the features of OT/J should be used to realize patterns in common scenarios.

4.1. Guidelines to convert Java to Object Teams

To convert plain Java programs to OT/J, we propose the following transformations. The guidelines are
numbered so that some of them can be referred in subsequent sections. The numbering is not intended
to imply a definite order for the transformations.

1 In general, inter-related classes from a collaboration of classes can be turned into roles within a
team.

2 If the new roles are not used outside the team (a likely situation in e.g. Interpreter and State), they
should become unbound roles with protected visibility. This situation corresponds to defining
pattern roles. Often, the team serves as a facade for the roles.

3 If the original collaborating classes are used outside the team and each class has a core of responsibil-
ities beyond the collaboration, keep the class standalone, as bases of the new (bound) roles. This
situation corresponds to superimposed pattern roles and is likely to occur in instances of, for example,
Observer and Chain of Responsibility.

4 When extracting a bound role, move pattern functionality from the class to the role as role methods.
In the role, add callins to bind the role methods to the appropriate points in the base.

5 If the purpose of a class is to hold common context shared by a set of collaborating classes (as in
many GoF patterns), move its state and behaviour to the team as team-level state and behaviour.

4.2. Converting Aspect] to Object Teams

Hannemann and Kiczales claimed that benefits from Aspect] are mainly felt in pattern implementa-
tions by inverting dependence, that is, making pattern code dependent of participants rather than the
opposite and keeping code related to management of dependence within pattern aspect modules
[30], thus making case-specific classes oblivious [42] from pattern roles. The OT/J implementations
also follow this reasoning.

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2012
DOI: 10.1002/spe

M. P. MONTEIRO AND J. GOMES

The Aspect] implementations from the HK study comprise a small set of techniques, which
can be summarized as follows: (1) plain use of pointcuts and advice (e.g. Decorator); (2) use
of inter-type declarations (a.k.a. introductions or the open class mechanism) to compose state
and behaviour to participants; and (3) a more elaborate technique, based on marker interfaces,
used in all the reusable aspects except Command. The technique uses empty marker interfaces
to represent pattern roles, often enclosed within an abstract aspect. The aspect composes
functionality to the interfaces, either through inter-type declarations or through aspect methods
whose parameter types are the interfaces. Concrete sub-aspects use declare parents clauses to
bind the marker interfaces to concrete, case-specific classes. Some of the reusable aspects also
use pointcuts to capture the events of interest and establish the relevant connections among
participants. The pieces of advice acting on those events also refer to participants through the
marker interfaces. This technique is used in a number of patterns to attach a default implemen-
tation to a plain Java interface. It has the advantage to make class participants free to inherit from
some other class [30].

As said in Section 3, advice is the equivalent to OT/J callins. Context capture performed by point-
cuts and advice are roughly equivalent to callouts. The marker interfaces are the equivalent to OT/J
roles, and declare parents clauses are equivalent to the playedBy binding between roles and base
classes. Reflecting these parallels, we propose the following transformations to convert Aspect]
programs to OT/J.

* Replace the aspect with a team.

e Turn inner, marker interfaces within an aspect into roles within a team.

e Turn inter-type declarations adding members to marker interfaces into role state and behaviour.

* Turn declare parents clauses binding concrete classes to marker interfaces into role playing
(playedBy) between the roles and the concrete classes.

e Turn helper classes not used outside the aspect into protected unbound roles within the team.

* Turn before/after advice into role methods bound with before/after callins.

* Turn around advice into callin role methods bound with replace callins.

e Turn calls to proceed within around advice into base calls within callin methods.

* Replace context capture as performed by parameterized pointcuts with callouts and role method
parameters.

We believe the above guidelines form a basis for transforming Aspect] into OT/, but they will
not always yield an optimal OT/J design. We noticed that a number of patterns are better tackled
using other approaches that have no counterparts in Aspect]. This is the reason why three of the
patterns are implemented in two different ways using OT/J (see Section 6).

A major factor accounting for differences between Aspect] and OT/J is Aspect]’s lack of a cohe-
sion mechanism that associates the various aspect members together. That is why marker interfaces
are often empty, and the members to which they are associated are often defined at the same level
within the aspect, giving rise to a flat internal structure. Mezini and Ostermann [41] criticized
Aspect]’s design, pointing out that it gives rise to a rather procedural style of programming that
seems contradictory to the fundamentals of OOP, according to which a type definition contains all
methods that belong to its interface. Mezini and Ostermann also pointed out that it seems contradic-
tory to the aspect-oriented vision of defining crosscutting modules in terms of their own modular
structure. The flat structure makes aspects harder to reuse. In their study, HK conclude that benefits
brought by the mechanisms of Aspect] are primarily felt when dealing with superimposed roles,
whose code is straightforward to extract to a separate module. Defining roles, however, pose difficul-
ties for Aspect] to improve over Java because there are no multiple roles to separate. Unlike Aspect],
OT/J has the option of using unbound roles to represent defining pattern roles and enclosing the
whole object collaboration within a team.

A different limitation of Aspect] stems from the static nature of its advice. In Aspect], advice can-
not be activated or deactivated dynamically, which has an impact on the implementation of some
patterns (e.g. Decorator). In contrast, OT/J supports guard predicates and the ability to (de)activate
callins explicitly.

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2012
DOI: 10.1002/spe

SOFTWARE: PRACTICE AND EXPERIENCE

5. DESIGN PATTERN IMPLEMENTATIONS IN OBJECT TEAMS

This section describes the OT/J implementations. A number of recurring approaches based on the
features of OT/J can be discerned, which are used to group the various patterns.

5.1. Polymorphic role constructors to support Factory Method

One important difference between Java and OT/J is that role constructors are polymorphic. Because
the purpose of Factory Method is precisely to emulate polymorphic constructors, OT/J can be expected
to provide direct language support for factory methods and indeed does so. The approach is to turn a
hierarchy of product classes into a hierarchy of roles within a team (guideline 1). Calls to the factory
methods are replaced by calls to role constructors. This approach can work independently of whether
the roles are bound or unbound. It also works with proprietary classes whose source code is not
available, as long as the classes are not final. Proprietary classes can be integrated by means of roles
that inherit from them and which are used in their place. The OT/J example for the HK scenario of
Abstract Factory is an example, involving roles that inherit from classes from the Java swing standard
API (scenarios for Abstract Factory usually include a collection of factory methods).

Figures 2 and 3 illustrate Factory Method using the scenario by Cooper [33], in which a name is
obtained from a GUI text field. The name comprises at least two words, which are extracted differently
depending whether the field has a comma. If it has, the format “<last>, <first>" is assumed. If it
does not have, it assumes that the first word in the field is the first name. The Java example (Figure 2)
uses class Namer (participant product) to extract the first and last names. The two different ways to
present the name are implemented by two subclasses of Namer — FirstFirst and LastFirst — which
are concrete products. The Factory Method pattern also defines the roles creator and concrete creator,
which are, respectively, abstract and concrete representations of the object providing the factory
method. Both correspond to class NamerFactory, whose factory method instantiates the suitable
subclass of Namer depending on the format of the text field.

Figure 3 shows the OT/J implementation. With OT/J, products usually are roles and the creator a
team, which defines the factory method as a top-level team method that returns an instance of required
concrete product. To prevent dependence to the roles outside the team, idiom Transparent Role is
used: role instances are returned as instances of Java interface INamer. An alternative would be to keep
the role instance hidden within the team, which is the option taken for the HK scenario. Although the
OT/J design as shown in Figure 3 may seem more complex than that of Figure 2, the number of
top-level modules is lower. Team NamerFactoryTeam replaces four classes from the Java version —
Namer, FirstFirst, LastFirst and NamerFactory — and adds just interface INamer for use in the
Transparent Role idiom. This illustrates how complexity tends to be better managed with OT/J.

Although some examples from this study include cases of polymorphic constructors, the approach
does not work in all cases. Turning classes into roles may not be feasible in all cases. The factory
method may receive arguments specifying the actual concrete class to instantiate, which cause hurdles.
The selection logic associated to the arguments must still be placed somewhere, which ends up being a

Namer <<client>>
<<uses>>)
Window4

+ getFirst(): String

+ getlLast(): String FactoryMethod
FirstFirst LastFirst NamerFactory
T 0 +INamer getNamer(String entry

Figure 2. Factory Method in Java (Cooper scenario).

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2012
DOI: 10.1002/spe

M. P. MONTEIRO AND J. GOMES

NamerFactoryTeam | <<interface>>
INamer
R] Namer
________________ nb + getFirst(): String
+ getFirst(): String + getLast(): String
+ getLast(): String N
I <<use>>
ZF <<client code>>
| | Window4FactoryMethod
@ FirstFirst @ LastFirst
public INamer getNamer(String entry) {
if (entry.indexOf(",") > 0)
+ INamer getNamer(String entry) ------= F~ " return new LastFirst(entry);
else return new FirstFirst(entry);
¥

Figure 3. Factory Method in Object Teams (Cooper scenario).

kind of factory method. An OT/J implementation will not eliminate factory methods if they receive
parameters, as is the case with the examples for Factory Method from the present study. Nevertheless,
our collection includes a number of cases using factory methods that were made simpler by replacing
them with polymorphic constructors (e.g. the examples of Abstract Factory). The Aspect] approach
does not eliminate factory methods. It localizes them into aspects.

5.2. Packaging multiple entities more cohesively behind a team boundary

In several patterns, the various participants share a common, or global, context. Such patterns define a
participant — often called context — for the express purpose of enclosing it. Thus, the course of action
for all cases from this section entails applying guideline 5 to move common context to a team.
Sometimes, it is possible to completely hide the participants from the team’s public interface. This
thinking is absent in the GoF patterns, because there is no construct unifying the concepts of class
and package. Aspect] also lacks such a cohesion mechanism, and therefore, the approach taken in
the HK study is very different. Abstract Factory and Interpreter are next used to illustrate.

5.2.1. Abstract factory. The purpose of the pattern is to provide an interface (abstract factory) for
creating families of related objects (products) and ensure that instances of a given family are created
consistently, avoiding undesirable mixing between families [21]. That is exactly the purpose of family
polymorphism [39]. Team instances make natural factories for the role types they enclose and provide
guarantees of consistency among object families. Indeed, OT/J provides direct support for
Abstract Factory with respect to roles. The OT/J way to implement Abstract Factory is to turn product
classes into roles whenever this is feasible (guideline 1 followed by guideline 2 or 3). To illustrate,
Listing 5 shows the OT/J implementation of the HK scenario. Because of space constraints, the code
for the GUI driver of the example is not shown.

In this example, abstract team ComponentFactoryTeam (Listing 5, lines 1-13) defines default
implementations for two concrete product classes as roles — Rlabel (Listing 5, lines 2—4) and RButton
(Listing 5, lines 5-7) — as well as methods that instantiate and return them (methods createLabel and
createButton in Listing 5, lines 8-10 and 11). The products are GUI objects from the Java standard API
swing. They cannot be directly handled as roles, but roles can inherit from them (see Listing 5, lines 2
and 5). Sub-teams redefine the roles Rlabel and RButton — one is shown in Listing 5, lines 14-32.
When methods createLLabel and createButton are called on instances of those sub-teams, the code from
those methods inherited from ComponentFactoryTeam is dispatched to the redefined roles.

The approach taken in the HK study is to use Aspect]’s capability to emulate a limited form of multiple
(mixin) inheritance to add default implementations to a Java interface representing the abstract factory.

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2012
DOI: 10.1002/spe

SOFTWARE: PRACTICE AND EXPERIENCE

5.2.2. Interpreter. The pattern defines a representation for the grammar of a simple language — often a
syntax tree — along with an interpreter that uses the representation to interpret sentences in the language.
The pattern declares an abstract expression participant that represents the various distinct nodes
comprising the syntax trees, which is in turn divided into sub-types terminal and non-terminal. Figures 4
and 5 show the Java and OT/J approaches for the HK scenario for Interpreter, respectively. Interpreter
declares a context participant to manage global information within the interpreter, which is represented
by class VariableContext in the Java version (Figure 4) and which becomes InterpreterTeam team in
the OT/J version — following guideline 5. The team also encapsulates a hierarchy of unbound roles
representing the nodes — following guideline 2. The implementation enables a choice between enclosing
all nodes within a single team or within a small hierarchy of teams. Here, one team encapsulates for
terminals and a sub-team encapsulates non-terminals. Note that different partitions could have been made,
as team hierarchies can evolve very flexibly [43]. A single interpreter team could have encapsulated all
classes from Figure 4. The HK example uses an aspect with just a small set of inter-type declarations that
add additional state and behaviour to the terminal and non-terminal participants.

01 public abstract team class ComponentFactoryTeam {

02 protected class RLabel extends JLabel ({

03 public RLabel (String label) { super(label); }

04 }

05 protected class RButton extends JButton {

06 public RButton (String label) { super (label); }

07 }

08 public JLabel createlLabel () {

09 return new RLabel ("This Label was created by " + getName());

10 }

11 public JButton createButton(String label) { return new RButton (label); }
12 public abstract String getName () ;

13 1}

14 public team class FramedFactoryTeam extends ComponentFactoryTeam {

15 protected class RLabel {

16 public RLabel (String label) {

17 super (label) ;

18 Border raisedbevel = BorderFactory.createRaisedBevelBorder () ;
19 Border loweredbevel = BorderFactory.createLoweredBevelBorder () ;
20 setBorder (BorderFactory.createCompoundBorder (raisedbevel, loweredbevel));
21 }

22 }

23 protected class RButton {

24 public RButton (String label) {

25 super (label) ;

26 Border raisedbevel = BorderFactory.createRaisedBevelBorder () ;
27 Border loweredbevel = BorderFactory.createLoweredBevelBorder () ;
28 setBorder (BorderFactory.createCompoundBorder (raisedbevel, loweredbevel));
29 }

30 }

31 public String getName() { return "Framed Factory"; }

32}

Listing 5. Implementation in Object Teams of the Hannemann and Kiczales scenario for Abstract Factory.

<<interface>>
BooleanExpression -
VariableContext

+ evaluate(VariableContext): boolean
+ replace(String, BooleanExpression): BooleanExpression + lookup(String): boolean
+ copy(): BooleanExpression + assign(VariableExpression, boolean): void

Boolean Boolean And Or Not Variable

Constant Expression Expression Expression Expression Expression

Figure 4. Java implementation of Interpreter (Hannemann and Kiczales scenario).

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2012
DOI: 10.1002/spe

M. P. MONTEIRO AND J. GOMES

InterpreterTeam GreetingTeam
<
® BooleanExpression @ NotExpression
+ evaluate(): boolean
+ replace(String,BooleanExpression): < ® AndExpression
BooleanExpression
+ copy(): BooleanExpression (R) OrExpression
| |
@ Variable @ Boolean
Expression Expression

+ lookup(String): boolean
+ assign(VariableExpression, boolean): void

Figure 5. Object Teams/Java implementation of Interpreter (Hannemann and Kiczales scenario).

The above OT/J implementation is also a case in which participants can be completely encapsulated within
a team, as unbound roles, because participants correspond to defining pattern roles. The example of Observer
shown in Section 3 illustrates the other case — superimposed roles — which are represented by bound roles.
We next provide an overview of the remaining patterns from this group.

5.2.3. Facade. The purpose of the pattern is to add a layer encapsulating a number of participants.
This is another pattern whose approach using OT/J is straightforward. Indeed, teams often serve as a
Facade for their roles. Unfortunately, the examples for Facade are not particularly suitable to illustrate
this notion, although it can be found in many examples for other patterns. In the Cooper scenario, the
subsystem classes comprise proprietary interfaces from the Java standard APIs. In the HK scenario,
OT/J provides more flexibility in composing the facade to the subsystem classes by means of role
playing. The Aspect] example from the HK study is identical to that in Java.

5.2.4. Flyweight. The pattern is about the sharing of object references to support large numbers of
fine-grained objects in an efficient way. The fine-grained objects are represented by the flyweight
participant, which declares a common interface through which the objects can receive and act on the
shared state. The common context is supported by the flyweight factory, which is also responsible
for creating the flyweights and managing the way state is shared among them. In the OT/J implemen-
tation, a role represents the flyweight and the team is the flyweight factory. The Aspect] approach is to
use an aspect acting as a flyweight factory. The flyweight pattern role is composed to concrete classes
by means of a marker interface and inter-type declarations.

5.2.5. Iterator. The pattern defines an aggregate participant whose elements are to be accessed
sequentially without exposing its underlying representation. The iterator defines an interface for
accessing and traversing the elements of the aggregate. The aggregate provides the context in which
the iterator operates. In the OT/J examples, it becomes a team that encloses the iterator as an unbound
role. The iterator can be used outside the team without exposing a role by means of the Iterator
interface. This is an instance of the Transparent Role idiom. The Aspect] example only differs from
the Java version in that it places the iterator factory in an aspect instead of a plain Java class, which
is composed to the aggregate participant by means of an inter-type declaration.

5.2.6. Mediator. The pattern defines an object that encapsulates how a set of objects interact and promotes
loose coupling by preventing them from referring to each other explicitly. Participant colleague represents
the collaborating objects. A mediator defines an interface for communicating with colleagues, knows and
maintains the colleagues and implements the collaboration by coordinating them. The mediator manages
the common context and becomes a team in the OT/J implementation. It encloses a number of roles bound

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2012
DOI: 10.1002/spe

SOFTWARE: PRACTICE AND EXPERIENCE

to the colleague classes, which remain standalone but free of code related to the pattern (guidelines 1 and 3).
The Aspect] approach treats mediator as a superimposed pattern role that is composed to a concrete class.

5.2.7. State. 'The pattern is about allowing an object to alter its behaviour when its internal state changes,
giving the impression that it changes its class. State defines a state participant representing the internal states
through which the object can go. The common context is represented by the context participant, which also
defines the interface of interest to clients and maintains an instance of the concrete state participant that
defines the current state. In the OT/J implementation, the team is the context, which encapsulates the various
state participants as unbound roles (guidelines 1 and 2). The Aspect] approach to State is to use an aspect to
enclose the logic for managing transitions between states. Related classes remain standalone with the
consequence that the pattern implementation remains spread over multiple modules.

5.2.8. Builder. The pattern is about separating the construction of a complex object (product) from its
representation so that the same construction process can create different representations. The object responsible
for the construction process is the builder, which declares an interface for the building process. The director
participant constructs the product in stages, using the builder interface. In the OT/J examples, the director
becomes a team that serves to provide the context for the builder and the building process. The Aspect]
approach is to represent the builder as a Java interface to which an aspect attaches the default behaviour.

5.3. Composing pattern roles through role playing: Adapter, Bridge, Decorator, Prototype, Proxy
and Strategy

In a number of patterns, the contribution of OT/J is primarily to provide role playing as an additional option
to compose the pattern logic to the participant classes. In patterns Adapter, Bridge, Decorator, Prototype,
Proxy and Strategy, role playing is used instead of aggregation and inheritance to compose secondary roles.

We illustrate the approach with the complete OT/J implementation of the HK scenario for Adapter — see
Listing 6. In this simple example, some client code expects interface Writer (Listing 6, line 1), but the class
used — SystemOutPrinter (Listing 6, lines 2—4) — does not conform to that interface. Team PrinterAdapter-
Team (Listing 6, lines 5-11) defines a role Adapter (Listing 6, lines 6-8) bound to SystemOutPrinter and
that implements Writer. In this example, a single callout (Listing 6, line 7) is sufficient for mapping adapter
and adaptee. The team also provides a team-level method (Listing 6, line 10) that uses declared lifting to
return the role instance corresponding to the base received as argument.

01 public interface Writer { public void write(String s); }

02 public class SystemOutPrinter {

03 public void printToSystemOut (String s) { System.out.println(s.toUpperCase()); }
04 }

05 public team class PrinterAdapterTeam {

06 public class Adapter implements Writer playedBy SystemOutPrinter ({
07 write -> printToSystemOut;

08 }

09 //team-level method using declared lifting:

10 public Adapter getAdapted(SystemOutPrinter as Adapter adapter) { return adapter; }
11}

12 public class Main {

13 public static void main(String[] args) {

14 Writer myTarget;

15 SystemOutPrinter adaptee;

16 System.out.println ("Creating the Adaptee...");

17 adaptee = new SystemOutPrinter();

18

19 System.out.println ("Creating the Adapter...");

20 final PrinterAdapterTeam pat = new PrinterAdapterTeam();

21 Adapter<@pat> adaptedClass = pat.getAdapted(adaptee);

22 myTarget = adaptedClass;

23

24 System.out.print ("Adapter and Adaptee are the same object: ");
25 System.out.println (myTarget.equals (adaptee));

26

27 System.out.println("Issuing the request() to the Adapter...");
28 myTarget.write ("Test successful.");

29 }

30}

Listing 6. Implementation in Object Teams of the Hannemann and Kiczales scenario for Adapter.

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2012
DOI: 10.1002/spe

M. P. MONTEIRO AND J. GOMES

Class Main (Listing 6, lines 12-30) is the driver for the example and also represents client code to an
extent. The code for Main illustrates how a role can be used outside a team — note that the team
instance must be declared final (Listing 6, line 20) to serve as a type anchor (e.g. Listing 6, line 21).

The Aspect] example uses an inter-type declaration to attach an adapting method to the adaptee.

We next provide an overview of the remaining patterns from this group.

5.3.1. Bridge. The abstraction hierarchy becomes a hierarchy of roles, bound to the hierarchy of
implementors through role playing. The Aspect] example comprises an aspect that attaches a number
of implementor members to a Java interface that represents the abstraction.

5.3.2. Decorator and Proxy. The decorators become roles bound through role playing to the Java
classes to be decorated (guideline 1 and 3). The Object Registration idiom is used to ensure that only
the desired objects are decorated. Contrary to traditional OOP implementations, the identity of the
original component objects is preserved when they are decorated. The examples taken for Proxy are
similar to those for Decorator, with proxies instead of decorators. The implementations of Proxy
are simpler because they use neither guard predicates nor precedence control. The Aspect] example
for Decorator is based on plain use of advice over component events. The Aspect] example for Proxy
uses pointcuts and advice to control access to a subject participant. The Aspect] implementations for
Proxy and State are based on advice, which operate statically rather than at the instance level and
are therefore less flexible. In cases of Proxy in which the subject and proxy participants must be
different classes, the Aspect] version would be identical to that in Java.

5.3.3. Prototype. Both Java examples use the java.lang.Cloneable Java interface as the prototype. The
Aspect] example represents the prototype participant with a marker interface in an abstract aspect and uses
a concrete sub-aspect to compose a clone operation by means of an inter-type declaration. Both OT/J
examples for the scenario for Prototype use a bound role instead of a marker interface and declare parents.
One example mimics the Aspect] approach and keeps the part relating to the clone operation in a reusable
abstract team. The examples using this approach are the ones used for the comparison with Aspect]
(Section 6). The other example is case-specific and uses the Object Registration idiom to narrow
the cloning effect — implemented through callins — to just the intended objects.

5.3.4. Strategy. Strategy is about defining a family of algorithms for a given operation, encapsulating
each algorithm, and making them interchangeable. The purpose is to let the algorithm vary independently
from clients that use it. The pattern defines a strategy participant that declares an interface common to all
supported algorithms. The OT/J examples use role playing to compose the various strategies to the context
objects that use them. The connection between the strategy and the context object can be made in different
ways. In the HK example, it is made explicitly through a team-level method with declared lifting. In the
Cooper’s example, it is made implicitly by means of a callin. The Aspect] example uses a pointcut and advice
to intercept the operation and provide the intended strategy, which is specified by means of an aspect method.

5.4. Implementing Visitor with the Double Dispatch

In traditional OOP, Visitor is a technique to add operations to instances of a pre-existing class hierarchy by
means of separate visitor objects. Each class from the hierarchy (concrete element) declares an accept operation
that receives visitors and uses their services through calls to a visit operation, which in turn receives the instance
of the class and uses the suitable behaviour. Often, different classes (concrete elements) require different visit
methods that are usually implemented through method overloading. The drawback of Visitor is that adding a
new concrete element class to the hierarchy entails adding a new method for that class in every visitor class.

The Double Dispatch idiom is used in the examples of Visitor. The idiom is about emulating double
dispatch by connecting two hierarchies — one of bases and another of roles — by means of a team
method with declared lifting. Bases are the concrete elements, and roles are visitors. By building a
suitable hierarchy of visitor roles within a team, dispatch to the intended visitor is performed without
the need for explicit accept and visit operations. The root motivation for Visitor is to deal with the lack
of double dispatch in OOP languages, so one would expect the implementation of the pattern to
‘disappear’ from the OT/J examples — and indeed it does.

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2012
DOI: 10.1002/spe

SOFTWARE: PRACTICE AND EXPERIENCE

PrintVisitorTeam |

<<pl dBy>>
| TreeNode payedty ‘rl @ ToplevelRole
| | |

I

. . layedB;
BinaryTreeNode BinaryTreeLeaf B e Lt \l @ TreeLeafRole |®TreeNodeRoIe
-value: int -value: int ?
+ report(TreeNode as ToplevelRole structure): String
+getLeft: int +getLeft: int
+getRight: int +getRight: int

T <<playedBy>>

Figure 6. Object Teams/Java implementation of Visitor supporting double dispatch

To illustrate the use of Double Dispatch idiom, Figure 6 outlines the OT/J example for the HK
scenario, which comprises an (empty) class TreeNode as element and subclasses BinaryTreeNode
and BinaryTreeLeaf as concrete elements. The roles correspond to the visitor classes from the Java
version and add operations to the instances of concrete elements. Both visitors accumulate values as
the collection of concrete elements is traversed.

01 public team class PrintVisitorTeam {

02 protected class ToplevelRole playedBy TreeNode {

03 public String getRepresentation() {

04 return ""; //this method is not supposed to be called, ever

05 }

06 }

07 protected class TreeleafRole extends ToplevelRole playedBy BinaryTreeLeaf ({
08 public abstract String getRepresentation();

09 String getRepresentation() -> int getValue() with {

10 result <- Integer.toString(result)

11 I

12 }

13 protected class TreeNodeRole extends ToplevelRole playedBy BinaryTreeNode {
14 public abstract TreeNodeRole getLeft ();

15 getLeft -> getleft;

16 public abstract TreeNodeRole getRight();

17 getRight -> getRight;

18

19 public String getRepresentation() {

20 return "{"+getLeft () .getRepresentation()+","+getRight () .getRepresentation()+"}";
21 }

22 }

23

24 public String report (TreeNode as TreeNodeRole structure) {

25 return “>>> traversed the tree to:” + structure.getRepresentation();

26 }

27 }

Listing 7. Implementation in Object Teams of a concrete example of Visifor.

Listing 7 shows the OT/J code for the example from Figure 6. The team defines a role for each
different class from the hierarchy (Listing 7, lines 7-12 and 13-22) plus a top-level team method
report (Listing 7, lines 24-26) that receives a (concrete element) base object and translates it to its
corresponding (visitor) role. The team-level method only needs the top-level types from the two
hierarchies. When the example runs, it lifts the concrete element base instance to its corresponding
visitor role instance. Late binding along the visitor role hierarchy dispatches to the appropriate visitor code.

The Aspect] solution to Visitor from the HK study is based on a reusable abstract aspect using marker
interfaces to represent the concrete element and visitor participants and uses inter-type declarations to
compose additional accept and visit methods to the interfaces. Concrete sub-aspects use declare parents
clauses to bind the interfaces to example-specific classes, which thereby acquire the methods. No
pointcuts or advice is used. One of the marker interfaces used by the abstract aspect must be top-level
and implemented by the case-specific modules, meaning that the implementation is partly placed outside
the aspects. A second OT/J example mimicking the Aspect] design was created using role playing with
callouts to derive a similar binding outcome (it is used in the systematic comparison with Aspect]

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2012
DOI: 10.1002/spe

M. P. MONTEIRO AND J. GOMES

discussed in Section 6). Like the Aspect] example, it gives rise to a reusable module. It improves on the
Aspect] implementation as regards locality because all parts relating to concrete participants are defined
within the team and composed through role playing. Independent of the AOPL used, this approach to Vis-
itor fits less naturally than the solution based on Double Dispatch because it does not avoid explicit accept
and visit methods. It merely localizes them into an aspect.

5.5. Confined roles for Memento

Memento is discussed separately because its implementation in OT/J uses confined roles, a feature not
mentioned elsewhere in this paper. The intent of Memento is to capture and externalize the internal
state of an originator object without violating encapsulation so that the object can later be restored
to the saved state (the memento) [21]. The object that manages the memento and restores it to the
originator upon request is the caretaker. Many languages lack the fine-grained control of encapsula-
tion and visibility required to ensure that mementos do not violate the encapsulation of the originator’s
state. The Java option used by Cooper is to provide package-level visibility to the memento, with the
drawback that all classes from the same package also have access to it. The Aspect] version uses a top-
level interface to represent the memento participant and a marker interface within an abstract aspect to
represent the originator. The abstract aspect also declares a few abstract methods for saving and
restoring mementos. A concrete sub-aspect uses a declare parents clause to tag a concrete class as
the originator and provides concrete implementations for the inherited declarations. This approach
provides no guarantees against violations of encapsulation of either the originator or the memento —
the originator’s state is given protected visibility, and the memento interface is intended to be reusable!

The approach taken with OT/J is to represent the originator as a role bound to the object concerned and
to use callouts to circumvent the private visibility of its internal state, which is saved into an unbound role
representing the memento. The memento role is a confined role, that is, a special variety of role that
provides guarantees that no features of instances can be accessed outside the team, even those generally
accessible through java.lang.Object [44]. All that a confined role allows is to obtain a reference to itself,
which can be passed back to the team. A confined role is produced by making an unbound role with
protected visibility to extend a Team.Confined role. The memento participant is represented this way,
and all our attempts to leak it to outside the team did indeed give rise to compiler errors.

To illustrate this approach, Listing 8 shows the OT/J implementation of the HK scenario for
Memento. The team acts as caretaker, and role Originator is bound to Counter, a simple class whose
state is obtained through method getCurrentValue. The key detail of this example is the unbound role
memento that extends Team.Confined.

public team class MementoTeam {
protected Confined savedMemento;

protected class Originator playedBy Counter {
/* creates a Memento with the current state of Originator */
protected Memento createMemento() { return new Memento (this); }

/* returns an object with the current state of the Originator */
protected abstract Object getState();
getState -> getCurrentValue;

public void setState (Memento m) -> woid setCurrentValue (int value) with {
(Integer) m.getState() -> value
}
}

public class Memento extends Confined ({
private Object state;
protected Memento (Originator o) { this.state = o.getState(); }
protected Object getState() { return state; }

}

public Memento createMementoFor (Counter as Originator o) { return o.createMemento(); }
public void setMemento (Counter as Originator o, Memento m) { o.setState(m); }

}

Listing 8. Ilustration of the use of confined roles to support Memento in Object Teams/Java (Hannemann
and Kiczales scenario).

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2012
DOI: 10.1002/spe

SOFTWARE: PRACTICE AND EXPERIENCE

public static void main(String[] args) {
final MementoTeam mementoTeam = new MementoTeam() ;
mementoT

Memert I——=rement

mMement =—mement

Counter counter = new Counter();
Memento<@mementoTeam> memento = null;
for (Integer i=1; i<=5; i++) {
counter.increment () ;
counter.show () ;
if (i == 2) memento = mementoTeam.createMementoFor (counter) ;

st em—out AN\ ATl ner & reipnstat ot AL + o
s = A Ey RS EaSESS: =2 = { HEmeTH — =3 A 7

System—out-println{"\aTrying to reinstate state (" memeRto ny __owy
System.out.println("\nTrying to reinstate state (2)...");
mementoTeam. setMemento (counter, memento) ;
counter.show () ;

LGt ot () 4wy ny .

Listing 9. Illustration of the impact of confined roles on clients — driver for the Hannemann and
Kiczales Memento.

To illustrate the impact of this technique on clients, Listing 9 shows the driver for this
example. The lines in strikethrough illustrate attempts to use a feature defined in java.lang.
Object. Contrary to what would happen with plain Java, they give rise to compiler errors.
However, note that the above feature does not prevent defining public methods in role memento
to expose its state. This means that although Memento no longer has the members traditionally
acquired from java.lang.Object, care must still be taken not to expose Memento’s state anew.

5.6. Obstacles to flexible extensibility: Composite

Composite is about setting up a unified and simplified way of interacting with a complex object
(composite) and elements in its internal structure (leafs). To abstract from the differences
between leafs and composites, all objects expose a common interface (component) to be used
by clients. Because the composite participant holds the common context to all leafs, the natural
OT/J way to implement Composite is for the team to be the composite and use roles to repre-
sent the leafs. Both the composite team and leaf roles implement a Java interface representing
the component participant, which declares the interface common to all objects in the composi-
tion. This interface must be top-level, as a team cannot implement a Java interface enclosed
within it. Figure 7 shows the Java and OT/J approaches for Composite. While in the Java
version, all participants reside at the top level, in the OT/J version, the team (DirectoryTeam)
encloses a Leaf role. Both the team and the role implement interface FileSystemComponent,
which is deployed similarly in both versions.

Unfortunately, deploying it as a top-level standalone interface has the consequence that it is
not a virtual type anchored to the team instance. Thus, the family of types represented by the
team cannot be extended with the usual flexibility and type guarantees. If it is extended through
sub-interfaces, the relevant type information associated to them does not propagate to roles in
sub-teams, and extending the roles in sub-teams has no impact on the code based on the inter-
face. The top-level interface freezes the component participant, and the team loses much of
the flexible extensibility that is a hallmark of family polymorphism [39,43]. This implementation
of Composite is virtually the sole case in which obstacles to extensibility can be observed. One
could reason this limitation applies to all cases of Transparent Role, because they entail using a
top-level Java interface. However, the use of a Java interface does not have an impact because
only roles implement the interface, not the team.

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2012
DOI: 10.1002/spe

M. P. MONTEIRO AND J. GOMES

<<interface>>

FileSystemComponent
<<interface>> JAN
FileSystemComponent !
ZAN _ r
[DirectoryTeam| i
File Directory @ leat |- e

Figure 7. Implementations of Composite (Hannemann and Kiczales scenario) in Java (left) and Object
Teams (right).

The Aspect] approach to Composite is very different, being based on an abstract reusable aspect that
treats the component, composite and leaf participants as superimposed and represents them with marker
interfaces. Concrete sub-aspects bind case-specific classes to those interfaces through declare parents
clauses and compose any additional functionality. A second OT/J approach was developed for the two
scenarios that mimic that approach (see also for the comparative analysis with Aspect] in Section 6).
Unlike the first OT/J example described in this section, it is free of problems regarding reusability
and extensibility.

5.7. No advantages over Java: Singleton and Template Method

In Singleton and Template Method, no significant advantages over Java were detected. The
Aspect] approach to Singleton is to intercept the execution of the class’ constructor and make
it return the same instance each time it is called. This cannot be carried out with OT/J because
the language does not support interception of constructor events. Singleton is the sole pattern
whose OT/J examples are identical to those in Java.

There is really no way for OT/J to improve on the use of traditional inheritance
prescribed by Template Method. In their study, HK recognized that the use of inheritance
to distinguish different but related implementations is already nicely realized in OOP. Their
approach to implementing the pattern in Aspect] is to use Aspect]’s inter-type declarations
to compose a default implementation of the template method to a Java interface, which is
used instead of an abstract class. The gain is that classes become free to inherit from some
other class.

The implementations in OT/J illustrate how Template Method can be used along the role
playing dimension rather than the inheritance dimension. Roles correspond to the abstract class
participant and declare abstract methods whose implementations are acquired through callouts
from the associated base class, which becomes the concrete class participant. Listing 10
illustrates the approach. In this example, a template method modifies a string in three steps
and returns the result.

Team TemplateTeam (Listing 10, lines 18-50) defines a role GeneratorRole (Listing 10, lines
19-29) that stands for participant abstract class and defines the template (Listing 10, lines
20-25). Subroles SimpleGeneratorRole (Listing 10, lines 30-34) and FancyGeneratorRole
(Listing 10, lines 35-39) provide concrete implementations for the steps, obtaining them
from their respective base classes — SimpleGenerator and FancyGenerator, respectively —
which are the concrete class participants. Note that although their interfaces are identical,
they need not implement a common interface. The two overloaded implementations to the
team constructor (Listing 10, lines 41-43 and 44-46) use declared lifting to select the
appropriate role, depending on the base instance passed. A team-level method (Listing 10,
lines 47-49) calls the template method.

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2012
DOI: 10.1002/spe

SOFTWARE: PRACTICE AND EXPERIENCE

01 public class SimpleGenerator ({

02 public String prepare(String s) { return s; }

03 public String filter (String s) { return s.toUpperCase(); }

04 public String finalize(String s) { return s + "."; }

05 }

06 public class FancyGenerator {

07 public String prepare(String s) { return s.toLowerCase(); }

08 public String filter (String s) {

09 s = s.replace('a', 'A');

10 s = s.replace('e', 'E');

11 s = s.replace('i', 'I'");

12 s = s.replace('o', '0");

13 s = s.replace('u', 'U'");

14 return s;

15 }

16 public String finalize(String s) { return (s+".\n(all vowels capitalized)"); }
17 }

18 public team class TemplateTeam {

19 public abstract class GeneratorRole {

20 public String templateMethodGenerate (String s) {

21 s = _generatorStrategy.prepare(s);

22 s = generatorStrategy.filter(s);

23 s = generatorStrategy.finalize(s);

24 return s;

25 }

26 public abstract String prepare(String s);

27 public abstract String filter(String s);

28 public abstract String finalize(String s);

29 }

30 public class SimpleGeneratorRole extends GeneratorRole playedBy SimpleGenerator {
31 prepare -> prepare;

32 filter -> filter;

33 String finalize(String s) -> String finalize(String s);

34 }

35 public class FancyGeneratorRole extends GeneratorRole playedBy FancyGenerator {
36 prepare -> prepare;

37 filter -> filter;

38 String finalize(String s) -> String finalize(String s);

39 }

40 public GeneratorRole _generatorStrategy;

41 public TemplateTeam(SimpleGenerator as SimpleGeneratorRole simple) {
42 _generatorStrategy = simple;

43 }

44 public TemplateTeam(FancyGenerator as FancyGeneratorRole fancy) {
45 _generatorStrategy = fancy;

46 }

47 public String generate (String s) { //Forwards to the template method
48 return generatorStrategy.templateMethodGenerate (s);

49 }

50 }

Listing 10. Implementation in Object Teams of the Hannemann and Kiczales scenario for Template Method.

5.8. Summing up

Results obtained with the use OT/J to implement the GoF patterns are as follows:

The Factory Method and Abstract Factory patterns are directly supported by OT/J owing to their
support for virtual classes [38] and family polymorphism [39], respectively. That approach
requires that participant classes be turned into roles within a team. In practice, OT/J factory
methods that receive arguments specifying which class to instantiate cannot take advantage of
these features.

In Memento, OT/J can completely encapsulate the memento participant through use of confined roles.
OT/J enables more flexible implementations of Visitor than with Java and Aspect], by means of the
Double Dispatch idiom.

The capability of teams to enclose the context for their roles enables highly cohesive implementa-
tions for Builder, Composite, Flyweight, Interpreter, Iterator, Mediator and State.

Role playing provides additional options to compose pattern roles in Adapter, Decorator, Facade,
Iterator, Prototype, Proxy and Strategy.

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2012

DOI: 10.1002/spe

M. P. MONTEIRO AND J. GOMES

» The examples for Chain of Responsibility, Command and Observer demonstrate the capability of
OT/J to modularize entire collaborations of objects.
* Object Teams brings no special advantages for Singleton and Template Method.

6. COMPARISON WITH ASPECTJ

This section presents a systematic comparison between OT/J and Aspect] on the basis of the examples
from the repository that are directly comparable: the scenarios from the HK study, for which
implementations are available in both AOPLs. The criteria used in the analysis comprise the four
modularity properties used in the HK study (see Section 6.1), which are equally valid for the
present study. Using them here as well facilitates comparisons between the two studies. We also use
extensibility as an additional criterion.

Three patterns were implemented in OT/J in two different ways: Composite, Prototype and Visitor.
The way that seems the most natural for OT/J features is described in Section 5. The alternative
approaches closely mimic the Aspect] approach for these patterns — and thus demonstrate the
capability of OT/J to replicate many of the effects achieved with Aspect]. They are used in the
comparison from this section because they yield reusable modules, whereas none of the implementa-
tions mentioned in Section 5 do. This has an impact on the comparison with Aspect] because one of
the evaluation criteria is reusability. The alternative examples also make the comparisons more
straightforward to carry out.

6.1. Modularity properties

In their comparative study of Aspect] and Java, HK used four modularity properties as a basis [30],
which are defined as follows:

* Locality. The ability to place all code pertaining to a given concern in a module separate from other
modules. When the concern is a pattern, locality is about placing all pattern code in a module
separate from case-specific participants, which should be completely free from pattern code. Full
source code locality for a given concern is a prerequisite for a successful modularization of that
concern, as well as all the properties mentioned next.

* Reusability. The module can be applied to multiple, different scenarios/examples without resorting
to duplication or invasive changes on the module’s source code.

» Composition transparency. It is possible to compose multiple instances of the module on a given
system in such a way that the composition of one instance of the module does not interfere with the
composition of other instances.

e (Un)pluggability is the ability to add (plug) or remove (unplug) a module from a system without the
need for invasive changes on the source code of the system’s remaining modules. This enables a
choice between using and not using the module in the system.

When reasoning with the above properties, we distinguish between classes that participate in a
given composition and clients of the outcome of that composition. Clients reside at a different level
from participants in that they use the composite functionality resulting from the composition. They
often need to be aware of both the pattern functionality and the participants’ core functionality, for
example, to set up structures, select specific variants or perform configurations. Each pattern example
used in this study includes an example-specific client Main class serving as the driver for the example.
When assessing dependence between modules, the present study does not consider clients. This is
consistent with the criteria used in the HK study.

In addition to the above properties, we find it insightful to include extensibility. Our notion of
extensibility is very close to the open-closed principle [45,46]. We define extensibility as the ability
to extend a module’s functionality without changing the module’s source code. In practice, this
entails the creation of new modules that acquire the functionality of the extended module, add
functionality of their own and can polymorphically substitute the extended module without impact
on its client modules.

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2012
DOI: 10.1002/spe

SOFTWARE: PRACTICE AND EXPERIENCE

6.2. Discussion

Table 1 presents the modularity properties obtained from the two AOPLSs, organized by pattern. All
results for Aspect] are taken from the HK study [30], and the results for OT/J are all based on the
implementations described in Section 5, except for Composite, Prototype and Visitor. In the latter three
patterns, the analysis is based on alternative OT/J implementations that mimic the Aspect] approach.
Table 1 also includes the classification of pattern roles proposed in the HK study into defining and
superimposed [30] (Section 2.3). HK acknowledged that the distinction between defining and superim-
posed roles is not always clear-cut. For this reason, they signal unclear cases by placing the role names
within parentheses in either or both categories.

When in doubt, the HK study leans on approaching pattern roles as superimposed. This way, they
take advantage of Aspect]’s ability to separate additional functionality from the core concern of a class.
The classification of the singleton role in Singleton as superimposed is arguably the most controversial.
The singleton nature can be considered intrinsic to the class involved, in which case the singleton
participant should be classified as defining. Although the separation of the singlefon nature to an aspect
does not translate into explicit dependence to the aspect at the code level, it may give rise to subtle
dependencies in the way clients are programmed — either different calls to the constructor are expected
to return different object identities or calls are expected to always return the same identity. These
assumptions are not (un)pluggable. Most of the modularity properties discussed do not seem to apply
to Singleton; for example, it does not make sense to talk of composing the pattern multiple times
(see also Section 6.6).

Entries to Table 1 state whether a given property holds for a given pattern — ‘yes’ or ‘no’. However,
there are qualifications to be pointed out for a number of cases. The HK study classifies the results
obtained with Aspect] for some modularity properties with ‘(yes)’ (instead of plain ‘yes’) to indicate
that limitations of some sort apply — although details on each specific limitation are not provided.
We aim to give a similar meaning to the qualified ‘yes’ entries for the OT/J implementations.

6.3. Locality

In their paper, HK noted that a qualified ‘yes’ for locality means that the pattern is localized in terms of
its superimposed roles, but the implementation of the remaining defining roles is still scattered
throughout other separate modules (e.g. state classes for State). The failure of Aspect] to yield the
locality property (i.e. ‘no’) for five patterns — Abstract Factory, Bridge, Builder, Factory Method
and Interpreter — is due to the participants in those patterns being all unambiguously defining. Facade
is special case in that the Java and Aspect] implementations are identical but can be included in this
group. In addition, limitations are indicated for five other patterns: Command, Proxy, State, Template
Method and Visitor. In all these cases, either the pattern includes a role that is unambiguously defining
or it is debatable whether a given role is superimposed.

Because locality is a prerequisite for the remaining properties, a ‘no’ for that property is followed by
‘no’ for all other properties.

The limitations of Aspect] that are an obstacle to locality are not felt with OT/J, due to a large
extent to OT/J’s capability to cohesively package multiple components into a team. In most cases,
teams can enclose all meaningful participants as roles along with the object collaboration they embody.
This enhanced cohesion brings broad-ranging benefits. For instance, it explains why the locality
property applies in all OT/J cases in Table 1 — albeit with qualifications in the cases of Command
and Template Method. The examples for Command in both Aspect] and OT/J differ from those in Java
only because participants are treated as superimposed. Otherwise, the examples would be identical in
all languages. The OT/J examples for Template Method are used to illustrate how role playing can be
used the same way as inheritance for the purposes of this pattern. The OT/J example for Visitor
achieves full code locality, despite being based on the Aspect] example, which does not.

6.4. Reusability
Regarding reusability, the two languages yield broadly comparable results overall. Table 1 includes 12

patterns giving rise to reusable modules in Aspect] (which in the case of Iterator is a Java interface) as

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2012
DOI: 10.1002/spe

Table 1. Pattern roles and modularity properties of the Object Teams/Java (OT/J) and Aspect] implementations.

M. P. MONTEIRO AND J. GOMES

Kinds of roles Composi-
Lan- . Reusa- . Unplug-
Pattern Definin Superimposed uage | PO | ey | tion Trans- abilit
ning uperimp guag y parency g y
Abstract Factory, Product OT/] (direct language support)
Factory - Aspect] no no no no
ot/ yes no yes yes
Adapter Target, Adapter Adaptee Azl a8 o = s
. Abstraction, o1/ yes no yes yes
Bridge Implementor - Aspect] no no no no
. Builder, OT/J yes no no no
Builder (Director) - Aspect] no no no no
Chain of - Handler oT/] yes yes yes yes
responsibility - Aspect] yes yes yes yes
Command Command Invoker, Receiver o) (yes) (yes) yes yes
Aspect] (yes) (yes) yes yes
. . OT/J yes yes (yes) (yes)
Composite (Component) (Composite, Leaf) Azl = o = e
Decorator Component, Concrete- OoT/1 yes no yes yes
Decorator component Aspect] yes no yes yes
OT/] yes no yes yes
Facade Facade - Aspect] Same implementation for Java and Aspect]
Factory o1/ (direct language support
Method Product, Creator - Aspect] no no no no
. . . ot/ yes yes yes yes
Flyweight Flyweight-factory | Flyweight Al o o = o
Interpreter Context, OT/] yes no n/a no
P Expression Aspect] no no n/a no
OT/] yes no (yes) yes
Iterator (Iterator) Aggregate Pl e = = e
Mediator (Mediator), OT/] yes yes yes yes
- Colleague Aspect] yes yes yes yes
Memento Memento Originator o1y yes yes yes yes
Aspect] yes yes yes yes
. oT1/ yes yes yes yes
Observer B Subject, Observer
Aspect] yes yes yes yes
Prototype Prototype oty yes yes yes yes
yp - yp Aspect] yes yes (yes) yes
. ot/ yes no yes yes
p
Proxy (Proxy) (Subject) Aspect] (yes) no (yes) (yes)
Singleton Singleton* ot/ Same implementation for Java and OT/J
Aspect] yes yes n/a yes
OT/] yes no n/a no
State State Context]) o 2 509)
OT/1 yes yes yes yes
Strategy Strategy Context Bzill = = = G
Template (Abstract-class), (Abstract-class), OT/J (yes) no no (yes)
Method (Concrete-class) (Concrete-class) Aspect] (yes) no no (yes)
Visitor Visitor Element o1y yes yes yes yes
Aspect] (yes) yes yes (yes)

In general, (yes) for a property means that some restrictions apply [30].

*The exact classification from the HK study is reproduced in the table, but we do not subscribe to the view that the singleton role should
be classified as superimposed.

opposed to 10 patterns with OT/J (teams in all cases). However, a number of subtle points should be con-
sidered. The entries in Table 1 for OT/J display a ‘yes’ for reusability whenever the module implementing
the pattern is used in both scenarios. The module must also have at least one concrete member to be consid-
ered. These criteria are perhaps a bit more demanding than those used by HK. Their study comprises just
one implementation per pattern, and the lack of concrete members would arguably warrant a ‘no’ for Iltera-
tor and Memento.

The primary advantage brought by OT/J for Iterator is greater cohesion, by packaging the aggregate
and iferator participants together within a team. In Memento, the only non-abstract member is a top-
level exception class.

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2012

DOI: 10.1002/spe

SOFTWARE: PRACTICE AND EXPERIENCE

The OT/J implementation of Command mimics the Aspect] approach in treating the command
participant as superimposed and attains similar results. Therefore, the results displayed in Table 1
are identical. HK noted that reusability in the Aspect] example for Visitor is restricted to the cases
in which the structure to be traversed has just two levels (i.e. terminal and non-terminal nodes). The
OT/J implementation based on the Aspect] approach seems capable of dealing with more levels, as
teams can be flexibly extended. OT/J fails to improve on the Java approach to Singleton — contrary
to Aspect] — because its composition model does not cover constructor events.

6.5. Composition transparency

The HK study does not consider composition transparency to be applicable to Interpreter, Singleton
and State (‘n/a’ in Table 1). In general, it also seems hard to apply to cases in which the approach is
to enclose the participants into a cohesive whole and the pattern roles are defining, which to some
extent is also the case of Builder and Iterator. Thus, Table 1 displays a ‘no’ for the OT/J implementation
of Builder and a qualified ‘yes’ for Iterator.

6.6. (Un)pluggability

In a few cases, OT/J implements a pattern directly with some of its features, in which case the issue of
plugging and unplugging the pattern is really about whether the language feature should be used. In
such cases, reasoning in terms of modularity properties is not really applicable. This issue is further
discussed in Section 6.8.

Differences in outcomes for Bridge are due to the lack of cohesion mechanism in Aspect]. The
Aspect] example for Bridge is a set of inter-type declarations targeting case-specific classes,
whereas with OT/J, the hierarchy of abstractions is encapsulated within a team, which is composed
to implementors through role playing. The OT/J examples for Command mimic the Aspect]
approach and attain similar results. Facade is the sole pattern from the HK study in which the
Aspect] implementation is identical to that in Java. In this case, the Java implementation can be
considered unpluggable. Naturally, the OT/J examples for Facade are unpluggable as well. The
HK study indicates that the Aspect] example for Proxy has limitations, remarking that their
approach — based on pointcuts and advice — does not handle cases in which the subject and proxy
participants are two different objects. The OT/J can be used in such cases. However, HK also
referred to the case of remote and virtual proxy: it is not clear at this point how well OT/J can
handle such cases.

In Section 6.2, we argue that the pattern role of Singleton should be considered intrinsic to the
class that implements it. The singlefon nature gives rise to dependencies in terms of the way clients
use a class. For this reason, we are sceptical of the ‘yes’ for unpluggability of the Aspect] Singleton
in Table 1.

The OT/J example for State is based on unbound roles and yields a more cohesively structured
implementation than the Aspect] approach, which is based on pointcuts and advice. However, it is also
case-specific and not unpluggable.

Considering that the OT/J implementation of Template Method is not applicable to the
common cases but just to some cases involving the role playing relation, it may be sur-
prising that Table 1 claims that Template Method supports unpluggability even if with limita-
tions. However, in the limited cases in which Template Method can be used with the role playing
relation, the pattern is indeed unpluggable, the same way a subclass is unpluggable from the
superclass it extends. This is the general case of teams with bound roles. The OT/J implementa-
tion of Visitor is unpluggable without limitations, unlike the Aspect] approach it mimics. This is
possible because it attains full locality.

6.7. Extensibility

Results for extensibility are surprisingly simple and regular, for both AOPLs. If such a column were
included in Table 1, it would show a ‘no’ for all cases of Aspect] and a ‘yes’ for all cases of OT/J — although
with limitations in a few cases, especially Composite. The reason for the generalized ‘no’ for Aspect] is

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2012
DOI: 10.1002/spe

M. P. MONTEIRO AND J. GOMES

due to a constraint on aspect inheritance — concrete aspects cannot be extended. In fact, the design of
Aspect] explicitly eschews polymorphism in most forms, save for the cases that Aspect] ‘inherits’ from
Java [47]. Another constraining factor is the lack of a cohesion mechanism in Aspect] [41,48]. In contrast,
any non-final module in OT/J can be further extended through inheritance. Interpreter provides a good
illustration of team extensibility. The example for Interpreter from the HK scenario is organized as a
super-team and a sub-team, but a single team or several sub-teams could have been used instead. The
chosen division into two layers reflects a conceptual division of the nodes between terminal and non-
terminal. In most cases, teams can be extended through team inheritance, and team instances enclosing
role objects can be used polymorphically. In sum, OT/J has the capacity to support the incremental
building of class hierarchies [43]. The only exception is the approach for Composite discussed in Section
5.6, because of the team implementing a top-level interface. Some limitations can be expected in imple-
mentations using the Transparent Role idiom, although they are not likely to have as much impact be-
cause it involves just roles, not the team.

6.8. Direct language support

Some patterns are closely associated to specific language features. Factory Method is closely related to
the idea of polymorphic constructors, and Abstract Factory is closely related to virtual classes and
family polymorphism. Because OT/J supports these features, implementing the patterns is a matter
of using the features in the appropriate way. Because the new features are specific to teams and roles
and do not apply to existing plain Java classes, the claim in Table 1 of ‘direct language support’
appears within parentheses.

In many circumstances, direct language support can be considered a better result than a successful
modularization. However, the present analysis also illustrates a tension between language support
and modularity properties. For instance, directly supporting Abstract Factory by using teams and roles
decreases the count of cases that show unpluggability. This issue must be taken into consideration
when analysing Table 1.

In the analysis of their results, HK mentioned a group of patterns whose implementations ‘disappear’
because of direct support from Aspect] — including Adapter, Decorator, Proxy, Strategy and Visitor. They
nevertheless acknowledge that their implementations have inherent limitations. For instance, the advice-
based implementation of Decorator is devoid of dynamic properties, namely the ability to dynamically
reorder decorators or to distinguish between different instances of the decorated (component) class. These
limitations motivate some qualifications to the extent to which Aspect] can be said to directly support any
given pattern.

From the present study, we conclude that OT/J provides direct language support for Abstract
Factory and Factory Method when participants are turned into roles. Factory Method further requires
that the factory method be devoid of explicit arguments specifying which class to instantiate.

6.9. Summing up

Regarding the four modularity properties also used in the HK study, results can be summarized as
follows:

* Aspect] yields the results similar to Java for Facade and OT/J yields results similar to Java for
Singleton.

* The Aspect] implementations fail to yield code locality for six patterns (Abstract Factory, Bridge,
Builder, Facade, Factory Method and Interpreter). OT/J yields code locality in all 23 patterns. This
is because there is locality in the implementation of Singlefon, although it is identical to that in Java.

* The Aspect] implementations yield 12 reusable modules, as opposed to 10 reusable modules for OT/J.
However, one of the reusable modules from the Aspect] collection (Iterator) is a Java interface. OT/J
also provides direct language support for Factory Method and Abstract Factory.

» OT/J attains composition transparency in 16 patterns, compared with the 14 for Aspect]. Note that
we consider this property as not applicable to Interpreter, Singleton and State. If we exclude those
patterns plus those for which OT/J provides direct support, OT/J fails to provide composition
transparency for just Builder and Template Method.

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2012
DOI: 10.1002/spe

SOFTWARE: PRACTICE AND EXPERIENCE

e The number of pattern implementations found to be (un)pluggable is the same for both languages —
17 — although the exact set of patterns differs.

The relative advantages over one language to another in terms of the four aforementioned modularity
properties do not seem particularly pronounced. However, there are a number of important issues that
are not expressed in Table 1. Regarding extensibility, none of the Aspect] aspects are extensible [47]
because of (seemingly intended) limitations on the design of Aspect]. In contrast, all OT/J teams are
extensible with the exception of one of the variants for implementing Composite because the team
implements a top-level Java interface (Section 5.6). In terms of direct language support for specific
patterns, OT/J is the winner, on account of its support for Factory Method and Abstract Factory (when
classes are turned into roles). The advantage of OT/J over Aspect] is also clear regarding how flexibly
the resulting modules can be adapted or extended to new situations. One of the contributions of OT/J is
to enrich the set of variation points in a program’s code, easing program extension in ways that follow
the open-closed principle [45].

Object Teams/Java also has the advantage over Aspect] that its features work at the instance level
rather than at the class level. For this reason, in OT/J there is less need for managing data structures
that map objects to object-specific functionality, yielding simpler solutions. This advantage is important
as many of the GoF patterns relate to relationships between individual instances rather than classes.
However, OT/J requires additional code in a number of implementations to pass objects from the team
to instances of its roles.

Aspect] yields better results than OT/J in cases that require a more wide-ranging and/or fine-grained
joinpoint model. In the present study, the clear example is Singleton because of Aspect]’s support for
constructor joinpoints.

In general, OT/J seems better suited to implement the GoF patterns than Aspect].

7. RELATED WORK

We divide work on the assessment of programming languages and models in two groups: those that are
based on design patterns like the present study and those based on different assessment approaches.

7.1. Assessment approaches based on design patterns

Many works exist that focus on the impact of a given set of language features on the implementation of
design patterns [49-51,32]. Some studies have been carried out that focus on a restricted set of patterns
[36,52,53] or even a single pattern (e.g. Observer [54,55] and Visitor [56]). The present study is
focused on specific language implementations of the well-known GoF patterns as a means for an
evaluation. A few studies are in this vein. For instance, Schmager et al. carried out an assessment of
the Go language using patterns and a framework [57].

The results presented in this paper are an update on the results presented in our SAC/OOPS paper [58]
and supersede it. The previous work does not provide an in-depth analysis and does not take into account
the implementations of some of the Cooper scenarios, whose collection in OT/J was incomplete at the time.

The study by Rajan [11] describes the implementations in the Eos language of all 23 GoF patterns using
the HK scenarios and presents a comparative analysis of results. Eos is an aspect-oriented language that
was developed to illustrate an alternative model to Aspect] that unifies the notions of class and aspect
in a module construct called the classpect. Rajan presents a comparative analysis of his Eos implementa-
tions and the Aspect] implementations from the HK study based of the same four modularity properties.
Rajan claims a significant reduction in code size and number of members in some patterns (Chain of
Responsibility, Command, Composite, Mediator, Strategy and Observer) and a closer and more precise
support of the pattern’s original intent (Command, Composite, Decorator, Mediator, Observer and
Strategy). Improvements are due to a combination of instance-level advising and first-class aspect
instances, which replace Aspect]’s use of data structures for supporting mappings between objects and as-
pect behaviour or to ensure that only selected participant objects are subject to aspect compositions.
Because OT/J also supports instance-level composition, it yields similar advantages over Aspect].

The study by Kuhlemann er al. [32] is another work based on the code examples from the HK study.
Its aim is to assess and explore the perceived duality between AOP and feature-oriented programming

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2012
DOI: 10.1002/spe

M. P. MONTEIRO AND J. GOMES

(FOP). Kuhlemann e al. observed that 19 of the 23 examples from the HK study can be transformed
straightforwardly into equivalent FOP examples. They provide a set of general rules on how to
transform AOP programs into FOP programs and discuss their experiences regarding these transforma-
tions. They also illustrate similarities and differences between AOP and FOP solutions. The description
of the transformations bears some resemblances to the set of guidelines we proposed in Section 4.2,
although the work by Kuhlemann et al. is more detailed. The collection of refactorings by Monteiro
and Fernandes to transform Java code into Aspect] is also in a similar vein and more detailed still [31,59].

Hirschfeld et al. [28] discussed design pattern implementation in AspectS, using two patterns to
illustrate — Visitor and Decorator. AspectS [60] is an extension of the Squeak/Smalltalk environment
that extends the Smalltalk meta-object protocol to support a number of Aspectl-like constructs
including pointcuts, advice and inter-type declarations. It does so without changing Smalltalk’s syntax
or its virtual machine. Instead, it makes use of meta-object composition and method-call interception.
Contrary to the mechanisms of Aspect], those of AspectS can work at the instance level. In their
discussion, Hirschfeld et al. distinguished between an AOP Representation of Design Pattern Solution
and a Native AOP Solution. The former is an implementation of what is essentially the original, object-
oriented approach using aspect-oriented constructs but without a fundamental redesign to leverage
AOP constructs. The benefits of this approach are better code locality, reusability, composability,
implementation modularity and comprehensibility. The latter is a redesign based on AOP-specific
constructs. Hirschfeld et al. claimed that native AOP solutions avoid certain drawbacks such as model
bloat and messaging-overhead caused by indirection levels and context-dependent change of identity
as a consequence of placing intermediate objects mediating between two instances. Native AOP
solutions also eliminate glue code that the new language mechanisms render obsolete, which simplifies
design and implementation. In this paper, we present two approaches to implementing Visitor that
correspond to these two categories. The implementation supporting double dispatch (Section 5.4) is
a native AOP solution — avoiding explicit accept and visit methods — whereas the implementation that
mimics the Aspect] example from the HK study (Section 6) — where the accept and visit methods are
still in place — is an AOP representation of a design pattern solution.

The studies by Garcia et al. [7] and Cacho et al. [8] use adapted versions of the material used in the
HK study [30] to perform comparisons between the OOP and AOP implementations on the basis of a
set of quantitative metrics. The present study does not use quantitative metrics, but like the examples
from the HK study, the examples in OT/J open the way for subsequent quantitative studies. Quantitative
studies focusing on OT/J are likely to require new metrics, for example, to account for virtual classes
(roles) and family classes (teams), plus the various new kinds of polymorphism supported. An exploratory
study of the metrics supported by the OTDT Eclipse plug-in was explored by Lima et al. [61], using the
subset of examples in Java and OT/J presented in our SAC/OOPS paper [58]. The study concludes that the
metrics’ support is unsuitable for comparisons between Java and OT/J, as the plug-in does not take into
account the constructs specific to OT/J.

Sousa and Monteiro reported on a preliminary study of CaesarJ that is also based on design patterns,
although only a few of the patterns are implemented and analysed [12]. The CaesarJ model [41,62] has
many similarities with the two AOPLs compared here. It supports virtual classes and family polymor-
phism and uses pointcuts and advice to compose aspect components to specific applications and
software systems. Caesar] decouples a software component’s implementation from the component’s
binding to the remaining parts of the system by means of separate inheritance hierarchies that are
composed through multiple inheritance. Both hierarchies initiate at a collaboration interface module
providing the contract through which implementations and bindings share common operations.
Pointcuts and advice come less to the fore than with Aspect] and are used mainly to compose the
component to other parts of a system. The approach taken in that study is similar to that reported
here, relying on the implementation in Caesar] of pre-existing pattern examples in Java. Family
polymorphism brings benefits similar to those reported with OT/J, including direct language support
for Abstract Factory.

Nordberg [27] proposes a set of principles for managing dependences between modules in
complex systems, which lead to more stable module structures, easier to understand and more
maintainable. The principles state that (1) a dependence must not form cycles; (2) modules
should depend on abstractions (e.g. declarations of interfaces), not on concrete elements; and

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2012
DOI: 10.1002/spe

SOFTWARE: PRACTICE AND EXPERIENCE

(3) the direction of dependence between modules should always be from less stable to more
stable. Nordberg analyses the dependence originated by several design patterns and identifies
cases in which traditional OOP implementations fail to meet the principles. For instance, tradi-
tional OOP implementations of Visitor violate all three principles: the dependence from the
visitor participant to concrete element goes from abstract to concrete, goes from stable to less
stable and forms a cycle. Nordberg discusses ways in which AOPLs can invert such dependences
so as to follow the principles. The present study does not use the principles proposed by
Nordberg in the analysis of the OT/J implementations it describes, but very similar principles
are followed in both the Aspect] and OT/J collections of implementations.

7.2. Other assessment approaches

Lopez-Herrejon et al. presented a study of five technologies in light of their support for
modularization and composition of features [48] — Aspect], Hyper/J, Jiazzi, Scala and AHEAD.
Product line design provides the underlying motivation — a product line is a family of related
programs, each program is a unique combination of features and a feature is an increment in
feature functionality. They adopted a variant of the expression problem [63,64] to drive their
study, which is treated as a canonical problem in product line design. Like the present study,
they also remarked on the lack of a cohesion mechanism in Aspect] to group all elements of a
feature together and manipulate them as a single entity. They concluded from the study that none
of the technologies assessed provide a satisfactory solution to the problem of building product
lines. They argued that product line architects reason about programs in terms of their features,
not in terms of their code or implementing technologies. They attempted to express the reasoning
in an abstract model of features that equates compositional reasoning with algebraic reasoning in
order to abstract from code or specific implementing technologies.

Greenwood et al. reported on an empirical study on the impact of AOPLs on design stability of a
software system in the context of an evolution scenario [9]. The study covers 10 releases of the system
and coded in three languages — Java, Aspect] and CaesarJ. However, they used more than one AOPL
just to ensure that their derived conclusions are broad and agnostic to specific AOPL features. No
comparisons between AOPLs are made. The study analyses modularity, change propagation, concern
interaction and identification of architectural ripple effects. They concluded that (1) the AOP
implementations tend to have a more stable design, particularly when a change relates to a crosscutting
concern; (2) changes tend to be much less intrusive and more simplistic when AOP is used; (3) greater
architectural ripple effects occur with the OO design when persistence-related exceptions are
introduced. In certain circumstances, aspectual decompositions do perform worse, which tends to
occur when evolutionary scenarios target patterns such as Command and State because applying these
patterns violate pivotal design principles such as narrow interfaces and low coupling. Even though the
AOP implementations tend to require less invasive changes, sometimes the modifications propagate to
components that are not the direct target of the change scenario. Regarding the design stability and
concern interaction, Greenwood et al. concluded that aspect decomposition narrows boundaries of
concern dependence but gives rise to tighter and intricate interactions.

Lammel and Ostermann [65] analysed the language concept of fype classes, as supported by
the functional programming language Haskell. The analysis is made in light of the contribution
that type classes can be expected to bring to software extension and software integration. To
drive the analysis, Ldmmel and Ostermann used formulations of a number of extension or inte-
gration problems, namely the expression problem [63,64], the framework integration problem
[66], the tyranny of dominant decomposition [3], scattering and tangling [2] and the component
integration problem [67]. By means of an analysis of the published state of the art, Limmel and
Ostermann concluded that type classes provide a principled mechanism for software extension and
integration from which useful insights can be derived. They pinpoint several limitations of type
classes and argue that further research on this concept is likely to contribute to a better under-
standing of the relation between advanced OO features and functional programming as regards
the challenges of software extension and integration.

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2012
DOI: 10.1002/spe

M. P. MONTEIRO AND J. GOMES

8. FUTURE WORK

The pattern implementations used for the present study are toy examples. An obvious next step is to
use the insights derived to study more complex and realistic systems, particularly systems whose
designs use the patterns assessed in this paper, namely OOP frameworks. Another front is the
assessment of the impact of AOPLs on framework design and development. In particular,
pattern density [68] (i.e. classes participate in a significant number of different patterns simulta-
neously) comprises a negative symptom that AOP languages seem well positioned to tackle. It would
thus be interesting to assess how AOP constructs and languages can ameliorate or remove the symp-
tom of pattern density from OOP frameworks. The analysis presented in this paper is qualitative in
nature. It should be complemented with quantitative analyses, in the same vein as those by Garcia
et al. [7] and Cacho et al. [8] and similar studies. Material used as a basis for the present study
comprises single snapshots. It could be complemented with studies involving evolution scenarios, of
which the work by Greenwood et al. [9] is an example. One interesting possibility would be to extend
that study to cover Object Teams and other AOPLs.

Another front is to carry out the aforementioned kinds of study to other advanced programming
languages. For instance, Scala [69] is a language that also supports virtual classes and family polymor-
phism, and it has a number of features that directly support a number of GoF patterns. In addition, it
seems capable of emulating a number of Aspect]-like features, including Aspect]-like advice [56]. It
would be interesting to assess the extent to which Scala can emulate the various well-known AOP
features associated to Aspect].

9. CONCLUSION

This paper describes a study of the Object Teams programming language [13,14], which is compared with
Java and Aspect]. The basis for comparisons comprises two complete collections of implementations in
Object Teams of all 23 GoF design patterns. Both collections existed prior to the present study — both in Java
and one in Aspect] as well. The analysis of results is made in two parts. The first assesses the contributions
that Object Teams brings to the implementation of the design patterns when compared with Java and
Aspect]. The second part is a systematic comparison with the Aspect] examples, using a set of modularity
properties used in a previous study focusing on Java and Aspect] [30], to which we add extensibility.

Although Object Teams [15] was designed with goals different from those of Aspect] [18], we
conclude from the present study that Object Teams can mimic the design and programming styles
of Aspect] in most cases. The Singleton pattern is the main exception, because of a lack of support
for constructor interception. Object Teams also enables different alternative solutions to a few patterns,
most notably Memento and Visitor. In some circumstances, Object Teams provides direct language
support for Factory Method and Abstract Factory.

A limitation of Aspect] that comes much to the fore in the comparisons is a lack of a cohesion
mechanism, which accounts for the failure to modularize a number of patterns. In contrast, virtual
classes and family polymorphism provide Object Teams with an effective cohesion mechanism,
enabling Object Teams to modularize virtually all patterns. In general, the Aspect] implementations
are not extensible because of the absence of inheritance for concrete aspect modules. In contrast,
the modules of Object Teams can be flexibly extended in most cases.

ACKNOWLEDGEMENTS
We thank Stephan Herrmann for providing insightful feedback on a draft of this paper.

This work is partially supported by projects PRIA (UTAustin/CA/0056/2008) and GasPar (PTDC/
EIA-EIA/108937/2008) funded by Portuguese FCT/MCTES and FEDER.

REFERENCES

1. Elrad T (moderator) with panelists Aksit M, Kiczales G, Lieberherr K, Ossher H. Discussing aspects of AOP.
Communications of the ACM 2001; 44(10): 33-38. DOL: 10.1145/383845.383854.

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2012
DOI: 10.1002/spe

SOFTWARE: PRACTICE AND EXPERIENCE

2. Kiczales G, Lamping J, Mendhekar A, Maeda C, Lopes C, Loingtier J, Irwin J. Aspect-oriented programming. In
Proceedings of 11 ih European Conference on Object-Oriented Programming. Lecture Notes in Computer Science
vol. 1241. Springer-Verlag, 1997; 220-242.

3. Tarr P, Ossher H, Harrison W, Sutton Jr SM. N degrees of separation: multi-dimensional separation of concerns. In
Proceedings of the 21 International Conference on Software Engineering. ACM Press. 1999; 107-119.
DOLI: 10.1145/302405.302457.

4. Rashid A, Moreira A. Domain models are not aspect free. In Proceedings of Model Driven Engineering Languages
and Systems. Springer. 2006; 155-169. DOI: 10.1007/11880240_12.

5. Filman RE, Elrad T, Clarke S, Aksit M (eds). Aspect-Oriented Software Development. Addison-Wesley: Reading,
MA, 2005. ISBN: 0321219767 978-0321219763.

6. Brichau J, Haupt M. Report describing survey of aspect languages and models. AOSD-Europe Deliverable D12,
AOSD-Europe-VUB-01, 2005.

7. Garcia A, Sant’Anna C, Figueiredo E, Kulesza U, Lucena C, Staa A. Modularizing design patterns with aspects: a
quantitative study. In Transactions on Aspect-Oriented Software Development I. Lecture Notes in Computer Science
vol. 3880. Springer-Verlag: Berlin, Germany, 2006: 36-74. DOI: 10.1007/11687061_2.

8. Cacho N, Sant’Anna C, Figueiredo E, Garcia A, Batista T, Lucena C. Composing design patterns: a scalability study
of aspect-oriented programming. In Proceedings of the 5" International Conference on Aspect-Oriented Software
Development. ACM Press, New York. 2006; 109-121. DOI: 10.1145/1119655.1119672.

9. Greenwood P, Bartolomei T, Figueiredo E, Dosea M, Garcia A, Cacho N, Sant’ Anna C, Soares S, Borba P, Kulesza
U, Rashid A. On the impact of aspectual decompositions on design stability: an empirical study. In Proceedings of
the 21" European Conference on Object-Oriented Programming. Lecture Notes in Computer Science vol. 4609.
Springer-Verlag, 2007; 176-200. DOI: 10.1007/978-3-540-73589-2_9.

10. Xin B, McDirmid S, Eide E, Wilson CH. A comparison of Jiazzi and Aspect] for feature-wise decomposition.
Technical Report UUCS-04-001, University of Utah, March 2004.

11. Rajan H. Design pattern implementations in Eos. In Proceedings of the 14™ Conference on Pattern Languages of
Programs. ACM Press. 2007; 9:1-9:11. DOL: 10.1145/1772070.1772081.

12. Sousa E, Monteiro MP. Implementing design patterns in CaesarJ: an exploratory study. In Proceedings of the 2008
AOSD Workshop on Software Engineering Properties of Languages. ACM Press, 2008; 6:1-6:6. DOI: 10.1145/
1408647.1408653.

13. The Object Teams at eclipse. (Available from: http://www.eclipse.org/objectteams/). [24™ July 2012].

14. Herrmann S, Hundt C, Mosconi M. ObjectTeams/Java Language Definition version 1.3 (OTJLD). Technical Report
2009/08, Technische Universitit Berlin, 2009.

15. Herrmann S. Object teams: improving modularity for crosscutting collaborations. Proceedings of International
Conference NetObjectDays on Objects, Components, Architectures, Services, and Applications for a Networked
World, 2002; 248-264. ISBN: 3-540-00737-7.

16. Herrmann S. A precise model for contextual roles: the programming language ObjectTeams/Java. Applied Ontology
2007; 2(2): 181-207.

17. The Object Teams web original site. (Available from: http:/www.objectteams.org/). [24™ July 2012].

18. Kiczales G, Hilsdale E, Hugunin J, Kersten M, Palm J, Griswold WG. An overview of Aspect]. In Proceedings of
15™ European Conference on Object-Oriented Programming. Lecture Notes in Computer Science vol. 2072.
Springer-Verlag, 2001, 327-335. ISBN: 3-540-42206-4.

19. Laddad R. AspectJ in Action, (Z“d edn). Manning: Greenwich, 2009. ISBN: 1933988053 9781933988054.

20. Colyer A, Clement A, Harley G, Webster M. Eclipse AspectJ: Aspect-Oriented Programming with Aspect] and the
Eclipse Aspect] Development Tools. Addison-Wesley: Reading, MA, 2004.

21. Gamma E, Helm R, Johnson R, Vlissides J. Design Patterns, Elements of Reusable Object-Oriented Software.
Addison-Wesley: Reading, MA, 1995.

22. Alpert S, Brown K, Woolf B. The Design Patterns Smalltalk Companion. Addison-Wesley: Boston, 1998.

23. Harmes R, Diaz J. Pro Javascript Design Patterns. Apress: New York, 2008. ISBN: 159059908X 978-1590599082.

24. Olsen R. Design Patterns in Ruby. Addison-Wesley: Reading, MA, 2007. ISBN: 978-0321490452.

25. Bracha G, Cook W. Mixin-based inheritance. In Proceedings of the European Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications, ACM Press, New York, 1990; 303-311. DOI: 10.1145/97946.97982.

26. The Demeter/Java project web site. (Available from: http://www.ccs.neu.edu/home/lieber/Demeter-and-Java.html)
[24™ July 2012].

27. Nordberg III M. Aspect-oriented dependency management, Chapter 24. In Aspect-Oriented Software Development.
Addison-Wesley: Reading, MA, 2005; 557-584.

28. Hirschfeld R, Liammel R, Wagner M. Design patterns and aspects — modular designs with seamless run-time
integration. 3" German GI Workshop on Aspect-Oriented Software Development, 8 pages, 2003.

29. Lesiecki N. Enhance design patterns with Aspect], Part 2, AOP@Work series at developerWorks, IBM, 2005.
(Available from: http://www.ibm.com/developerworks/java/library/j-aopwork6/index.html) [7™ April 2012].

30. Hannemann J, Kiczales G. Design pattern implementation in Java and Aspect]. In Proceedings of the 17" ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications. ACM Press,
2002; 161-172. DOI: 10.1145/582419.582436.

31. Monteiro MP, Fernandes JM. Towards a catalogue of refactorings and code smells for Aspect]. In Transactions on
Aspect-Oriented Software Development I. Springer-Verlag, LNCS 3880, 2006; 214-258. ISBN: 3-540-32972-2
978-3-540-32972-5.

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2012

DOI: 10.1002/spe

http://www.eclipse.org/objectteams/
http://www.objectteams.org/
http://www.ccs.neu.edu/home/lieber/Demeter-and-Java.html
http://www.ibm.com/developerworks/java/library/j-aopwork6/index.html

32.

33.
34.
35.
36.
37.

38.

39.

40.
41.

4.
43.
44.
45.
46.
47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

M. P. MONTEIRO AND J. GOMES

Kuhlemann M, Rosenmiiller M, Apel S, Leich T. On the duality of aspect-oriented and feature-oriented design
patterns. In Proceedings of 6" Workshop on Aspects, Components, and Patterns for Infrastructure Software.
ACM Press, 2007. DOI: 10.1145/1233901.1233906.

Cooper J. Java Design Patterns: A Tutorial. Addison-Wesley: Reading, MA, 2000.

Fowler M. Refactoring: Improving the Design of Existing Code. Addison-Wesley: Reading, MA, 1999.

Yuen I, Robillard M. Bridging the gap between aspect mining and refactoring. In: Proceedings of the 3" Workshop
on Linking Aspect Technology and Evolution. ACM Press, 2007. DOI: 10.1145/1275672.1275673.

Herrmann S, Hundt C, Mehner K. Translation Polymorphism in Object Teams. Technical Report 2004/05, Fak. IV,
Technical University Berlin, 2004.

Reenskaug T. Working with Objects — The OORAM Software Engineering Method. Prentice Hall: New Jersey, 1996.
ISBN: 0134529308 978-0134529301.

Madsen OL, Moller-Pedersen B. Virtual classes: a powerful mechanism in object-oriented programming. In
Proceedings of the OOPLSA '86 Conference Proceedings on Object-Oriented Programming Systems, Languages
and Applications. ACM Press, 1989; 397-406. DOI: 10.1145/74877.74919.

Ernst E. Family polymorphism. In Proceedings of the 1 5™ European Conference on Object-Oriented Programming.
Lecture Notes in Computer Science vol. 2072, Springer-Verlag, 2001; 303-326.

Herrmann S. Composable Designs with UFA. Workshop on Aspect-Oriented Modeling with UML, 2002.

Mezini M, Ostermann K. Untangling crosscutting models with Caesar Chapter 8,. In Aspect-Oriented Software
Development. Addison-Wesley: Reading, MA, 2005; 165-199.

Filman RE, Friedman DP. Aspect-oriented programming is quantification and obliviousness, Chapter 2. In
Aspect-Oriented Software Development. Addison-Wesley: Reading, MA, 2005; 21-35.

Emst E. Higher-order hierarchies. In Proceedings of the 1 7" European Conference on Object-Oriented Programming,
Lecture Notes in Computer Science vol. 2743. Springer-Verlag, 2003; 303-329. DOI: 10.1007/b11832.

Herrmann S. Confinement and Representation Encapsulation in Object Teams. Technical Report 2004/06, Fak. IV,
Technical University Berlin, 2004.

Meyer B. Object-Oriented Software Construction, (2™ edn). Prentice Hall: New Jersey, 1997. ISBN: 0-13-629155-4.
Martin RC. The Open-Closed Principle. C++ Report, vol. 8, Jan. 1996.

Ernst E, Lorenz DH. Aspects and polymorphism in Aspect]. In Proceedings of the 2"¢ International Conference on
Aspect-Oriented Software Development. ACM Press, 2003; 150-157. DOI: 10.1145/643603.643619.
Lopez-Herrejon R, Batory D, Cook W. Evaluating support for features in advanced modularization technologies. In
Proceedings of the 1 9 European conference on Object-Oriented Programming, Lecture Notes in Computer
Science vol. 3586. Springer-Verlag, 2005; 169-194. DOI: 10.1007/11531142_8.

Baumgartner G, Laufer K, Russo VF. On the Interaction of Object-Oriented Design Patterns and Programming
Languages. Technical report CSD-TR-96-020, Purdue University, 1996.

Sullivan GT. Advanced programming language features for executable design patterns: better patterns through
reflection. Artificial Intelligence Laboratory Memo AIM-2002-005, Atrtif. Intel. Lab, MIT, 2002.

Gibbons J. Design patterns as higher-order datatype-generic programs. In Proceedings of the ACM SIGPLAN
Workshop on Generic Programming. ACM Press, 2006; 1-12. DOI: 10.1145/1159861.1159863.

Kouskouras K, Chatzigeorgioua A, Stephanides G. Facilitating software extension with design patterns and aspect-
oriented programming. Journal of Systems and Software 2008; 81(10): 1725-1737 DOI: 10.1016/j.jss.2007.12.807.
Monteiro MP, Fernandes JM. Pitfalls of Aspect] implementations of some of the Gang-of-Four design patterns. In
DSOA 2004 Workshop at JISBD 2004 (IX Jornadas de Ingenierfa de Software y Bases de Datos), Mdlaga, Spain, 2004.
Piveta EK, Zancanella LC. Observer pattern using aspect-oriented programming. 3 Latin American Conference on
Pattern Languages of Programming, 2003. Available from: http://www.cin.ufpe.br/~sugarloafplop/final_articles/
20_ObserverAspects.pdf [24™ July 2012].

Bernardi ML, Lucca GA. Improving design pattern quality using aspect orientation. In Proceedings of the 13" IEEE
International Workshop on Software Technology and Engineering Practice. IEEE press, 2005; 206-218. DOI:
10.1109/STEP.2005.14.

Oliveira B, Wang M, Gibbons J. The visitor pattern as a reusable, generic, type-safe component. In Proceedings of
the 23" ACM SIGPLAN Conference on Object-Oriented Programming Systems, Languages and Applications.
ACM Press, 2008; 439-456. DOI: 10.1145/1449764.1449799.

Schmager F, Cameron N, Noble J. GoHotDraw: evaluating the Go programming language with design patterns. In
ond Workshop on Evaluation and Usability of Programming Languages and Tools. ACM Press, 2010; 10:1-10:6.
DOI: 10.1145/1937117.1937127.

Gomes J, Monteiro MP. Design pattern implementation in Object Teams. In Proceedings of the 25" Symposium on
Applied Computing — Special Track on Object Oriented Programming Languages and Systems. ACM Press, 2010;
2119-2120. DOI: 10.1145/1774088.1774534.

Monteiro MP, Fernandes JM. An illustrative example of refactoring object-oriented source code with aspect-oriented
mechanisms. Software: Practice and Experience 2008; 38(4): 361-396. DOI: 10.1002/spe.835.

Hirschfeld R. AspectS — Aspect-Oriented Programming with Squeak. Revised Papers from the International Conference
NetObjectDays on Objects, Components, Architectures, Services, and Applications for a Networked World, 2003; 216-232.
Lima A, Gouldo M, Monteiro MP. Evidence-based comparison of modularity support between Java and Object
Teams.!* Workshop for Empirical Evaluation of Software Composition Techniques, 2010.

Aracic 1, Gasiunas V, Mezini M, Ostermann K. An overview of Caesar]. In Transactions on Aspect-Oriented
Software Development I. Springer LNCS vol. 3880, 2006; 135-173. DOI: 10.1007/11687061_5.

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2012

DOI: 10.1002/spe

http://www.cin.ufpe.br/~sugarloafplop/final_articles/20_ObserverAspects.pdf
http://www.cin.ufpe.br/~sugarloafplop/final_articles/20_ObserverAspects.pdf

63.

64.

65.

66.

67.

68.

69.

SOFTWARE: PRACTICE AND EXPERIENCE

Wadler P. The expression problem. Message originally posted on the Java Genericity mailing list. 1998. Available
from: http://www.daimi.au.dk/~madst/tool/papers/expression.txt [24™ July 2012].

Torgersen M. The expression problem revisited. Four new solutions using generics. In 18" European Conference on
Object-Oriented Programming. Lecture Notes in Computer Science vol. 3086. Springer-Verlag, 2004; 123-143.
ISBN: 3-540-22159-X.

Limmel R, Ostermann K. Software extension and integration with type classes. In Proceedings of the 5" International
Conference on Generative Programming and Component Engineering. ACM Press, 2006; 161-170. DOIL: 10.1145/
1173706.1173732.

Mattson M, Bosch J, Fayad ME. Framework integration — problems, causes, solutions. Communications of the ACM
1999; 42(10): 80-87.

Holzle U. Integrating independently-developed components in object-oriented languages. In Proceedings of the
7" European Conference on Object-Oriented Programming. Lecture Notes in Computer Science vol. 707.
Springer-Verlag, 1993; 36-56. ISBN: 3-540-57120-5.

Riehle D, Brudermann R, Gross T, Mitzel KU. Pattern density and role modelling of an object transport service.
ACM Computing Surveys, vol.32. ACM Press, 2000. DOI: 10.1145/351936.351946.

Odersky M, Altherr P, Cremet V, Dragos I, Dubochet G, Emir B, McDirmid S, Micheloud S, Mihaylov N, Schinz
M, Stenman E, Spoon L, Zenger M. An Overview of the Scala Programming Language. 2"¢ Edition. Technical
Report LAMP-REPORT-2006-001, Ecole Polytechnique Fédérale de Lausanne, 2006.

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2012

DOI: 10.1002/spe

http://www.daimi.au.dk/~madst/tool/papers/expression.txt

