
Agility and Quality Attributes in Open Source
Software Projects Release Practices

Antonio César Brandão Gomes da Silva
Glauco de Figueiredo Carneiro

Antonio Carlos Marcelino de Paula
Universidade Salvador (UNIFACS)

Bahia, Brazil
antoniocesar01@gmail.com, glauco.carneiro@unifacs.br,

acmarcelino@gmail.com

Miguel Pessoa Monteiro
Universidade Nova de Lisboa

(UNL)
Lisboa, Portugal
mtpm@fct.unl.pt

Fernando Brito e Abreu
Instituto Universitário de Lisboa

(ISCTE-IUL)
Lisboa, Portugal
fba@iscte-iul.pt

Abstract—Context: The need to accelerate software delivery,
supporting faster time-to-market and frequent community devel-
opers/users feedback are issues that have lead to relevant changes
in software development practices. Many Open Source Software
(OSS) projects have engaged to achieve this through the adoption
of agile practices in software release practices. Problem: There is
no secondary study in the literature discussing evidences of the
influence of agile approaches in OSS projects release practices.
Goal: Identify published reports in the literature that characterize
to which extent agility has influenced release approaches in OSS
projects. Method: The characterization of studies followed a five-
phase process to present a panoramic view of software releases
practices in the context of OSS projects. Results: The overall data
collected from 14 studies published from January 2006 to January
2016 depicted the following scenario: nine issues that characterize
the advantages/influence of agility in OSS release approaches;
four challenge issues in this approach; three possibilities of
implementation and two main motivations towards the adoption
of software release approaches through agility; and finally three
main strategies to implement it. Conclusion: This study provides
an up-to-date and structured understanding of the influence of
agility on OSS projects release approaches based on findings
systematically collected from a list of relevant references in the
last decade.

Keywords—Frequent Releases, Rapid Releases, Agile Methods,
Open Source Software Projects.

I. INTRODUCTION

The effectiveness and success of practices adopted by
Open Source Software (OSS) projects aroused interest of
the Software Engineering research community [10][4][6][7].
Understanding how such software projects work enable com-
panies to draw lessons from reported best practices and apply
them in their internal projects [15][11]. A relevant practice is
related to how OSS projects deal with releases. Many projects
adopt a traditional release plan based on a set of features [14],
while others adopt a time-based strategy in which releases
are planned based on fixed and pre-determined time intervals
[13]. Studies have reported that traditional release strategies
have associated problems that can be overcome by time-based
release management [9][10]. According to [1], the concept
of rapid release (aka RR) approach was introduced by agile
methodologies like Extreme Programming, which claims that
shorter release cycles offer various benefits to both companies
and end users.

In this paper, we review published studies that addressed
the growing interest of OSS projects in the adoption of
agile approaches in software release practices [3] [10]. This
interest is motivated by the need to provide shorter time-
to-market, in response to customer requests and to enhance
costumer satisfaction [3]. This explains the success of OSS
projects in the developers and users communities and shows
the importance of both process and product quality attributes
to achieve such success.

The rest of this paper is organized as follows. Section 2
presents the problem statement and scope of this paper. Section
3 outlines the research methodology. Section 4 reports the
analysis of the studies. Section 5 presents threats to validity
of this study. Concluding remarks, as well as a discussion of
the limitations and scope for future research, are provided in
Section 6.

II. PROBLEM STATEMENT AND SCOPE

In this paper, we focus on practices adopted by OSS
projects release projects. To the best of our knowledge, no
previous characterization or secondary study have discussed
the influence of agility on OSS projects release practices. For
this reason, we conducted a characterization study to identify
papers in the literature that report software release initiatives in
different OSS projects and to which extent they are influenced
by agile approaches. Those studies are a relevant evidence of
best practices and challenges faced by successful OSS projects
that can be used by the software engineering community to
achieve quality attributes such as timeliness and efficiency.

While carrying out this study, we found one SLR and
one systematic mapping focusing on Rapid Releases (RR),
software tests [8] and continuous deployment in software
intensive products and service [12]. However, none of these
studies focused on the relationship between the issues targeted
by the present paper. The literature review reported in [8]
suggests that RR is a prevalent industrial practice, even in some
highly critical domains, and that originates from successful
approaches such as agile, open source and lean software
development. The authors also conclude that empirical studies
proving evidence of the claimed advantages and disadvantages
of RR are still scarce [8]. In the case of how OSS projects
implement release strategies influenced by agile methods, the

2016 10th International Conference on the Quality of Information and Communications Technology

978-1-5090-3581-6/16 $31.00 © 2016 IEEE

DOI 10.1109/QUATIC.2016.56

107

scope and coverage of this paper significantly differ from
previous published works.

III. RESEARCH METHODOLOGY

A. Planning the characterization

Identify the needs for a characterization study. To the
best of our knowledge, there is no previous report addressing
the influence of agile methods in OSS projects release practices
based on primary studies published in the literature. The
analysis of these evidences reported in the studies will help us
identifying the relationship between the effective use of release
approaches in OSS practices and software quality attributes
manifested in these projects. These findings can be a useful
reference to develop and enhance guidelines focusing on this
theme.

Specifying the Research Question. We focused on the
following research questions (Table I).

TABLE I. RESEARCH QUESTIONS (RQ)

RQ1 What are the time scale options applied to software releases in OSS
projects?

RQ2 What are the main motivations for the adoption of agility in
software releases practices in OSS projects?

RQ3 What are the main strategies adopted by practitioners to include
agility in software releases practices in the OSS context?

RQ4 What are the main advantages and challenges related to the to
inclusion of agility in software releases practices in the OSS context?

Adopted Strategy. The characterization considered as a start-
point 30 papers selected from a Systematic Literature Review
(SLR) focusing on OSS projects release practices recently
conducted by the authors of this paper. Keywords were de-
rived from the stated research questions and used to search
the primary study sources. Regarding the time frame of the
mentioned SLR, we considered papers published in journals
and conferences from January 2006 to January 2016. The
following search string was used in the SLR with the same
strategy as described in [2]:

(((”rapid release” or ”fast release” or ”frequent
release” or ”release history” or ”quick release”)
and (”oss” or ”open source” or ”open source
software”)))

Figure 1 conveys the phases of the SLR to reach the 30 papers.

Fig. 1. Phases of the SLR Selection Process

Phases for the Studies Characterization. Figure 2 conveys
the phases adopted by the authors to select the studies for the

characterization and therefore to answer the research questions
presented in Table I.

Fig. 2. Study Characterization Phases

Phase 1: Applying the Search String. The search string is
presented as follows and was applied in all the 30 papers from
the previous SLR. The result of this phase was a list of 14
papers containing the string ”agil” as the root of the terms
”agile” and ”agility”.

Phase 2: Selecting the Papers. The 14 papers from the
previous phase were analyzed to identify evidences of the
influence of agility in the software release practices. Papers
that do not explicitly mentioned this influence were discarded.
The result of this phase was a list of the same 14 papers.

Phase 3: Building the Repository. This phase built a repos-
itory comprised of studies considered relevant to characterize
the influence of agility in release practices in OSS projects. The
decision of which elements should be included in the reposi-
tory was based on data obtained from the selected papers and
their respective relevance in the context of software releases.
These elements were organized in a mental model conveyed
in Figure 3 to represent the studies. The nodes are numbered
to identify the elements in the structure according to the RQ it
is related to. Node 1 represents variations related to the time
scale options applied to software releases in the OSS projects
RQ1: (1.1) Regular cycles, (1.2) Continuous Flow and (1.3)
Short Release with not regular cycles. Node 2 represents the
motivations to adopt agility in software releases practices in the
OSS context, in this case RQ2: (2.1) OSS Attractiveness and
Increase of Participants, (2.2) Maintenance and Improvement
of Market Share. Node 3 represents three possible strategies
to include agility in software releases practices in the OSS
context (RQ3): (3.1) Test Driven Development, (3.2) Contin-
uous Delivery and (3.3) Time-Based Releases. The following
advantages were identified in the literature (RQ4 - part 1):
Shorter Time to Market (4.1.1), Efficiency, Feedback, Customer
Satisfaction (4.1.2), Test Effectiveness (4.1.3) Entry of New
Team Collaborators (4.1.4), Pace of Innovation (4.1.5), Effec-
tive Planning and Monitoring (4.1.6), New Features (4.1.7),
Bug Fixes (4.1.8), and Security Updates (4.1.9). The challenges
(RQ4 - part 2) reported were dealing with Time Pressure
(4.2.1), Technical Debt (4.2.2), Community Dependence (4.2.3)
and Reliability (4.2.4).

Phase 4: Identifying OSS Related Projects We present the
Table II to convey software projects that were identified in
this study regarding the implementation of software release
practices influenced by agile approaches. In the table, each
software project is referred as ”P” followed by a number. The
table also contains the name of the project, the study that
reported its practices and the respective release time adopted.

IV. ANALYSIS OF THE STUDIES

This section presents the results to answer research ques-
tions RQ1, RQ2, RQ3 and RQ4 in conformance with Phase

108

Fig. 3. Findings from the Selected Studies

TABLE II. OSS PROJECTS, STUDIES AND RELEASE TIME

ID OSS-Project Study Release Time
P1 Apache Cocoon S19 Not Informed in the paper
P2 Apache Tomcat S19 Not Informed in the paper
P3 Debian Linux S28, S30 15 - 18 months
P4 Gnome S28, S30 6 months
P5 GNU Compiler S28, S30 6 months
P6 Google Chrome S24, S29 6 weeks
P7 Linux Kernel S28, S30 2-3 months

P8 Mozilla Firefox S3, S16, S22,
S23, S24, S29 6 weeks

P9 Open Office S28, S30 3 - 6 months
P10 Plone S28, S30 6 months
P11 X.org S28, S30 6 months

5 of Figure 2. All selected studies are listed in Table III and
referenced as ”S” followed by the number of the paper. A set
of 14 out of 30 papers were selected from the original SLR
list. For this reason, the IDs from the list of papers do not
follow sequentially.

Figure 4 depicts the selected studies and the respective
research questions they focus on. The Figure conveys that 11
studies addressed issues related to RQ1, 8 studies discussed
RQ2 issues, 10 studies were related to RQ3 and, finally, 7
papers addressed RQ4 issues.

Regarding RQ1 (What are the time scale options applied
to software releases in the OSS projects context?), we found
evidences in the selected studies that allowed us to classify the
time scale in OSS projects in three groups as follows. This is
related to the item 1 and the subitens 1.1, 1.2 and 1.3 of Figure
3, where we can identify the timeliness quality attribute.

The first group is regular cycle time scale to provide new
versions of the software project as reported by paper S3, S7,
S9, S16, S22, S23, S24, S29 and 30. The second type is the im-
plementation of the software release time scale in a continuous
flow mode as reported by paper S26. The third type is related
to short release cycles with not regular cycle reported in paper
S2. The figure 5 represents the distribution of papers among
the three types mentioned before. The identification of these
software releases time scale options practiced by OSS projects
are therefore references for potential new adopters that focus
on agility. Moreover, considering that these three practices

Fig. 4. Selected Studies per Research Question (RQ)

require process tailoring, they also provide evidences of quality
attributes such as understandability, flexibility, maintainability
and predictability.

Fig. 5. Types of Time Scale (RQ1) according to Figure 3

In the case of regular cycles and according to S30, many
projects moved towards a time-based release management
strategy based on the early successful experiences of projects
such as GNOME 1. This increases the exposure of the software
and may lead to better feedback. However, sufficient develop-
ment done in release interval appear to be essential to pursue
a time-based release management strategy. A large number of
time-based FOSS projects have chosen a release interval of up
to six months. Major Linux distributions, such as Fedora, are
examples of this practice.

1https://www.gnome.org/

109

S16 highlights the influence of agility in the software
release process when it reports the delivering of working soft-
ware from every couple of weeks to every couple of months,
with a preference to the shorter timescale. This is an evidence
of Rapid Releases (RR) practices. Moreover, S16 also reports
that in the context of RR, the modifications of each release
are limited, which makes the number of faults per release very
small, compared to the traditional releases. S7 investigates the
consequences and impact of the RR approach on the security
of the Mozilla Firefox browser. The resulting data shows that
Firefox RR does not result in higher vulnerability occurrences.
The pattern exhibited by vulnerability disclosure in Firefox is
the result of would-be attackers having to re-learn and re-adapt
their tools in response to a rapidly changing code base. In S29,
it is mentioned that recent studies have started to evaluate
the concept of continuous delivery and rapid releases from
the perspective of software quality. The papers S3, S22, S23
and S24 discuss the methodology adopted by Mozilla Firefox
that moved from a traditional software release approach to
a delivery of new releases every six months. On the other
hand, S9 reports that agile teams continually adapt to changing
requirements late into the development lifecycle as they strive
to deliver working software at frequent intervals.

Considering the possibility of continuous flow, S26 men-
tions that rapid and continuous software engineering refers to
the ”organizational capability to develop, release and learn
from software in rapid parallel cycles, such as hours, days
or very few weeks”, in the case of short releases with not
regular cycles, S2 presents an approach augmented with a
number of engineering best practices specifically tailored to
attain a weekly release cycle for a hosted software product.
It is noted that the problem of managing rapid releases for a
hosted product is likely to become even more important in the
future, cutting across vast tracts of enterprise IT in addition to
publicly hosted ”Software as a Service” products.

According to the Agile Manifest, Regular Cycles and
Short Cycles with not Regular Cycle follow the principle of
delivering new software releases within weeks or months. The
software projects P6, P7 and P8 reported in papers (S3, S16,
S22, S23, S24, S29 e S30) implement the Regular Cycle
release timeline. On the other hand, the software projects (P1,
P2, P3, P4, P5, P9, P10, P11) reported by the studies S19,
S28 and S30 implement Short Cycles with not Regular Cycle
release timeline. The Continuous Flow for software releases is
one of the reference practices in the context of agile approaches
aiming at prioritizing the clients demands and needs through
the delivery of releases in a continuous fashion. The following
software projects implement this type of release timeline: P1,
P2, P3, P4, P5, P6, P7, P8, P9, P10, P11 as reported in the
studies S3, S16, S19, S22, S23, S24, S28, S29 e S30.

In the case of RQ2 (What are the main motivations for
the adoption of agility in software releases practices in OSS
projects?), two main motivation factors were identified as
favorable for the adoption of rapid releases: OSS attractiveness
and increase of participants (S3, S30) and maintenance and
improvement of market-share (S7, S16, S19, S22, S24). There
are reports of projects that increased the number of participants
where the majority are volunteers motivated by attractiveness
and challenges associated with short releases activities (S30).
Moreover, it raises the possibility of user feedback in a shorter

feasible time interval. Maintenance and improvement of market
share occurs as a result of the pace of changes and hence
new features provided by the software. These motivations will
help practitioners to a successful adoption of software release
practices based on their their needs and expectations.

The OSS attractiviness and increase of participants are
related to the agile principle due to the reported motivation
of the software project participants as well as their trust and
engagement in the project. The maintenance and improve-
ment of marketshare provided evidences of prioritization of
the customer satisfaction and the management of changes
and evolution of the software project focused on competitive
advantages of their customers. The Figure 6 represents the
distribution of papers among the two types of motivation issues
mentioned before.

Fig. 6. Types of Motivation Issues (RQ2) according to Figure 3

S30 notes an increase in the number of participants, most
of which originate from the open source community. The OSS
model matured and participation in open source projects can
add status to its participants as well. Another relevant factor is
a means to maintain and increase market share (S7, S24). Fast
changes in the software tend to increase its competitiveness.
S7 remarks that the survival of a software project entails the
frequent introduction of new features. S16, S22, S24 points
out that the Firefox project motivated by declining market
share adopted the rapid release model to be able to compete
with Chrome, which already used it. The fast expansion of
mobile platforms resulted in increased competition between
applications, making rapid releases very important for the
applications to remain competitive. S19 points that frequent
system releases are performed in line with user expectations

In the case of RQ3 (What are the main strategies adopted
by practitioners to include agility in software releases practices
in the OSS context?), the time-based release strategy is men-
tioned as a relevant strategy by the following selected studies:
S3, S7, S11, S22, S24, S27, S28, S30. The key point is that a
successful implementation of time-based releases is based on
trust among its contributors and the release manager, as well
as on appropriate control structures that should be accepted by
developers. Once the time-based release is chosen, it is time
to determine the release interval. To this end, S28 identified
five factors that affect the choice of interval: (i) regularity
and predictability; (ii) nature of the project and its users;
(iii) commercial factors; (iv) cost and effort; and (v) network
effects (need to synchronize the project release schedule with
the schedules of other projects from which it can leverage
benefits). The Figure 7 represents the distribution of papers
among the four strategies to implement software releases as
mentioned before. These strategies are a relevant starting point
for building a body of knowledge regarding the the inclusion
of agility in software releases practices in the OSS context.

According to S28, while a time-based release strategy
provides several benefits, it is important to realize that it does
not necessarily benefits all projects. The first step is to decide

110

whether or not a project is suitable for a time-based release
strategy. It is not advisable to implement regular releases if
there has been little work done that would warrant a new
release. Other studies mention an effective quality process
associated with a range of automated testing tools (S2 , S9 ,
S27) as an essential aspect in order for development to support
frequent releases. Continuous delivery process is considered
essential to adoption by companies that practise rapid releases
(S26 , S29). Figure 7 represents the distribution of papers
among the three types of motivation issues mentioned before.

Fig. 7. Types of Strategies to Implement Software Releases (RQ3) according
to Figure 3

S3, S7, S22, S24 describes the Mozilla strategy, which is
characterized by each release of Firefox to completely replace
the previous one. In addition, every new version goes through
the following 4-release-channels work flow:

S30 explain that in a time based strategy, a specific date
is set for the release well in advance and a schedule created
so people can plan accordingly S2 notes that it is fundamental
for an effective QA process to use some automated test tool
in an integrated manner, so to support frequent releases. S9
stresses that focus on testing is critical for small teams that
support quick releases. S26 reports a systematic mapping based
on continuous delivery and notes that continuous evolution of
features drive this process, enabling for example the monthly
delivery of releases. S29 also lends strength to the idea that
continuous deliveries are a recent phenomenon that is suitable
for the rapid release of modern applications.

The analysis of RQ4. What are the main advantages and
challenges related to the to inclusion of agility in software
releases practices in the OSS context? had as a result the
identification of the following quality attributes associated
with the advantages presented in the branch 4.1 of Figure
3: 4.1.1 Shorter Time-to-Market (efficiency and effectiveness),
4.1.2 Efficiency, Feedback, Customer Satisfaction (credibility,
failure transparency, manageability), 4.1.3 Test Effectiveness
(testability, traceability), 4.1.4 Entry of New Team Collabora-
tors (learnability), 4.1.5 Pace of Innovation (flexibility), 4.1.6
Effective Planning and Monitoring (manageability), 4.1.7 New
Features (evolvability, extensibility), 4.1.8 Bug Fixes (main-
tainability, repeatability, testability, traceability) and 4.1.9
Security Updates (securability)

Advantages. The main positive points associated to rapid
releases are: quick return on customer needs, rapid delivery
of new features, quick bug fixes, immediate release secu-
rity patches (S3, S22, S24), increased efficiency (S22) and
greater focus on quality on the part of developers and testers
(S22, S28, S30). The knowledge of these advantages and
challenges beforehand is useful for the implementation of
effective strategies to deal with reported problems raised by the
implementation of agility in the software release approaches
in the context of OSS projects.

S22 presents a semi-systematic review that associates rapid
releases to testing. It reports that frequent releases driven by

testing allow for a greater and quicker feedback in each release,
and also increases the incentive for developers to deliver a
quality product. Noteworthy is the increased efficiency due to
greater time-pressure. The study also adds to the list of benefits
that narrower tests - due to the reduced test time - also allows
for deeper testing. Narrower tests are also easier to manage. S3,
S22 and S24 highlight the ease of planning and testing, since
the tests are more focused and run more frequently, easing the
monitoring of progress and quality.

S24 proposes the increase in the pace of innovation, since
the high rate of releases encourages the team to continuously
attempt new solutions and new tools. In addition, a greater
rate of releases provides more marketing opportunities for
the company. S28 notes that short release intervals allow
for more competitive OSS projects compared to proprietary
designs, since rapid release brings significant advantages over
competitors using the traditional cycle. For example, the Beta
cycle corresponds to several new product versions arriving
to the market. Another factor raised is the enhancement of
reputation and employee satisfaction, as they see their code
quickly being used by users.

S30 notes a trend regarding the increasing maturity of the
practice of OSS, with an increase in their significance and eco-
nomic potential. OSS projects are increasingly adopting rapid
releases so as to allow for greater quality and sustainability.
The quicker feedback that these practices allow also provides
more information on what parts of the software are more in
need of attention.

Challenges and Issues: less reliability in new versions
(S22), increase in the ”technical debt” (S22), pressure felt by
employees (S22) and community dependence (S16, S28, S30).

In its systematic review, S22 presents the main weak points
of rapid releases. On one hand, tests become more focused but
on the other, it also becomes practically impossible to test all
possible options. In addition, the short time available does not
allow for test quality requirements, e.g., performance. Another
point mentioned is increased pressure on the team, which can
lead to exhaustion. Finally the increase in technical debit are
observed, since it allows for less time for activities such as
refactoring. Neglect of those issues risks compromising the
quality of the software and negatively impact organizations in
the long run. In his study, S16 claims that the difficulty in
attracting a large number of volunteers for the test community
makes the tests in rapid releases more deadline oriented.
S28 claims that projects maintained exclusively by volunteers
require a significant planning effort to cope with periods of
shortage of volunteers, e.g., Christmas in December.

V. THREATS TO VALIDITY

The following types of validity issues were considered
when interpreting the results from this review.

There may be bias in data extraction. This was addressed by
defining a data extraction form to ensure consistent extraction
of relevant data to answering the research questions. The
findings and implications are based on the extracted data.
One possible threat is the selection bias. We addressed this
threat during the selection step as described in Figure 2,
i.e. the studies included in the characterization were identi-
fied through a thorough selection process which comprises

111

of multiple phases. The studies identified from a preview
systematic review conducted by the authors were accumulated
from multiple literature databases covering relevant journals
and proceedings. One possible threat is bias in the selection of
publications. This was addressed through specifying a research
protocol that defines the research questions and objectives
of the study, inclusion and exclusion criteria, search strings
that we intend to use, the search strategy and strategy for
data extraction. The set of 14 papers selected in Phase 5 as
described in Figure 2 is a potential validity threat. In this case,
there is a threat that the results so far obtained could not be
generalized. However, the studies were selected having as a
start point the ones published between 2006 and 2016 from a
previous systematic review conducted by the authors. For this
reason, the set of the 14 studies are considered representative
enough as a sampling for this characterization.

VI. CONCLUSIONS AND FUTURE WORK

This paper presents an initiative to identify published
reports in the literature to characterize to which extent agility
has influenced release approaches in OSS projects. Far from
being anecdotal, the evidences collected and discussed in this
work have the goal to gain and share insight from the literature.
The expected result is that the new OSS projects decision
makers could be more confidence and hence adopt reported
practices. The first principle of the Agile Manifesto states
that top priority is to satisfy the customer through early and
continuous delivery of valuable software [5]. This principle
is achieved through the implementation of software process
initiatives that are evidences of quality attributes of efficiency
and effectiveness. Agile approaches have as a basis the re-
duction of time associated to deliver new versions to users
that can be achieved, for example, through earlier feedback.
These approaches can be in turn associated with process
quality attributes such as credibility, failure transparency and
manageability. The primary contribution of this paper is to
reveal the motivations behind the adoption of agility in OSS
project releases, strategies applied and identification of the
potential advantages and difficulties faced in this regard. As
on going work, we are collecting data from real OSS project
repositories so that we can analyze in fact to which extent
reported practices have been adopted in new tendencies of
selected projects in release practices.

REFERENCES

[1] C. Andres and K. Beck. Extreme programming explained: Embrace
change. Reading: Addison-Wesley Professional, 2004.

[2] L. Chen and M. A. Babar. A systematic review of evaluation of vari-
ability management approaches in software product lines. Information
and Software Technology, 53(4):344–362, 2011.

[3] D. G. Feitelson, E. Frachtenberg, and K. L. Beck. Development and
deployment at facebook. IEEE Internet Computing, 17(4):8–17, 2013.

[4] B. Fitzgerald. The transformation of open source software. Mis
Quarterly, pages 587–598, 2006.

[5] M. Fowler and J. Highsmith. The agile manifesto. Software Develop-
ment, 9(8):28–35, 2001.

[6] J. M. Gonzalez-Barahona, D. Izquierdo-Cortazar, S. Maffulli, and
G. Robles. Understanding how companies interact with free software
communities. IEEE software, 30(5):38–45, 2013.

[7] J. M. Gonzalez-Barahona and G. Robles. Trends in free, libre, open
source software communities: From volunteers to companies. IT–
Information Technology, 55(5):173–180, 2013.

[8] M. V. Mantyla, F. Khomh, B. Adams, E. Engstrom, and K. Petersen. On
rapid releases and software testing. In Software Maintenance (ICSM),
2013 29th IEEE International Conference on, pages 20–29. IEEE, 2013.

[9] M. Michlmayr and B. Fitzgerald. Time-based release management in
free and open source (foss) projects. International Journal of Open
Source Software and Processes (IJOSSP), 4(1):1–19, 2012.

[10] M. Michlmayr, B. Fitzgerald, and K.-J. Stol. Why and how should open
source projects adopt time-based releases? Software, IEEE, 32(2):55–
63, 2015.

[11] P. C. Rigby, B. Cleary, F. Painchaud, M.-A. Storey, and D. M. Ger-
man. Contemporary peer review in action: Lessons from open source
development. Software, IEEE, 29(6):56–61, 2012.

[12] P. Rodrı́guez, A. Haghighatkhah, L. E. Lwakatare, S. Teppola, T. Suo-
malainen, J. Eskeli, T. Karvonen, P. Kuvaja, J. M. Verner, and M. Oivo.
Continuous deployment of software intensive products and services: A
systematic mapping study. Journal of Systems and Software, 2016.

[13] G. Ruhe. Product release planning: methods, tools and applications.
CRC Press, 2010.

[14] M. O. Saliu and G. Ruhe. Bi-objective release planning for evolving
software systems. In Proceedings of the the 6th joint meeting of the
European software engineering conference and the ACM SIGSOFT
symposium on The foundations of software engineering, pages 105–
114. ACM, 2007.

[15] K.-J. Stol and B. Fitzgerald. Inner source–adopting open source
development practices in organizations: A tutorial. IEEE Software,
32(4):60–67, 2015.

TABLE III. SELECTED STUDIES

ID Author, Title Venue Year

S2 Puneet Agarwal, Continuous SCRUM: agile
management of SAAS products. ISEC 2011

S3
Khomh,F., Dhaliwal T., Ying Zou and Adams,
B., Do,Faster Release Improve software Quality?
An Empirical Case Study of Mozilla,Firefox.

MSR 2012

S7
Sandy Clark, Michael Collis, Matt Blaze and
Jonathan M. Smith, Moving Targets: Security
and Rapid-Release in Firefox.

CCS 2014

S9

Anil Shankar, Honray Lin, Hans-Frederick
Brown and Colson Rice, Rapid Usability
Assessment of an Enterprise Application in an
Agile Environment with CogTool.

CHI 2015

S16
Hemmati,H. , Zhihan Fang and Mantyla, M.V.
Prioritizing Manual Test Cases in Traditional and
Rapid Release Environments.

ICST 2015

S19
Biffl,,S. , Sunindyo, W.D. and Moser, T. Semantic
Integration of Heterogeneous Data Sources for
Monitoring Frequent-Release, Software Projects.

CISIS 2010

S22
Mntyl M, Adams B, Khomh F, Engstrom E and
Petersen K On rapid releases and software testing:
a case study and a semi-systematic, literature review.

ESSE 2015

S23
Souza,R, Chavez C and Bittencourt R. Patch
rejection in Firefox: negative reviews, backouts,
and issue reopening.

SBES 2015

S24
Adams B, Khomh F, Dhaliwal T and Zou Ying,
Understanding the impact of rapid releases on
software quality.

ESSE 2015

S26
P Rodrguez, A,Haghighatkhah LE and Lwakatare,
Continuous deployment of software intensive
products and services: A systematic mapping study.

JSS 2016

S27
MV,Mntyl, K Petersen and, TOA Lehtinen,
Time Pressure: A Controlled Experiment of
Test Case Development and Requirements Review.

ICSE 2014

S28
M,Michlmayr, B Fitzgerald and KJ Stol,
Why and How Should Open Source Projects
Adopt Time-Based Releases?.

IEEE 2015

S29
B Adams, M Michlmayr Modern Release
Management in a Nutshell: Why Researchers
should Care.

SANER 2016

S30 B Fitzgerald, S McIntosh Time-Based Release
Management in Free/Open Source (FOSS) Projects. LERO 2011

112

