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ABSTRACT 
In this paper, we discuss the benefits of using aspect-oriented 
programming to develop parallel applications. We use aspects to 
separate parallelisation concerns into three categories: partition, 
concurrency and distribution. The achieved modularisation 
enables us to assemble a variety of platform specific parallel 
applications, by composing combinations of (reusable) aspect 
modules into domain-specific core functionality. The approach 
makes it feasible to develop parallel applications of a higher 
complexity than that achieved with traditional concurrent object 
oriented languages. 
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1. INTRODUCTION 
There is a growing demand for parallel applications. The 
increasingly popular multi-core CPU architectures require 
concurrent programming to effectively leverage the underlying 
parallel processing capabilities. However, concurrent 
programming may introduce overhead in application execution 
time when running on a single core system. Grid systems [6] 
connect worldwide computing resources, delivering significant 
computing power. However, the systems are extremely complex 
to program, due to the intrinsic heterogeneity of computing 
resources, network latencies and bandwidths. Grid systems are 
built as clusters of clusters of multiprocessors machines, whose 
processors can be multi-core CPUs. 

Traditional parallel applications suffer from classic tangling 
problems [10], as parallelisation concerns cut across multiple 
application modules. Core functionality (i.e., domain specific 
logic) is usually mixed with parallelisation concerns. Such 
concerns include work partition into parallel tasks, concurrent 
execution of these tasks; synchronisation of parallel accesses to 
shared data structures (to avoid data races) and distributed 
execution of the tasks. Code related to these concerns is tangled in 
application code, which makes it harder to understand, reuse and 
evolve core functionality and parallel code. Traditional parallel 
programming is mainly focused on performance issues. Aspect-
oriented programming (AOP) [10] contributes to conciliate 
between high level and high performance computing, by 
modularising the above concerns more effectively [9]. 

This paper presents an approach to develop parallel applications 
in which parallelisation concerns are modularised into various 
aspects. Section 2 overviews the approach. Section 3 focuses on 
the development of reusable parallelisation concerns and section 4 

discusses benefits and how to support composition of the aspects. 
Section 5 concludes the paper. 

2. MODULAR PARALLELISATION 
CONCERNS 
Our approach entails modularising parallelisation concerns with 
AOP, to increase general modularity and reuse potential in 
parallel applications. The base application must be amenable for 
parallelisation, since our focus is more on modularising existing 
parallel applications than parallelising sequential applications. It 
is harder to transform sequential applications into parallel ones 
than to modularise current parallel applications. The greater 
suitability of AOP to achieve such transformations of sequential 
applications relative to other approaches is as yet unproven. 
Our approach involves using traditional object oriented 
mechanisms to implement application core functionality and 
implementing parallelisation concerns with AOP. Parallelisation 
concerns are grouped in thee categories: functional or/and data 
partition, concurrency and distribution. Each concern is 
implemented in its own aspect module that can be (un)plugged 
from application core functionality. 

Core functionality expresses domain specific logic; by specifying 
what the application is supposed to do. Partition modules specify 
how work is performed in an efficient way, using several 
processing elements. Concurrency modules manage execution of 
parallel tasks, including synchronisation requirements. 
Distribution modules assign objects to available resources and 
manage remote method invocations. 

The programmer is in charge of dividing parallel code into these 
concerns. In some parallel applications, core functionality code is 
the same as the sequential code. However, in intrinsically parallel 
applications (i.e., in parallel applications where there is no 
sequential equivalent) our core functionality module contains the 
domain-specific logic. 

The partition module transparently replicates objects and manages 
method calls to the replicated objects. Replicated objects are 
managed by the partition aspect, which also manages their life-
cycle (these are called aspect managed objects). The partition 
aspect controls the way a method call is executed into such 
objects. Usual partitions include farming, divide and conquer, 
pipeline and heartbeat [2]. For instance, in a pipeline partition, 
aspect-managed objects are organised in a pipeline sequence and 
each method call is successively executed by all pipeline objects. 
Partition module can introduce joinpoints that can be intercepted 
by other aspects. 



The concurrency module specifies asynchronous method 
invocations: the caller object is allowed to proceed while the 
called object executes the requested method. In Java, this can be 
achieved by using a new thread to perform the requested method. 
Asynchronous method invocations may also require 
synchronisation to protect shared objects, to avoid data races and 
to ensure a specific execution order. Synchronisation code is also 
placed in the concurrency aspect and it resorts to synchronised 
block constructs and monitors provided by Java. 

Partition and concurrency code is deployed in separate modules. 
The main idea is first to develop a partition module and next to 
develop the concurrency module. This way it is possible to 
(un)plug concurrency for debugging purposes and it also helps to 
avoid the inheritance anomaly problem [12], as partition code can 
be reused independently of concurrency constraints. 

Our approach is based on distributed objects, which can be 
deployed across machines. Object distribution concerns are 
implemented in their own module as well. We identify two main 
benefits: (1) partition and concurrency modules can be developed 
without taking into account object distribution issues (i.e., they 
are developed for a single processor/shared memory machine) and 
(2) it is easier to switch between underlying middleware 
implementations for distribution concerns, such as CORBA, Java 
RMI and MPI. 

A simple example (using Java and AspectJ) of the intended 
separation of the above concerns is described next. The Java 
Grande Forum (JGF) RayTracer [14] is a benchmarking 
application that renders an image of sixty spheres. This 
benchmark is already amenable for parallelisation. Actually, JGF 
provides both sequential and parallel versions of this application. 
Core functionality is very close to the JGF sequential version. It 
creates a RayTracer object, initialises it with a scene to render and 
then sends it a message to render the scene, specifying image size 
by means of an Interval object: 
RayTracer rt = new RayTracer(); 
Scene sc = ... // create scene to render 
rt.initialise(sc); 
Interval interval = new Interval(0,500); 
Image result = rt.render(interval); 
 

The concrete partition aspect for this example intercepts the 
creation of the RayTracer object and creates a set of aspect-
managed RayTracer objects. The concrete partition aspect 
broadcasts the call to method initialise to all the new RayTracer 
objects. It also broadcasts the call of method render, using a 
different interval for each RayTracer object and joins partial 
results produced by each one (this is a typical implementation of a 
simple farm partition): 
 
RayTracer farm[]=new RayTracer[numberOfWorkers]; 
 
RayTracer around() : call (RayTracer.new()) { 
 for(i=0; i<numberOfWorkers; i++) 
  farm[i] = new RayTracer(); 
 return(farm[0]); 
} 
 
void around(/*scene*/) :  
               call (RayTracer.initialise(..)) { 
 for(int i=0; i<numberOfWorkers; i++) 
  farm[i].initialise(/*scene*/); 
} 

 
Image around(/* interval */) :  
                   call (RayTracer.render(..)) { 
 for(int i=0; i<numberOfWorkers; i++) 
  res[i] = farm[i].render(/* subinterval*/); 
 ... //join sub-images saved in res array 
 return(/*merged subimages*/); 
} 
 

In the above example, array farm stores the references to aspect-
managed objects. Element zero of the array is used as the group 
front-end: it executes calls to RayTracer objects that are not 
intercepted by the partition aspect. We chose to perform explicit 
calls (i.e., new, initialise and render calls), instead of calling 
proceed to allow specific advising of joinpoints introduced by this 
partition aspect. Also note that all advices also must include 
!within(…) to avoid recursive advices (the within pointcut 
designator (PCD) is omitted above for simplicity). This aspect can 
be deployed with pertarget instantiation to support advices on 
multiple RayTracer instances.  

The concurrency aspect spawns a new thread for each call to 
initialise (code for an asynchronous call of method render is also 
possible but trickier, as it involves the creation of a future object): 
void around() : call (RayTracer.initialise()) { 
 (new Thread() { 
  public void run() { 
   proceed(); 
  } 
 }).start(); 
} 
 

Distribution aspects redirect local object creations/calls to remote 
object instances. The caller local aspect plays the role of 
traditional proxies. However, a fake local object is required due to 
type system compliance. The following code presents a sketch of 
the code for the ray tracer benchmark: 
RayTracer around() : call (RayTracer.new()) { 
 // request object creation to remote factory 
 // associate remote object to local fake 
 return(/*fake local object*/); 
} 
 
void around() : call (RayTracer.initialise()) { 
 // redirect call to remote object 
} 
 
Image around() : call (RayTracer.render(...)) { 
 // redirect call to remote object 
 return(/*remotely rendered image*/); 
} 
 

Table 1 presents combinations of these modules and their 
purpose. By modularising parallelisation concerns into multiple 
aspects it is possible to manage multiple configurations of a 
parallel application and to deploy the one that more adequately 
matches the target platform. When the target platform is a single 
processor machine, only core functionality is deployed. On 
multiprocessor machines, the concurrency module is included as 
well. However, we keep the choice over whether we include the 
partition module, depending on the type of parallel application 
(e.g., in branch and bound applications partition module usually is 
not required). 



Table 1. Deployable parallel applications 

Partition 
M

odule 

C
oncurrency 
M

odule 

D
istribution 
m

odule 

Purpose 

No No No Tidy up core functionality, debugging, 
single processor machines 

Yes No No Tidy up partition strategy, debugging 
No / 
Yes Yes No Shared memory parallel machines 

(SMP/Multi-core) 
Yes Yes Yes Distributed memory machines/Grids 

No No / 
Yes Yes Distributed application 

 
Aspect precedence is of particular importance in this approach. 
Partition code has the highest precedence. Contrary to the effect 
achieved by AspectJ’s precedence mechanism, advice of partition 
code is always the first to execute, including after advice. This is 
required since partition code may introduce new objects and 
method calls that can be intercepted by other aspects. In the 
previous ray tracer benchmark, both concurrency and distribution 
aspects should be applied to aspect-managed ray tracer objects. 

Order of precedence of concurrency and distribution determines 
the difference between client activated and server activated 
threads [11]. Both precedences achieve asynchronous remote 
method invocations. When concurrency has higher priority, 
threads are created to perform all remote communication in a 
separate local thread running on a client node, to hide network 
latencies and to increase network bandwidth usage. 

The precedence rules ensure that parallelisation concerns are 
composed in the right order. However, in this composition model, 
each aspect only applies to joinpoints introduced by one previous 
module (i.e., with the next higher precedence, in the precedence 
list). For instance, it does not make sense to apply the distribution 
module to jointpoints from the core functionality and from the 
partition aspect. Replacing the explicit method calls in aspects by 
calls to proceed can enforce this behaviour; however, our 
experience reveals that this becomes trickier, since it depends on 
the particular implementation of the aspect weaver. Another 
alternative is to use the within PCD to specifically advise a single 
module, but it negatively affects the flexibility to assemble 
parallel applications, as it reduces the range of possible 
compositions. 

A description of the approach, to modularise parallelisation 
concerns, from a parallel computing perspective, as well as a 
detailed case study, including performance figures, can be found 
in [17]. 

3. REUSABLE MODULES 
Having modularised partition, concurrency and distribution 
concerns, the next step is to build reusable modules for these 
concerns. The modules are abstract aspects that are developed on 
the basis of abstract pointcuts and marker interfaces. 
Reusable implementations based on abstract pointcuts follow the 
template advice idiom [7] that is extensively used in [8]. An 

abstract aspect defines the reusable crosscutting implementation. 
Reusable code is applied to a case-specific situation by creating a 
concrete aspect that inherits the logic from the abstract aspect, 
usually a set of abstract pointcuts and methods. The pointcuts are 
defined by the concrete aspects to specify the case-specific 
joinpoints. Inherited methods configure the logic defined in the 
abstract aspect by defining case-specific logic that binds the 
reusable part to the case-specific part. 
Marker interfaces are used to implement mixin composition [3]. 
Concrete aspects introduce implementation of marker interfaces 
declared in the abstract aspect to case-specific classes. Joinpoints 
originating from implementing classes are captured by the aspects 
to apply the concern logic as with other. Marker interfaces are 
preferable when the aspect implements a class based role. 
The reusable partition module combines the two above 
approaches. Each reusable aspect declares marker interfaces to 
specify the classes whose instances are replicated (i.e., which 
classes give rise to aspect-managed instances). Abstract pointcuts 
are concretised to specify how method calls are executed by the 
aspect-managed instances. 
The reusable partition module implements the functionality to 
transparently replicate objects and redirect/broadcast method calls 
to aspect-managed objects. Method calls that are not captured by 
the aspect run on a special object, the group proxy. The structure 
of the reusable aspect (not shown here) is similar to the partition 
code as presented in previous section. The main difference is that 
in this case we replace references to class RayTracer by 
interfaces, abstract pointcuts and calls to proceed. Figure 1 
presents an example of the reuse of the partition aspect. Objects 
of class RayTracer are replicated into all available processing 
elements. Calls to method initialise are broadcasted to all objects 
in this set (pointcut broadcastCall). Calls to method render are 
also executed by all elements in the set but each object receives a 
different argument (computed by method scatter, which is called 
by aspect ObjectGridProtocol). For simplicity, code 
implementing the merging of results of method render is not 
shown. 
 
aspect Partition extends ObjectGridProtocol { 

 
declare parents: RayTracer implements Grid1D; 
 
pointcut void broadcastCall() : 
    call(* RayTracer.initialise())); 
 
// calculates parameters of each scatterCall 
Vector scatter(Object arg) { 
 Vector v = new Vector(); 
 ... // splits arg into sub-intervals 
 return(v); 
} 
pointcut scatterCall(..) :  
   call (* RayTracer.render(..)) ...; 

} 
Figure 1 – Example of reusing of partition concerns 

 
A complete description of the reusable aspects for partition can be 
found in [16].  
Reusable components for concurrency concerns provide 
functionality to perform calls in separate threads and to manage 
synchronisation among running threads [5]. Figure 2 presents an 
example in which separate threads call method initialise. 



 
public aspect Oneway extends OnewayProtocol { 
 protected pointcut onewayMethodExecution() : 
  (execution(* RayTracer.initialise(..))); 
 

Figure 2 Reuse of OnewayProtocol 
Distribution concerns can be modularised using aspects [15][17]. 
However, building reusable abstract aspects for distribution 
seems to be harder. Traditional approaches require additional 
tools to automate the generation of distribution code. Aspects can 
improve on such tools by (1) reducing the amount of generated 
code, (2) avoiding invasive changes on the original classes [4] and 
(3) by using code templates [19]. Development of reusable 
modules in the form of abstract aspects may require an extensive 
usage of introspection features of Java and AspectJ, due to the 
specificity of Java RMI. 

4. COMPOSING (REUSABLE) MODULES 
Aspect composition provides a particularly interesting subject to 
parallel computing. Composition of partition strategies has been 
well studied on skeleton-based approaches [13]. The idea is to 
combine partition strategies to achieve more sophisticated 
parallelisations. One common strategy is to have a two-level farm 
parallelisation, where each worker is also a farmer (with its own 
workers). Such a partition strategy is of particular importance to 
large-scale parallel applications, in which a single level farm risks 
becoming a bottleneck. With aspect-oriented (AO) modules this 
composition can be implemented by specifying aspects (e.g., a 
partition) that act on joinpoints introduced by another aspect. In 
our example in Figure 1, this would mean that each RayTracer 
object in the set would also be a set of objects. Composing 
partition aspects can be done by capturing just the joinpoints 
originating from a specific aspect (e.g., the first-level partition 
aspect), which can be implemented using the AspectJ within PCD. 
A simple implementation based on non-reusable aspects requires 
the duplication of partition code presented in section 2: 
aspect partitionLevel1 {  
 RayTracer around(): call (RayTracer.new()) { 
  // same as before 
 } 
 void around(): call (RayTracer.initialise()){ 
  // same as before 
 } 
 Image around(): call (RayTracer.render(...)){ 
  // same as before 
 } 
} 
 
aspect partitionLevel2 { 
 RayTracer around(): call (RayTracer.new())  
      && within(partitionLevel1) { 
  // same as before 
 } 
 void around(): call RayTracer.initialise()) 
      && within(partitionLevel1) { 
  // same as before 
 } 
 Image around(): call (RayTracer.render(...)){ 
      && within(partitionLevel1) { 
  // same as before 
 } 
 

Composing concurrency and distribution aspects is also of 
interest. When using a two-level farming it may be more efficient 
to only distribute objects of the first level of the farm. This type of 

composition closely matches the architecture of clusters of SMP 
machines. To achieve such composition, the distribution aspect 
should be applied only to the first-level partition aspect. This can 
be also achieved including within(partitionLevel1) in all 
pointcuts. 
Composing reusable aspects is harder. For instance, when using 
marker interfaces it is not possible to distinguish from aspect-
managed instances of level1 and level2 farm. This requires the 
programmatic support of associations between objects and 
aspects. A similar problem occurs when explicit method calls are 
replaced by proceed to develop reusable aspects, no longer being 
possible to advise a particular aspect by means of the within 
designator. 

5. RELATED WORK 
Skeletons and templates are alternative ways to achieve the 
separation between core functionally and parallelisation 
strategies. In functional languages, the parallelisation strategy can 
be modelled by higher-order functions that accept functions as 
parameters [13]. Templates and generative patterns provide 
generic classes for the parallelisation strategy that can be refined 
to include the core functionality [1]. CO2P3S [18] provides an 
example of such a system: code that models the parallelisation 
strategy is generated and the user must provide application-
dependent sequential hook methods. 
Skeletons and templates are very close to our AO approach in that 
both have a similar goal: to modularise the parallelisation strategy 
from core functionally. One main difference between skeletons 
and reusable AOP modules is how parallelisation strategies and 
core functionality are composed together to yield a parallel 
application. In the former approach, core functionality must be 
decomposed into code fragments to fill the hooks provided by the 
skeleton/template. In AOP approaches this composition is based 
on joinpoints, which results in less invasive changes to the core 
functionality. The advantage of AO parallel programming is due 
to the richer set of mechanisms available to perform compositions 
between core functionality and parallelisation strategies. On the 
other way, templates and skeletons have the advantage to enforce 
stricter rules for compositions and the correct (syntactic) 
composition can be checked at compile-time (for example 
ensuring that parallelisation modules are stacked in the right 
order). 

6. CONCLUSION 
This paper discusses an AO approach to modularise 
parallelisation concerns, namely object partitioning, concurrency 
management and distribution. The approach leverages the 
superior compositional capabilities of AOP to obtain a higher 
reuse potential from parallelisation concerns.  

Composing non-reusable aspects can be performed using current 
AOP capabilities. However, an adequate model to compose 
reusable aspects in a general way is left for future work. 
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