
Aspect-Oriented Support for Modular Parallel Computing

João L. Sobral
Departamento de Informática

Universidade do Minho
Campus de Gualtar

4710-057 Braga PORTUGAL

Miguel P. Monteiro
Escola Superior de Tecnologia

Instit. Politécnico de Castelo Branco
Avenida do Empresário

6000-767 Castelo Branco PORTUGAL

Carlos A. Cunha
Escola Superior de Tecnologia

Instit. Politécnico de Viseu
Campus de Repeses

3504-510 Viseu PORTUGAL

ABSTRACT
In this paper, we discuss the benefits of using aspect-oriented
programming to develop parallel applications. We use aspects to
separate parallelisation concerns into three categories: partition,
concurrency and distribution. The achieved modularisation
enables us to assemble a variety of platform specific parallel
applications, by composing combinations of (reusable) aspect
modules into domain-specific core functionality. The approach
makes it feasible to develop parallel applications of a higher
complexity than that achieved with traditional concurrent object
oriented languages.

Keywords
Parallel computing, skeletons, aspect composition.

1. INTRODUCTION
There is a growing demand for parallel applications. The
increasingly popular multi-core CPU architectures require
concurrent programming to effectively leverage the underlying
parallel processing capabilities. However, concurrent
programming may introduce overhead in application execution
time when running on a single core system. Grid systems [6]
connect worldwide computing resources, delivering significant
computing power. However, the systems are extremely complex
to program, due to the intrinsic heterogeneity of computing
resources, network latencies and bandwidths. Grid systems are
built as clusters of clusters of multiprocessors machines, whose
processors can be multi-core CPUs.

Traditional parallel applications suffer from classic tangling
problems [10], as parallelisation concerns cut across multiple
application modules. Core functionality (i.e., domain specific
logic) is usually mixed with parallelisation concerns. Such
concerns include work partition into parallel tasks, concurrent
execution of these tasks; synchronisation of parallel accesses to
shared data structures (to avoid data races) and distributed
execution of the tasks. Code related to these concerns is tangled in
application code, which makes it harder to understand, reuse and
evolve core functionality and parallel code. Traditional parallel
programming is mainly focused on performance issues. Aspect-
oriented programming (AOP) [10] contributes to conciliate
between high level and high performance computing, by
modularising the above concerns more effectively [9].

This paper presents an approach to develop parallel applications
in which parallelisation concerns are modularised into various
aspects. Section 2 overviews the approach. Section 3 focuses on
the development of reusable parallelisation concerns and section 4

discusses benefits and how to support composition of the aspects.
Section 5 concludes the paper.

2. MODULAR PARALLELISATION
CONCERNS
Our approach entails modularising parallelisation concerns with
AOP, to increase general modularity and reuse potential in
parallel applications. The base application must be amenable for
parallelisation, since our focus is more on modularising existing
parallel applications than parallelising sequential applications. It
is harder to transform sequential applications into parallel ones
than to modularise current parallel applications. The greater
suitability of AOP to achieve such transformations of sequential
applications relative to other approaches is as yet unproven.
Our approach involves using traditional object oriented
mechanisms to implement application core functionality and
implementing parallelisation concerns with AOP. Parallelisation
concerns are grouped in thee categories: functional or/and data
partition, concurrency and distribution. Each concern is
implemented in its own aspect module that can be (un)plugged
from application core functionality.

Core functionality expresses domain specific logic; by specifying
what the application is supposed to do. Partition modules specify
how work is performed in an efficient way, using several
processing elements. Concurrency modules manage execution of
parallel tasks, including synchronisation requirements.
Distribution modules assign objects to available resources and
manage remote method invocations.

The programmer is in charge of dividing parallel code into these
concerns. In some parallel applications, core functionality code is
the same as the sequential code. However, in intrinsically parallel
applications (i.e., in parallel applications where there is no
sequential equivalent) our core functionality module contains the
domain-specific logic.

The partition module transparently replicates objects and manages
method calls to the replicated objects. Replicated objects are
managed by the partition aspect, which also manages their life-
cycle (these are called aspect managed objects). The partition
aspect controls the way a method call is executed into such
objects. Usual partitions include farming, divide and conquer,
pipeline and heartbeat [2]. For instance, in a pipeline partition,
aspect-managed objects are organised in a pipeline sequence and
each method call is successively executed by all pipeline objects.
Partition module can introduce joinpoints that can be intercepted
by other aspects.

The concurrency module specifies asynchronous method
invocations: the caller object is allowed to proceed while the
called object executes the requested method. In Java, this can be
achieved by using a new thread to perform the requested method.
Asynchronous method invocations may also require
synchronisation to protect shared objects, to avoid data races and
to ensure a specific execution order. Synchronisation code is also
placed in the concurrency aspect and it resorts to synchronised
block constructs and monitors provided by Java.

Partition and concurrency code is deployed in separate modules.
The main idea is first to develop a partition module and next to
develop the concurrency module. This way it is possible to
(un)plug concurrency for debugging purposes and it also helps to
avoid the inheritance anomaly problem [12], as partition code can
be reused independently of concurrency constraints.

Our approach is based on distributed objects, which can be
deployed across machines. Object distribution concerns are
implemented in their own module as well. We identify two main
benefits: (1) partition and concurrency modules can be developed
without taking into account object distribution issues (i.e., they
are developed for a single processor/shared memory machine) and
(2) it is easier to switch between underlying middleware
implementations for distribution concerns, such as CORBA, Java
RMI and MPI.

A simple example (using Java and AspectJ) of the intended
separation of the above concerns is described next. The Java
Grande Forum (JGF) RayTracer [14] is a benchmarking
application that renders an image of sixty spheres. This
benchmark is already amenable for parallelisation. Actually, JGF
provides both sequential and parallel versions of this application.
Core functionality is very close to the JGF sequential version. It
creates a RayTracer object, initialises it with a scene to render and
then sends it a message to render the scene, specifying image size
by means of an Interval object:
RayTracer rt = new RayTracer();
Scene sc = ... // create scene to render
rt.initialise(sc);
Interval interval = new Interval(0,500);
Image result = rt.render(interval);

The concrete partition aspect for this example intercepts the
creation of the RayTracer object and creates a set of aspect-
managed RayTracer objects. The concrete partition aspect
broadcasts the call to method initialise to all the new RayTracer
objects. It also broadcasts the call of method render, using a
different interval for each RayTracer object and joins partial
results produced by each one (this is a typical implementation of a
simple farm partition):

RayTracer farm[]=new RayTracer[numberOfWorkers];

RayTracer around() : call (RayTracer.new()) {
 for(i=0; i<numberOfWorkers; i++)
 farm[i] = new RayTracer();
 return(farm[0]);
}

void around(/*scene*/) :
 call (RayTracer.initialise(..)) {
 for(int i=0; i<numberOfWorkers; i++)
 farm[i].initialise(/*scene*/);
}

Image around(/* interval */) :
 call (RayTracer.render(..)) {
 for(int i=0; i<numberOfWorkers; i++)
 res[i] = farm[i].render(/* subinterval*/);
 ... //join sub-images saved in res array
 return(/*merged subimages*/);
}

In the above example, array farm stores the references to aspect-
managed objects. Element zero of the array is used as the group
front-end: it executes calls to RayTracer objects that are not
intercepted by the partition aspect. We chose to perform explicit
calls (i.e., new, initialise and render calls), instead of calling
proceed to allow specific advising of joinpoints introduced by this
partition aspect. Also note that all advices also must include
!within(…) to avoid recursive advices (the within pointcut
designator (PCD) is omitted above for simplicity). This aspect can
be deployed with pertarget instantiation to support advices on
multiple RayTracer instances.

The concurrency aspect spawns a new thread for each call to
initialise (code for an asynchronous call of method render is also
possible but trickier, as it involves the creation of a future object):
void around() : call (RayTracer.initialise()) {
 (new Thread() {
 public void run() {
 proceed();
 }
 }).start();
}

Distribution aspects redirect local object creations/calls to remote
object instances. The caller local aspect plays the role of
traditional proxies. However, a fake local object is required due to
type system compliance. The following code presents a sketch of
the code for the ray tracer benchmark:
RayTracer around() : call (RayTracer.new()) {
 // request object creation to remote factory
 // associate remote object to local fake
 return(/*fake local object*/);
}

void around() : call (RayTracer.initialise()) {
 // redirect call to remote object
}

Image around() : call (RayTracer.render(...)) {
 // redirect call to remote object
 return(/*remotely rendered image*/);
}

Table 1 presents combinations of these modules and their
purpose. By modularising parallelisation concerns into multiple
aspects it is possible to manage multiple configurations of a
parallel application and to deploy the one that more adequately
matches the target platform. When the target platform is a single
processor machine, only core functionality is deployed. On
multiprocessor machines, the concurrency module is included as
well. However, we keep the choice over whether we include the
partition module, depending on the type of parallel application
(e.g., in branch and bound applications partition module usually is
not required).

Table 1. Deployable parallel applications

Partition
M

odule

C
oncurrency
M

odule

D
istribution
m

odule

Purpose

No No No Tidy up core functionality, debugging,
single processor machines

Yes No No Tidy up partition strategy, debugging
No /
Yes Yes No Shared memory parallel machines

(SMP/Multi-core)
Yes Yes Yes Distributed memory machines/Grids

No No /
Yes Yes Distributed application

Aspect precedence is of particular importance in this approach.
Partition code has the highest precedence. Contrary to the effect
achieved by AspectJ’s precedence mechanism, advice of partition
code is always the first to execute, including after advice. This is
required since partition code may introduce new objects and
method calls that can be intercepted by other aspects. In the
previous ray tracer benchmark, both concurrency and distribution
aspects should be applied to aspect-managed ray tracer objects.

Order of precedence of concurrency and distribution determines
the difference between client activated and server activated
threads [11]. Both precedences achieve asynchronous remote
method invocations. When concurrency has higher priority,
threads are created to perform all remote communication in a
separate local thread running on a client node, to hide network
latencies and to increase network bandwidth usage.

The precedence rules ensure that parallelisation concerns are
composed in the right order. However, in this composition model,
each aspect only applies to joinpoints introduced by one previous
module (i.e., with the next higher precedence, in the precedence
list). For instance, it does not make sense to apply the distribution
module to jointpoints from the core functionality and from the
partition aspect. Replacing the explicit method calls in aspects by
calls to proceed can enforce this behaviour; however, our
experience reveals that this becomes trickier, since it depends on
the particular implementation of the aspect weaver. Another
alternative is to use the within PCD to specifically advise a single
module, but it negatively affects the flexibility to assemble
parallel applications, as it reduces the range of possible
compositions.

A description of the approach, to modularise parallelisation
concerns, from a parallel computing perspective, as well as a
detailed case study, including performance figures, can be found
in [17].

3. REUSABLE MODULES
Having modularised partition, concurrency and distribution
concerns, the next step is to build reusable modules for these
concerns. The modules are abstract aspects that are developed on
the basis of abstract pointcuts and marker interfaces.
Reusable implementations based on abstract pointcuts follow the
template advice idiom [7] that is extensively used in [8]. An

abstract aspect defines the reusable crosscutting implementation.
Reusable code is applied to a case-specific situation by creating a
concrete aspect that inherits the logic from the abstract aspect,
usually a set of abstract pointcuts and methods. The pointcuts are
defined by the concrete aspects to specify the case-specific
joinpoints. Inherited methods configure the logic defined in the
abstract aspect by defining case-specific logic that binds the
reusable part to the case-specific part.
Marker interfaces are used to implement mixin composition [3].
Concrete aspects introduce implementation of marker interfaces
declared in the abstract aspect to case-specific classes. Joinpoints
originating from implementing classes are captured by the aspects
to apply the concern logic as with other. Marker interfaces are
preferable when the aspect implements a class based role.
The reusable partition module combines the two above
approaches. Each reusable aspect declares marker interfaces to
specify the classes whose instances are replicated (i.e., which
classes give rise to aspect-managed instances). Abstract pointcuts
are concretised to specify how method calls are executed by the
aspect-managed instances.
The reusable partition module implements the functionality to
transparently replicate objects and redirect/broadcast method calls
to aspect-managed objects. Method calls that are not captured by
the aspect run on a special object, the group proxy. The structure
of the reusable aspect (not shown here) is similar to the partition
code as presented in previous section. The main difference is that
in this case we replace references to class RayTracer by
interfaces, abstract pointcuts and calls to proceed. Figure 1
presents an example of the reuse of the partition aspect. Objects
of class RayTracer are replicated into all available processing
elements. Calls to method initialise are broadcasted to all objects
in this set (pointcut broadcastCall). Calls to method render are
also executed by all elements in the set but each object receives a
different argument (computed by method scatter, which is called
by aspect ObjectGridProtocol). For simplicity, code
implementing the merging of results of method render is not
shown.

aspect Partition extends ObjectGridProtocol {

declare parents: RayTracer implements Grid1D;

pointcut void broadcastCall() :
 call(* RayTracer.initialise()));

// calculates parameters of each scatterCall
Vector scatter(Object arg) {
 Vector v = new Vector();
 ... // splits arg into sub-intervals
 return(v);
}
pointcut scatterCall(..) :
 call (* RayTracer.render(..)) ...;

}
Figure 1 – Example of reusing of partition concerns

A complete description of the reusable aspects for partition can be
found in [16].
Reusable components for concurrency concerns provide
functionality to perform calls in separate threads and to manage
synchronisation among running threads [5]. Figure 2 presents an
example in which separate threads call method initialise.

public aspect Oneway extends OnewayProtocol {
 protected pointcut onewayMethodExecution() :
 (execution(* RayTracer.initialise(..)));

Figure 2 Reuse of OnewayProtocol
Distribution concerns can be modularised using aspects [15][17].
However, building reusable abstract aspects for distribution
seems to be harder. Traditional approaches require additional
tools to automate the generation of distribution code. Aspects can
improve on such tools by (1) reducing the amount of generated
code, (2) avoiding invasive changes on the original classes [4] and
(3) by using code templates [19]. Development of reusable
modules in the form of abstract aspects may require an extensive
usage of introspection features of Java and AspectJ, due to the
specificity of Java RMI.

4. COMPOSING (REUSABLE) MODULES
Aspect composition provides a particularly interesting subject to
parallel computing. Composition of partition strategies has been
well studied on skeleton-based approaches [13]. The idea is to
combine partition strategies to achieve more sophisticated
parallelisations. One common strategy is to have a two-level farm
parallelisation, where each worker is also a farmer (with its own
workers). Such a partition strategy is of particular importance to
large-scale parallel applications, in which a single level farm risks
becoming a bottleneck. With aspect-oriented (AO) modules this
composition can be implemented by specifying aspects (e.g., a
partition) that act on joinpoints introduced by another aspect. In
our example in Figure 1, this would mean that each RayTracer
object in the set would also be a set of objects. Composing
partition aspects can be done by capturing just the joinpoints
originating from a specific aspect (e.g., the first-level partition
aspect), which can be implemented using the AspectJ within PCD.
A simple implementation based on non-reusable aspects requires
the duplication of partition code presented in section 2:
aspect partitionLevel1 {
 RayTracer around(): call (RayTracer.new()) {
 // same as before
 }
 void around(): call (RayTracer.initialise()){
 // same as before
 }
 Image around(): call (RayTracer.render(...)){
 // same as before
 }
}

aspect partitionLevel2 {
 RayTracer around(): call (RayTracer.new())
 && within(partitionLevel1) {
 // same as before
 }
 void around(): call RayTracer.initialise())
 && within(partitionLevel1) {
 // same as before
 }
 Image around(): call (RayTracer.render(...)){
 && within(partitionLevel1) {
 // same as before
 }

Composing concurrency and distribution aspects is also of
interest. When using a two-level farming it may be more efficient
to only distribute objects of the first level of the farm. This type of

composition closely matches the architecture of clusters of SMP
machines. To achieve such composition, the distribution aspect
should be applied only to the first-level partition aspect. This can
be also achieved including within(partitionLevel1) in all
pointcuts.
Composing reusable aspects is harder. For instance, when using
marker interfaces it is not possible to distinguish from aspect-
managed instances of level1 and level2 farm. This requires the
programmatic support of associations between objects and
aspects. A similar problem occurs when explicit method calls are
replaced by proceed to develop reusable aspects, no longer being
possible to advise a particular aspect by means of the within
designator.

5. RELATED WORK
Skeletons and templates are alternative ways to achieve the
separation between core functionally and parallelisation
strategies. In functional languages, the parallelisation strategy can
be modelled by higher-order functions that accept functions as
parameters [13]. Templates and generative patterns provide
generic classes for the parallelisation strategy that can be refined
to include the core functionality [1]. CO2P3S [18] provides an
example of such a system: code that models the parallelisation
strategy is generated and the user must provide application-
dependent sequential hook methods.
Skeletons and templates are very close to our AO approach in that
both have a similar goal: to modularise the parallelisation strategy
from core functionally. One main difference between skeletons
and reusable AOP modules is how parallelisation strategies and
core functionality are composed together to yield a parallel
application. In the former approach, core functionality must be
decomposed into code fragments to fill the hooks provided by the
skeleton/template. In AOP approaches this composition is based
on joinpoints, which results in less invasive changes to the core
functionality. The advantage of AO parallel programming is due
to the richer set of mechanisms available to perform compositions
between core functionality and parallelisation strategies. On the
other way, templates and skeletons have the advantage to enforce
stricter rules for compositions and the correct (syntactic)
composition can be checked at compile-time (for example
ensuring that parallelisation modules are stacked in the right
order).

6. CONCLUSION
This paper discusses an AO approach to modularise
parallelisation concerns, namely object partitioning, concurrency
management and distribution. The approach leverages the
superior compositional capabilities of AOP to obtain a higher
reuse potential from parallelisation concerns.

Composing non-reusable aspects can be performed using current
AOP capabilities. However, an adequate model to compose
reusable aspects in a general way is left for future work.

7. ACKNOWLEDGMENTS
This work is supported by PPC-VM (Portable Parallel Computing
based on Virtual Machines) project POSI/CHS/47158/2002,
funded by Portuguese FCT (POSI) and by European funds
(FEDER). Miguel P. Monteiro is partially supported by FCT
under project SOFTAS (POSI/EIA/60189/2004).

8. REFERENCES
[1] Aldinucci, M., Danelutto, M., Teti, P., An advanced

environment supporting structured parallel programming in
Java, Future Generation Computing Systems, vol. 19, 2003.

[2] Andrews, G., Foundations of Multithreaded, Parallel, and
Distributed Programming, Addison Wesley, 2000.

[3] Bracha G., Cook W., Mixin-Based Inheritance. ECOOP/
OOPSLA 1990, Ottawa, Canada, October 1990.

[4] Ceccato, M., P. Tonella, P., Adding Distribution to Existing
Applications by means of Aspect Oriented Programming,
IEEE SCAM’04, September 2004.

[5] Cunha, C., Sobral, J., Monteiro, M., Reusable Aspect-
Oriented Implementations of Concurrency Patterns and
Mechanisms, AOSD’06, Bonn, Germany, March 2006.

[6] Foster, I., Kesselman, C., The GRID2 Blueprint for a New
Computing Infrastructure, Morgan Kauffman, 2004.

[7] Hanenberg, S., Schmidmeier, A., Unland, R., AspectJ Idioms
for Aspect-Oriented Software Construction, 8th EuroPLoP,
Irsee, Germany, June 2003.

[8] Hannemann, J., Kiczales, G., Design Pattern implementation
in Java and in AspectJ, OOPSLA 2002, Seattle, USA,
November 2002.

[9] Harbulot, B., Gurd, J., Using AspectJ to Separate Concerns
in Parallel Scientific Java Code, AOSD 2004, Lancaster,
UK, March 2004.

[10] Kiczales G., Lamping J., Mendhekar A., Maeda C., Lopes
C., Loingtier J., Irwin J., Aspect-Oriented Programming.
ECOOP’97, Jyväskylä, Finland, June 1997.

[11] Lea, D., Concurrent Programming in Java, Second edition,
Addison-Wesley, 1999.

[12] Matsuoka S., Yonezawa A., Analysis of Inheritance Anomaly
in Object-Oriented Concurrent Programming Languages. In
Research Directions in Concurrent Object-Oriented
Programming (Agha G., Wegner P., et al., editors), pp. 107-
150, MIT press, 1993.

[13] Rabhi, F., Gorlatch, S. (ed): Patterns and Skeletons for
Parallel and Distributed Computing, Springer, 2003.

[14] Smith, A., Bull, J., Obdrzálek, J., A Parallel Java Grande
Benchmark Suite, Supercomputing 2001, Denver, USA,
November 2001.

[15] Soares, S., Loureiro, L., Borba, P., Implementing
Distribution and Persistence Aspects With AspectJ,
OOPSLA '02, Seatle, USA, November 2002.

[16] Sobral, J., Cunha, C., Monteiro, M., Aspect-Oriented
Pluggable Support for Parallel Computing, to be presented
at VecPar’06, Rio de Janeiro, Brasil, June 2006.

[17] Sobral, J., Incrementally Developing Parallel Applications
with AspectJ, to be presented at IEEE IPDPS’06, Rhodes,
Greece, April 2006.

[18] Tan, K., Szafron, D., Schaeffer, J., Anvik, J. MacDonald, S.,
Using Generative Design Patterns to Generate Parallel
Code for a Distributed Memory Environment, PPoPP'03, San
Diego, California, USA, June 2003.

[19] Tilevich, E., Urbanski, S., Smaragdakis, Y., Fleury, M.,
Aspectizing Server-Side Distribution, IEEE ASE 2003,
Montreal, Canada, October 2003.

