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Abstract
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A concurrent system is a computer system with components that run in parallel and interact
with each other. Such systems are ubiquitous and are notably responsible for supporting the
infrastructure for transport, commerce and entertainment. They are very difficult to design and
implement correctly: many different modeling languages and verification techniques have been
devised to reason about them and verifying their correctness. However, existing languages and
techniques can only express a limited range of systems and properties.

In this dissertation, we address some of the shortcomings of established models and theories
in four ways: by introducing a general modal logic, extending a modelling language with types
and a more general operation, providing an automated tool support, and adapting an established
behavioural type theory to specify and verify systems with unreliable communication.

A modal logic for transition systems is a way of specifying properties of concurrent system
abstractly. We have developed a modal logic for nominal transition systems. Such systems are
common and include the pi-calculus and psi-calculi. The logic is adequate for many process
calculi with regard to their behavioural equivalence even for those that no logic has been
considered, for example, CCS, the pi-calculus, psi-calculi, the spi-calculus, and the fusion
calculus.

The psi-calculi framework is a parametric process calculi framework that subsumes many
existing process calculi. We extend psi-calculi with a type system, called sorts, and a more
general notion of pattern matching in an input process. This gives additional expressive power
allowing us to capture directly even more process calculi than was previously possible. We have
reestablished the main results of psi-calculi to show that the extensions are consistent.

We have developed a tool that is based on the psi-calculi, called the psi-calculi workbench.
It provides automation for executing the psi-calculi processes and generating a witness for a
behavioural equivalence between processes. The tool can be used both as a library and as an
interactive application.

Lastly, we developed a process calculus for unreliable broadcast systems and equipped it
with a binary session type system. The process calculus captures the operations of scatter and
gather in wireless sensor and ad-hoc networks. The type system enjoys the usual property
of subject reduction, meaning that well-typed processes reduce to well-typed processes. To
cope with unreliability, we also introduce a notion of process recovery that does not involve
communication. This is the first session type system for a model with unreliable communication.
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Sammanfattning på Svenska

Datorsystem är en stor del av vårt dagliga liv. De stöder infrastruktur för både
transport, handel och underhållning. Vi förlitar oss exempelvis på distribuer-
ade datorsystem för att bearbeta kreditkortsbetalningar på ett tillförlitligt och
säkert sätt. Vi litar på att flygplanets datorsystem för autopiloten fungerar som
avsett vid alla tillfällen. Vi förväntar oss att det distribuerade mobiltelefon-
nätet ska hantera telefonsamtal eller dataöverföring medan vi rör oss från ett
område till ett annat. Vi förväntar oss också att den moderna datorns proces-
sor korrekt kan beräkna resultat genom att skifta vår data mellan sina många
multi-core processorer.

Det vanligaste sättet att fastställa att sådana system fungerar korrekt, dvs
som det är tänkt, är testning. Det vill säga, genom att helt enkelt förse ett
system med test-indata, och sedan kontrollera att responsen är det förväntade
resultatet, då utför vi testning. Emellertid har testning sina begränsningar.
För komplexa system är det inte görbart att räkna upp alla möjliga inputs och
kontrollera om systemets svar är korrekt. Att exempelvis ringa alla möjliga
nummer i ett mobilnät samtidigt som du besöker varje möjlig plats för att kon-
trollera att rätt mottagare tar emot samtalet, är helt enkelt inte genomförbart.
Således vad gäller testning, kan vi aldrig hoppas på att visa en komplett ko-
rrekthet för ett system som används i praktiken. En av de datavetenskapliga
pionjärerna, E. W. Dijkstra, uttryckte det vältaligt i sin essä om strukturerad
programmering: "testning av program kan användas för att påvisa förekom-
sten av buggar, men aldrig deras frånvaro!"

Ett alternativt, men kompletterande, tillvägagångssätt är att se ett datorsys-
tem som en matematisk modell, en modell som man kan resonera kring med
hjälp av matematiska verktyg. Modellerna ger oss möjlighet att få en mer ex-
akt förståelse och försäkran om korrekthet. En modell är ett abstrakt beteende
av ett system med den exakta innebörden av dess funktion. Till exempel kan
vi överväga en modell av ett nätverkssystem med kapacitet för in- och ut-
matning av data, över en gemensam kommunikationskanal vars komponenter
kommunicerar parallellt som vi abstraherar från, genom att bortse från trans-
portmedlen för dessa meddelanden över ett nätverk.

Vi kan ha modeller på olika abstraktionsnivåer: från ganska enkla modeller
som är lätta att förstå och bedöma korrekthet, till modeller som ligger nära hur
själva systemet realiseras. Genom att ha dessa formella modeller av system på
olika abstraktionsnivåer, kan vi utforska olika aspekter av ett system och även
relatera dem på rigorösa sätt. En av önskningarna är att hitta en motsvarighet
mellan de modeller som identifierar matchande komplext beteende med ab-
strakt beteende samtidigt som korrekthetsegenskaper behålls. Till exempel, i



den abstrakta modellen kan vi ha ett uttalande om att skicka ett meddelande,
medan meddelandet i en konkret modell kan kopieras till en buffert som sedan
hanteras av en delprocess som använder internetprotokoll för att överföra den
via internet. Det väsentliga här är att ett meddelande skickas. En lämplig
likvärdighet skulle relatera dessa modeller. Således handlar tillvägagångssät-
tet om att hantera komplexitet. Vanligtvis finns det två modeller: en abstrakt
och en konkret, som kallas specifikation och genomförande, respektive. Efter-
som den abstrakta modellen oftast har mindre beteende och komplexitet, är
det mer hanterbart att upprätta korrekthetsegenskaper, och för detta kan många
tekniker användas. Problemet att fastställa korrektheten i genomförandet blir
sedan att hitta en lämplig likvärdighet mellan specifikation och genomförande.

Genom att ha formella modeller, kan vi också resonera om system med
större självförtroende och specificera intuitiva egenskaper som ska hålla över
system. Vi kan kortfattat säga, till exempel, vad det innebär för ett system att
hamna i dödläge, och vilka villkor ett system bör ha för att detta aldrig ska
inträffa. Vi kan konstatera och hitta exakt om ett system är säkert, det vill säga
om det finns möjlighet att systemet någonsin når ett tillstånd som är felaktig.
Vi kan också konstatera om ett system har en livlig egenskap, det vill säga
huruvida någonting måste hända i systemet. En abstrakt modell är värdefull
i sin egen rätt oavsett om det är formellt verifierat att matcha genomförandet
eller inte. Exempelvis kunde den ledande leverantören av cloud computing,
Amazon, utveckla och implementera aggressiva prestandaoptimeringar i sina
system där självförtroende vunnits genom att ha en formell modell, som inte
har en formell korrespondens till genomförandet.

Studiet av grunden till dessa system är också viktigt. Genom att ha en solid
grund kan vi förstå hur kraftfulla systemen är, det vill säga vad vi kan göra
med dem; vi kan också avgöra vilken typ av korrekthetsegenskaper som vi
någonsin kommer förmå visa.

Det finns en uppsjö av modelleringsspråk och teorier om system. Befintliga
språk och tekniker kan dock bara uttrycka en begränsad krets av system eller
egenskaper, och saknar automatiskt resonemang.

I denna avhandling tar vi itu med några av nackdelarna med modellsystem
genom att utvidga uttrycksfullheten i etablerade modelleringsspråk, utveckla
verktyg för automatisering, undersöka modallogik för övergångssystem, och
anpassa ett väletablerat session typ system för att hantera opålitlig kommu-
nikation. Vi undersöker i första hand samtidigt kommunicerande system. I så-
dana system kommunicerar processer genom meddelandeöverföring (skickar
meddelanden) parallellt. Ett exempel som vi redan nämnt: den tidigare näm-
nda mobiltelefonnätet, multi-core processorer, nätverksdatorsystem, och
många andra.

Vi förlänger ramverket för psi-calculi, ett modelleringsspråk för samtidiga
system, med en mer kraftfull funktion för inmatning, och utrustar psi-calculi
med ett typsystem. Vi utvecklar ett verktyg för psi-calculi som beräknar
körningar av en psi-calculi process, och genererar beteendemässiga överens-



stämmelser. Vi har infört det binära session typ systemet för system med
opålitlig kommunikation, och slutligen har vi undersökt logik för godtyckliga
övergångssystem.
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1. Introduction

Computer systems are a prominent fixture in our daily lives. Computer sys-
tems support infrastructure for transport, commerce and entertainment. We
rely on distributed computing systems to process credit card payments re-
liably and securely. We trust that the aircraft’s onboard autopilot computer
system works as intended at all possible times. We expect the distributed mo-
bile phone network to seamlessly carry phone calls or data transfer while we
are roaming about. We also expect that the modern computer processor to
correctly compute results by shifting our data between its multiple core pro-
cessing units.

The most common way of determining that such systems work correctly,
i.e. as intended, is testing. That is, we perform testing by simply probing
a system with test input data, and then checking that the response is the ex-
pected result. However, testing has its limitations. For complex systems, it is
not possible to list all possible inputs and check whether the system response
was correct. For example, dialling every possible number in a mobile net-
work while visiting every possible location and checking that the right target
receives the call is simply infeasible. Thus with testing, we can never hope to
show the complete correctness of a real-world system. One of the computer
science pioneers E. W. Dijkstra put it eloquently in his essay on structured
programming1 “program testing can be used to show the presence of bugs, but
never to show their absence!”

An alternative, but supplementary, approach is when one sees a computer
system as a mathematical model that can be used to reason about with math-
ematical tools. The models allow us to gain more precise understanding and
assurance of correctness. A model is an abstraction of a behaviour of a system
with a precise meaning of its operations. For example, we may consider a
model of a networked system to have capabilities of inputting and outputting
data over a shared communication channel, and parallel interacting compo-
nents, where we abstract from, by disregarding, the means of transporting
those messages over a network.

We can have models at different abstractions levels: starting from quite sim-
ple models that are more manageable to understand and assess for correctness,
to models that are close to how the actual system is realised. By having formal
models of systems at various abstractions, we can explore different aspects of
a system and also relate them in rigorous ways. One of the desires is to find

1The note EWD-268.
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an equivalence between the models that equates matching complex behaviour
with abstract behaviour while preserving correctness properties. For instance,
in the abstract model, we may have a statement of sending a message, while
in a concrete model the message may be copied to a buffer that is then han-
dled by a subprocess which uses the internet protocol to transfer it over the
internet. The essential is that a message is sent. An appropriate equivalence
would relate these models. Thus, the approach is about managing complexity.
Typically, there are two models: an abstract and concrete that are referred to
as specification and implementation, respectively. Since the abstract model
usually has less behaviour and complexity, establishing the correctness prop-
erty is more manageable for which many techniques can be used. Then, the
problem of establishing the correctness of implementation becomes finding an
appropriate equivalence between specification and implementation.

By having formal models, we can also reason about systems with more con-
fidence and pin down intuitive properties that should hold across systems. We
can concisely state, for example, what it means for a system to deadlock, and
what conditions should hold for a system for this to never occur. We can state
and find precisely whether a system is safe, that is, whether nothing bad will
happen. We can also state whether a system has a liveness property, that is,
whether something must happen in the system. An abstract model is valuable
in its own right whether it is formally verified to match implementation or not.
For example, the leading cloud computing provider Amazon was able to en-
gineer and implement aggressive performance optimisations in their systems
with confidence gained by having a formal model [24], which does not have a
formal correspondence to the implementation.

The study of foundations for these models is also important. By having
solid foundations, we can understand how powerful the models are, that is,
what we can do with them; we can also determine what kind of correctness
properties we can ever be able to show.

There are a plethora of modelling languages and theories of systems. How-
ever, existing languages and techniques can only express a limited class of
systems or properties, and lack automated reasoning.

In this thesis, we address some of the disadvantages of modelling systems
by extending the expressiveness of established modelling languages, devel-
oping tools for automation, investigating modal logics for transition systems,
and adapting a well-established session type system to cope with unreliable
communication. We primarily investigate modelling languages for concur-
rent communicating systems. In such systems, processes communicate by
using message passing (sending messages) concurrently. Example of which
we already mentioned: the aforementioned mobile phone network, multi-core
processors, networked computer system, and many others.

We extend the psi-calculi framework, a modelling language for concurrent
systems, with a more powerful operation for input, and equip psi-calculi with
a type system. We develop a tool for psi-calculi that computes executions of
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a psi-calculi process, and generates behavioural equivalences. We have intro-
duced a binary session type system for a system with unreliable communica-
tion, and finally we have investigated logics for arbitrary transition systems.
We give a brief introduction to each in the following.

Psi-calculi
One of the established modelling languages and techniques for modelling con-
current communicating systems is by using a process calculus. A process
calculus is a formal language where as opposed to a programming language
the number of operations is kept to a minimum while still retaining full ex-
pressive power. A process calculus is typically equipped with a notion of a
transition system that describes the means that a process evolves from one
state to another, denoting a behaviour of a process, and a behavioural equiv-
alence with algebraic properties. In a process calculus for communicating
systems, one finds operations for sending and receiving data and a notion
of concurrency. There have been many process calculi introduced to model
various phenomenon found in concurrent system programming like the loca-
tion of processes, security related primitives, point-to-point communication,
broadcast communication and many others. Psi-calculi is a process calculus
framework that provides a single theory to unify those many process calculi,
and to reduce the effort of developing new process calculi as a psi-calculus.
Many desirable properties, standard for process calculi, hold for every single
instantiation of this framework provided certain requirements are met.

Types for psi-calculi
A type system is a means of assigning a type to various constructs of program-
ming language. A type system ensures that the program composes according
to the type system rules, making the runtime behaviour of a programming lan-
guage safe with respect to the type system. Programs that satisfy the rules of
the type system are called well-typed. For example, in many typed languages
there is no type assignment for the expression 5 + "foobar" that applies ad-
dition to 5 of type integer and "foobar" of type string. Thus, the type system
rules out programs with runtime errors by making the programs type safe. A
commonly desired property of type systems is that the well-typed programs
evolve to well-typed programs. This feature is called the subject reduction
property. For example, 5 + 3 has type integer, and program evolving from
this, by computing, to the value 8 has also type integer. Most of the main-
stream languages make use of type systems of varying degree of power, like
the C programming language, C++, and Java.

The original psi-calculi theory is untyped [5]. In a sense, every construct
and operation in the psi-calculi is deemed safe. In other words, all the chan-
nels and data have the same single type. This makes using psi-calculi theory
somewhat complicated. One then needs to resort to expressing the data invari-
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ants, such as the one mentioned in the above paragraph, operationally, that is,
by treating malformed data specially in the model.

We extend psi-calculi with a simple type system, called sorts. We sort the
channels and data terms, that is, names, terms, patterns and variables. We force
the substitution function to respect the sorts. This allows us to capture even
more process calculi much closer than it was possible with the original psi-
calculi, such as value passing CCS, polyadic synchronisation pi-calculus, and
polyadic pi-calculus. This, gives assurance that the theory is general enough
and would be useful for defining new process calculi. We, of course, show that
sorted psi-calculi (with pattern matching) has the subject reduction property.

Pattern matching in psi-calculi
In this thesis, we have extended psi-calculi with a more general operation for
data input. The input operator now can use pattern matching for matching data
that not only matches on the structure of the data but also can use arbitrary
computation to determine the matches. This extension allows us to capture as
instances of psi-calculi even more process calculi and more faithfully. The ex-
tension also introduces non-deterministic behaviour on input, which is useful
for some applications. Most significantly it allows for straightforward mod-
elling of security primitives, which are essential for many distributed comput-
ing systems, such as many of the protocols used on the Internet.

A tool for psi-calculi
We have implemented a tool for automated reasoning using the psi-calculi
framework including the sort system. The tool is called the psi-calculi work-
bench, or PWB for short. The tool provides an interactive interface to execute
and inspect all the possible state transitions that a psi-calculi process can make.
We also implement an automatic behavioural equivalence generation. That is,
the tool checks whether two psi-calculi processes are behaviourally equivalent
by generating a witness relation2. We implement two versions of both the exe-
cution of transitions and equivalence generation: (1) the strong version where
transitions are followed exactly; and (2) a weak version where the transitions
corresponding to internal actions are ignored.

The language of psi-calculi that the tool implements is slightly restricted
from the full psi-calculi; however, on top of the standard point-to-point se-
mantics, the tool implements the unreliable broadcasting communication of
broadcast psi-calculi [7].

The tool is parametric in the same way as psi-calculi. That is, it is pos-
sible to implement various other calculi by using the same code-base just by
instantiating the provided API. To make execution of transitions computable,
we formalised and implemented what is called symbolic semantics. That is,
the tool generates execution of transitions with a logical condition that have to

2A bisimulation relation.
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be satisfied for the transition to be valid. For solving the satisfaction problem
of those conditions, one can interface PWB with an external constraint solver
such as SMT solver.

Session types for unreliable broadcast communication
Standard type systems assign types to constructs and values of computation.
Session types, a kind of behavioural types, instead describe the steps of com-
putation that are taken to produce a result, i.e., its behaviour. These kind
of types guarantee even stronger type safety properties. For example, that
there are no communication mismatch errors where processes deadlock be-
cause both of them are expecting a value to be sent from each other. Session
types are also an abstract specification of a protocol where the type-checking
relates an implementation to its specification.

When modelling systems at a low abstraction level, the communication is
unreliable, that is, the messages that are sent in the system may be lost. Eth-
ernet is an example of such a system. Thus far, session type systems were
formalised for reliable systems only. However, unreliable systems also fea-
ture structured communication that is amenable to abstract specification using
session types.

Ad-hoc and wireless sensor networks on top of unreliable communica-
tion also have broadcast communication, where nodes send messages to their
neighbouring nodes all at once.

We introduce a process calculus for systems with unreliable broadcast. We
identify two common operations in those systems, namely, scatter and gather.
Scatter corresponds to simply broadcasting a message, while gather aggre-
gates messages received from multiple neighbouring nodes. The processes are
capable of sending and receiving, as well as initiating a session with nodes
by unreliable broadcast. The process calculus also contains a notion of pro-
cess location and a connectivity graph on locations that affects communication
range. To cope with unreliability, we have introduced recovery processes. A
process may non-deterministically recover at any time and drop all current
sessions. We have used the standard (binary) session types for our calculus.
Our type system enjoys the subject reduction property.

Modal Logics
Another way of expressing and checking properties like safety and liveness is
a modal logic. Usually, the modal formulas describe the necessity and possi-
bility of a system to do a certain action in a certain state, that is, the logic acts
as an observer of a system’s behaviour. The other formulas typically are that of
standard propositional or predicate logic, which includes predicates that hold
only in certain states of a system, and logical conjunction, disjunction, and
negation.

Modal logic formulas thus can be seen as abstract specifications of a system.
With a powerful enough logic we can express properties of a system such as
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invariants that hold for every state of a system (also known as safety property),
and properties that a system must satisfy eventually (also known as liveness
property). Modal logics such as CTL and LTL have been successfully applied
in computer system verification with push-button automatic verification know
as model checking.

In process calculi and many other models of concurrent systems, the no-
tion of a name plays an important role. Names are used to represent channels,
variables, and binding occurrences. In such nominal systems, the names are
also emitted as part of the observable behaviour, actions, that typically include
an extrusion of the scope of a name. We introduce the notion of a nominal
transition system that captures the name binding in the actions, and an infini-
tary modal logic with modality formulas capable of observing such actions.
We formalise the labelled bisimulation for the nominal transition systems and
show that the logic is not capable of differentiating between behaviourally
equivalent systems, and that logically equivalent processes are behaviourally
equivalent. Thus, our logic is adequate with regard to the behavioural equiva-
lence. Our logic is more powerful than previous logics for nominal transitions
systems, as formulas that quantify over names are expressible in our logic.
Many standard formulas like universal quantification, and recursion (least and
greatest fixpoint) are easily expressible in our logic too. Our logic subsumes
many existing logics for nominal transition systems, and their adequacy results
follow from our adequacy results.

1.1 Thesis Organisation
This dissertation is a comprehensive summary: it is split into two major parts.
In the first part, we cover the background in Chapter 2 and contributions in
Chapter 3. In the second part, we include the copies of papers that constitute
the thesis.

Chapter 2 gives some background to the reader on modelling languages
and techniques that we use in the papers. In Section 2.1, we gradually and
informally introduce CCS, the pi-calculus, psi-calculi process calculi.

In Section 2.2, we introduce prominent techniques of giving meaning to
process calculi: structural operational semantics and reduction semantics. In
Section 2.3, we provide a description of bisimilarity. In Section 2.4, we give
a description of modal logics for transition systems. Finally, we end the back-
ground section 2.5 on binary session types.
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2. Background on Concurrent System
Modelling

2.1 Process Calculi
In the thesis, we use formal language based approach for modelling concur-
rent systems. In particular, we use the approach which is generally referred to
as process calculi, introduced and coined by Robin Milner with the work on
the calculus of communicating systems [21]. A process calculus is a formal
language much like a programming language having syntax and behaviour
but where the number of operators is kept to a minimum. In this analogy,
a process (agent) is a program. A concurrent system is then modelled as a
process. This kind of approach is advantageous over other frameworks (e.g.,
automata theory, Petri nets) that it is inherently compositional in the sense that
we model larger systems by composing them from smaller processes. Like-
wise, we can study a system by decomposing it into smaller systems that may
be more amenable to formal treatment.

Formally, this is done by defining the syntax of operators representing states,
and operational semantics by defining a mathematical relation denoting the
evolution of a system from state to state. The use of syntax gives us powerful
and yet simple to use mathematical tools for defining relations and proving
properties of systems, namely structural recursion and induction. This method
called structural operational semantics was first presented by Plotkin [28] for
programming languages. It is usually a maxim to minimise the number of op-
erators in the language in such a way that the captures the modelled system
adequately. In practice, this translates to simpler definitions, proofs and tools.

There is a prominent alternative means to give meaning to the syntax called
denotational semantics that, instead of describing state transitions, maps the
processes to a mathematical object defined in, for example, set theory, domain
theory [29], etc. However, for concurrent systems, such denotations tend to be
more complicated than the operational semantics (cf. denotational semantics
for the pi-calculus [12, 15]).

It is worth pointing out that there is strongly related line of work to process
calculi, which is generally referred to as process algebra [3]. It based on the
universal algebra view of processes. The processes are again a composition of
operators, however, they are typically first-order algebra operators and speci-
fied using algebraic equational theories. However, the line is blurred and both
lines of work use similar methods.
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The idea is then to capture phenomena occurring in a distributed concur-
rent system by determining operators and giving them semantics that would
express the behaviour of the studied system. The process calculi that we will
consider build on well-recognised phenomena such as (1) message passing
where processes interact by transmitting message over some communication
medium, (2) concurrency where the interaction of processes is interleaved,
(3) non-determinism where a behaviour of a process is not uniquely deter-
mined by the state, (4a) point-to-point communication where communication
is only possible between two processes, (4b) broadcast communication where
the communication is generalised to one-to-many communication, (5a) syn-
chronous communication where the processes exchange messages at the same
time, and (5b) asynchronous communication where a message received may
have been sent in the past.

Process calculi may be broadly distinguished between pure and applied pro-
cess calculi. The former designed to study the phenomena of concurrent sys-
tems in the purest form with minimal operators and semantics that describes
it, while the latter sacrifices purity for the breadth of expressible systems, and
uncomplicated description of models. Many pure process calculi have been
devised over the years and used to study various concurrent systems: the afore-
mentioned calculus of communicating systems [21] that captures synchroni-
sation between two processes, the pi-calculus [22, 23] with point-to-point syn-
chronous message-passing communication with mobility (briefly, reconfigura-
tion of the process connectivity), the asynchronous pi-calculus [17, 8] obtained
by omitting (!) operators from the pi-calculus to achieve asynchronous point-
to-point communication semantics, the broadcast pi-calculus [11] generalisa-
tion to one-to-many, the concurrent constraint calculus [9] with synchronisa-
tion enabled by constraints, the ambient calculus [10] explores the notion of
hierarchical locality, the distributed pi-calculus features locations and process
migration between them.

There is a plethora of applied process calculi, since they are typically intro-
duced in publications to study a particular system or a verification technique.
There are simply too many to mention, and we note just the most prominent
ones that strive for generality. One common feature is that most of them are
based on the Milner, Parrow and Walker’s pi-calculus, which is a testament
to a good balance of abstraction and language primitives. The applied pi-
calculus devised by Abadi and Fournet [1] extends the pi-calculus with what
is essentially a concurrent storage, with structured data for channels, and with
formulas for branching conditions. The spi-calculus by Abadi and Gordon [2]
is similar in scope and precursor to the applied pi-calculus but it is more direct
at introducing cryptographic primitives.

The proliferation of process calculi that are based on the pi-calculus sug-
gests that there may be a unifying theory, a super pi-calculus if you will. This
kind of unification is indeed a goal of the psi-calculi devised by Bengtson et
al. [5]. The psi-calculi framework is a generalisation of the pi-calculus. It gen-
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eralises the pi-calculus with arbitrary data and logic but keeps the semantics
as close as possible to the original. It does lose some of the simplicity of the
pi-calculus and thus falls under the applied calculi. However, many pure and
applied calculi mentioned above are expressible to various degrees of accuracy
in psi-calculi [5].

This thesis is concerned with the latter kind of process calculi, the applied
process calculi. Papers II and IV are directly concerned with the psi-calculi.
Paper I can be seen as a study of a semantics of more advanced process cal-
culi. Finally, Paper III introduces a process calculus with arbitrary data and
unreliable broadcast communication based on the pi-calculus.

In the following subsection, we give a brief informal description of syntax
and semantics of these process calculi.

2.1.1 Pure Process Calculi
The purpose of this section is to informally introduce the kind of operators
that are standard in process calculi. We start with the most prominent pure
process calculi: CCS (the Calculus of Communicating Systems) [21] and the
pi-calculus [22, 23], as they are almost universally used as the basis for other
pure and applied process calculi, and the ideas are the simplest to appreciate.

In the following, we first describe CCS. With CCS, we can express point-to-
point synchronisation (also known as rendezvous), non-determinism, and con-
currency. We then show how the pi-calculus generalises and builds on CCS.

Calculus of Communicating Systems
CCS processes perform actions. An action can be thought as a signal propa-
gating via the system of processes in such a way that its constituent processes
can observe it. Actions also formalise the notion of an external observer of a
process. Every action has two identities that are dual to each other. We can
think of one side as being an input and the other as an output. In this regard,
process actions are message passing, however, in CCS no data is exchanged.
This is perhaps the most basic operation we could imagine a process can per-
form. Formally, CCS does not fix the set of actions; the set is left open as a
parameter that we denote by A . In CCS, this operation is also coupled with
the sequencing operator. So, given any CCS process P, the following process

a.P

is an input prefixed process that can perform an input action a and continue
as P, and the following process

a.P

is an output prefixed process that can perform an output action a and likewise
continue as P. These two operators are collectively known as prefixes.
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We make use of the arrow notation when describing processes performing
actions. We write P a−→ P′ to mean that a process P performs an action a and
continues as P′. The above input prefix process behaviour can be written as
a.P a−→ P, and the output prefix process can be written as a.P a−→ P.

The most basic process in CCS is the process that does nothing and is de-
noted by 0.

To give an example of a CCS process, consider a process that generates
a clock signal twice. It can be described as two subsequent outputs of an
action tick, as follows CLOCK = tick.tick.0. The CLOCK process performs
an action tick and continues as tick.0, and again performs an action tick and
continue as 0, that is, it stops performing any actions:

CLOCK
tick−−→ tick.0 tick−−→ 0.

A corresponding component process would be inputting ticks with tick, the
dual action of tick, for example, COMPONENT = tick.0. The COMPONENT
process performs the tick action and stops as 0:

COMPONENT
tick−−→ 0.

Clearly, the notion of an action is an abstraction. In the example, the dual
actions of output tick and input tick represent signals on a wire originating
from opposite ends. It is helpful to think in terms of actions to build an under-
standing of how a process constructed from other processes behaves. This is
one of the ideas used to formalise the semantics of processes as we shall later
see in Section 2.2.

In the above example, we described processes and their behaviour individ-
ually. In order, to introduce concurrent interaction between processes we use
parallel composition of CCS. Given any CCS process P and Q parallel com-
position is the following

P | Q.

The composition behaves in terms of its constituent processes. It can be read
as P can perform an action and continue as P′ and Q stays still, thus the com-
posite system continues as P′ | Q, using the notation

P | Q a−→ P′ | Q.

Symmetrically, Q performs an action and continues as Q′ while P does noth-
ing, and the whole system then continues as P | Q′:

P | Q a−→ P | Q.

The symmetry captures that there is no significance in which order compo-
nents of a parallel composition appear syntactically.
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The composition may also result in synchronisation (communication): if P
performs an input action a and continues as P′, that is, P a−→ P′, and Q per-
forms the dual output action a and continues as Q′, that is Q a−→ Q′, then the
composition continues as P′ | Q′ by performing the silent action τ:

P | Q τ−→ P′ | Q′.

The silent action is a predefined CCS action that is distinct from other actions,
and is used to signify synchronisation (communication). The silent action has
no dual. We also include a process prefixed with the τ action of the form τ.P.

Let us return to the clock example. Consider the following system of paral-
lel components:

COMPONENT | CLOCK.

Let us expand the definitions to:

tick.0 | tick.tick.0.

Also, let us only consider the behaviour resulting from synchronisations, that
is, we ignore all actions except for the silent synchronisation action τ . Then,
we have

tick.0 | tick.tick.0 τ−→ 0 | tick.0.

The first parallel component emitted the tick action, the second component
emitted the tick action, and then the derivative is a result of synchronisation.

The complexity of a parallel system may grow significantly. For example, if
we simply add another COMPONENT, that is, COMPONENT | COMPONENT |
CLOCK, then there are two possible continuations at this point: the first, 0 |
tick.0 | tick.0, and the second tick.0 | 0 | tick.0. By using the arrow notation,
we depict the transitions as follows

0 | tick.0 | tick.0

tick.0 | tick.0 | tick.tick.0

τ
55

τ

))
tick.0 | 0 | tick.0

That is, either the first parallel component synchronises with the third, or the
second component synchronises with the third. Both states then lead to the
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same kind of process 0 | 0 | 0:

0 | tick.0 | tick.0
τ

''
tick.0 | tick.0 | tick.tick.0

τ
55

τ

))

0 | 0 | 0

tick.0 | 0 | tick.0

τ
77

Thus, there are 4 possible states including the initial state. When the pro-
cesses get more complex, the number of possible states rises exponentially
due to all the interleaving one needs to consider. For example, just by adding
an extra component to the above example process, i.e., tick.0 | tick.0 | tick.0 |
tick.tick.0, the system results in 10 possible states. The potential number of
possible states that a process can evolve to makes the verification of such a
system challenging since it is not always possible to list and check every state
explicitly.

A CCS process can also act non-deterministically. Given processes P and Q,
a choice (or, sum) is the process

P+Q.

The choice behaves as either P or Q. That is, if P performs an action and
continues as P′, then P+Q performs the same action discarding Q and also
continues as P′, notationally if P a−→ P′, then P+Q a−→ P′. Similarly, if Q per-
forms an action and continues as Q′, then P+Q also performs the very same
action and continues as Q′, notationally if Q a−→ Q′ then P+Q a−→ Q′. Thus,
there are two possible evolutions of the system. This is the same idea as in
non-deterministic automata where a state may have several outgoing transi-
tions with the same action.

There are several standard ways to introduce unbounded behaviours in CCS
and other process calculi. Perhaps the most common is to use a replication
process of the following form

!P

where P is a process. Intuitively, the !P process behaves as infinitely many
copies of P in a parallel composition

P | P | · · ·
It is possible to describe this behaviour of such an operator in finite terms.
Observe that at any given moment at most two processes can interact, and
thus we can spawn a finite number of parallel components P while treating
specially !P as the rest of the infinite number of components: whenever P |
!P a−→ P′ then !P a−→ P′.
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a ∈ A action

P,Q ::= a.P input
a.P output
0 inaction
τ.P silent
P | Q parallel
P+Q sum/choice
!P replication

Figure 2.1. The grammar of a CCS process.

Another way is to introduce recursion, which is familiar to anyone who
has used a modern programming language with recursion. We give names to
processes as

A def
= P,

and then introduce a process
A

that invokes a process by its name. The process A behaves as its defining
process P. The two notions of replication and recursion are strongly related.
We can define the replicated process !P with the definition A def

= P | A, and then
invoke the process A. The other direction is slightly more involved. Returning
to our example, we can define a process that generates indefinitely many clock
signals

CLOCK′ = !tick.0.

The system CLOCK′ | COMPONENT1 | . . . | COMPONENTn then can accommo-
date as many components as necessary.

To summarise, the subset of CCS syntax that we presented here is given in
Figure 2.1. Clearly, CCS is quite abstract and basic, however, it conveniently
captures concurrent system phenomena for modelling: concurrency and syn-
chronous communication. It is certainly more adept and direct at describing
concurrent systems than for example non-deterministic finite automata theory.
In the next section, we will see how CCS can be generalised further to systems
with mobility.

The pi-calculus
The pi-calculus [22, 23]1 generalises CCS by introducing message passing
between processes while preserving synchronous behaviour. The pi-calculus

1The work that introduces the pi-calculus is split into two papers.
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process communication is linked via channels and they may change that link-
age dynamically. The change of the communication structure is referred to as
mobility.

We may still think in terms of actions. The basic data in pi-calculus is that
of a name. A name is an abstract atomic entity like that of a CCS action in
the previous section that represents both a channel and variable. We denote
the (countably) infinite set of names as N and we use a,b,c, . . . to range over
this set. Like CCS, the pi-calculus has actions for output, input and synchroni-
sation. The input and output actions are compound, consisting of two names.
The output action is denoted by ab for any names a and b, and intuitively
means the name (data) b is outputted via the channel a. Similarly, the input
action is denoted by ab for any names a and b with the meaning that the name
b is received via the channel a. The pi-calculus retains the silent action τ . The
pi-calculus has one more action, which we are going to discuss later in this
section.

The output prefixed process in the pi-calculus is, for any process P and any
names a and b,

ab.P.

The process performs an output action ab, and continues as P:

ab.P ab−→ P.

Or more intuitively, a process outputs on the channel a the name b. The input
prefixed process is

a(x).P

for any names a and x, and a pi-calculus process P. The input process performs
an input action ab on the channel a above for any name b, and then proceeds
as P′, which is a process where all free occurrences of x in P are substituted
with b, denoted by P′ = P{b/x}:

a(x).P ab−→ P{b/x}.

In other words, the process receives on the channel a a name b and continues
using the received name in place of x. The pi-calculus input process can be
viewed as a function with one parameter where the channel a represents the
name of the function, x is the parameter, and the behaviour of input is an
application of that function to the argument b. The difference with the usual
notion of a function is that the argument b is not supplied in the syntax, but is
part of the action. Thus, the argument may be supplied by a parallel process
with an output action for the input to carry out the application of the parameter.
The input process denotes infinitely many transitions that account for every
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possible application of a name:

P{a/x}

P{b/x}

a(x).P

aa

CC

ab
::

ac //

ad

$$...

��

P{c/x}

P{d/x}

...

Unavoidably, the generalisation introduces some technicalities. In the input
process above, the name x is a name that binds all free occurrences of x in P,
and the name x itself is a binding name. The free occurrences of names are
the set of names that are not bound. This may sound self-referential but it is
not. The set of free names of a(x).P are all the free names of P minus x and
plus a; and the set of free names of ab.P is the set of free names of P plus a
and b. For all other operators, that we have seen thus far, the free names are
simply the free names of their subprocesses. The set of free names of a pro-
cess P is denoted by fn(P). The distinction between a free and bound names
is important because intuitively it does not matter what name we actually use
for bound names while the free names are behaviourally significant.

Thus, for example, all of the following processes are considered equivalent
a(b).bd.0, and a(c).cd.0, and a(e).ed.0. The equivalence identifying such
renaming of bound names is called alpha-equivalence, and renaming of a pro-
cess to an alpha-equivalent process is called alpha-conversion. The set of free
names of the above processes consists of only a and d. Note that we avoided
renaming bound variable to d, that is, capturing the name d in the above pro-
cesses, as the process a(d).d d.0 is behaviourally distinct from the above pro-
cesses. The capture-avoiding substitution P{a/x} then renames bound names
in P to avoid capture of a, that is, not to make a bound; also substitution never
substitutes anything for bound names.

In the pi-calculus, the input and output processes synchronise in the very
same way as CCS processes synchronise, that is, whenever the subprocesses
perform dual actions. The parallel composition behaves as P | Q τ−→ P′ | Q′
whenever P ab−→ P′ and Q ab−→ Q′. For example, a(x).xy.0 | ab.0 synchronises
by performing the silent τ action and continues as by | 0, because the left hand
side parallel component performs the input action ab (among all the other

29



possible input actions) a(x).xy.0 ab−→ by.0 where by.0 = (xy.0){b/x}; and the

right hand side performs ab by ab.0 ab−→ 0. Since synchronisation exchanges
data, it is also called communication.

The pi-calculus processes can reconfigure their communication structure
dynamically. The channel linkage determines the communication structure,
and since the channels can be substituted by the input prefixed process with
a received name, the process then can continue communicating on a received
channel. For example, the process a(x).xb first inputs on channel a some
value, say y, and then continues to output on the channel y. Thus, it does not
output to a fixed channel but to a channel determined by another process. The
dynamic reconfiguration of processes is referred to as mobility.

The pi-calculus is a generalisation of CCS as we still are able to recover
CCS processes. Let w be a name for which we follow a simple rule that we
never use it as a bound name nor as a channel. Then, the CCS operator a.P
is captured by the pi-calculus operator aw.P; and the CCS operator a.P is
captured by a(x).P with the condition that x is not among the free names of P.

The pi-calculus also adds the following operators for testing name (channel)
equality

[a = b]P,

and
[a 6= b]P

that means: if a is equal to b then behave as P, and, respectively, if a is not
equal to b then behave as P. With these operators we can express the familiar
conditional operator if a = b then P else Q as [a = b]P+[a 6= b]Q.

A restricted process is
(νb)P

for any name a and pi-calculus process P. Restriction is a binder that binds the
free occurrences of b in P. Intuitively, the name b represents a name that no
process outside P has knowledge of. Thus, only processes that compose P can
use it for sending as a value or communicating on it as a channel. However,
the process P may communicate b to the outside process and thus extending
the scope of b to include other processes. However, this is the only way to
convey knowledge of b to other processes.

The output of a restricted name is described using a bound output action
a(νb)b for a and b names, where (νb) denotes that the name b is restricted.

For example, (νb)ab.P
a(νb)b−−−−→ P. In this transition, the name b in the action

a(νb)b also binds into P.
The restricted name is seen as private. For example, in the process

(νb)(ba.P | b(x).Q) | b(x).R
the scope of b extends to the first two parallel components. The bound b in
the first two parallel components is considered to be distinct from b in b(x).R.

30



Thus, the following communication is possible

(νb)(P | Q{a/x}) | b(x).R

but not the first parallel component communicating with the third.
We also have a specialised communication rule to account for the possible

bound actions and closing of the opened scope by extending it to the receiver:

P | Q τ−→ (νb)(P′ |Q′) whenever P
a(νb)b−−−−→ P′ and Q ab−→Q′, in other words if P

outputs a restricted name b on channel a, and Q inputs on channel a the name
b (which is restricted) then the scope of the restriction of b is extended to also
include the continuation of Q namely Q′. There may be a name b already
present in Q (which is in this framework taken to be distinct from restricted
name b), and we need to rename restricted b with some name that does not
occur freely in Q.

In a distributed system, it is common to establish a session between a server
and a client. A session records the communicating parties. It is natural to
model this in the pi-calculus with the restriction mechanism. Take for exam-
ple the following server and client processes where the server sends a private
channel s on the server channel srv as a session and then continues exchanging
on that channels with a client and then recurses. While the client requests a
session by inputting a session channel x on the server channel srv and contin-
ues interacting on x.

SERVER = (νs)srvs.s(r).s response.SERVER

CLIENT = srv(x).x request.x(r).0

The following is a possible interaction. Note that the server and one of the
clients have established a private session, and may continue interact in that
session while the other client has no way of interfering or establishing its ses-
sion with the server while the server is busy.

SERVER | CLIENT | CLIENT
τ−→

(νs)(s(r).s response.SERVER | s request.s(r).0) | CLIENT

With the pi-calculus, we can capture a wider class of concurrent systems
than with CCS. We gained the possibility of describing systems that change
their communication structure dynamically, and model the notion of private
communication. Also, computationally the pi-calculus is a powerful language
and more expressive than CCS. In fact, it is as expressive as any general pur-
pose programming language. This is shown by encoding [22] the Church’s
untyped lambda calculus [4], which is Turing complete, to the pi-calculus. In
summary, the language of the pi-calculus that we have defined thus far is found
in the Figure 2.2. The pi-calculus is the basis for many applied calculi. In the
next section, we describe a family of such calculi: psi-calculi.
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a,b,x ∈ N name

P,Q ::= a(x).P input
ab.P output
P | Q parallel
P+Q sum/choice
[a = b]P match
[a 6= b]P mismatch
!P replication
(νx)P restriction
0 inaction

Figure 2.2. The grammar of pi-calculus processes.

2.1.2 Applied Process Calculi
Typically, when modelling real world concurrent systems one needs to model
not only the communication and concurrency aspects but also data and compu-
tation on the data that is exchanged, e.g., integers, strings, lists, routing tables,
cryptographic operations, etc. It is well known that we can encode all com-
putable functions in the pi-calculus (via the encoding of the lambda calculus
[22]), however, modelling with encodings may be too complex.

Let us illustrate with a simple example. Suppose we want to model a server
that computes a Boolean conjunct from the values it receives. We can model
it as the following process

AND(x,y,z) = x(a).([a = T]y(w).zw + [a = F]y(w).zF.0)

that receives in sequence a Boolean value from channel x, and then one from
channel y. Since the only data in the pi-calculus are names, we treat the distinct
names T and F specially as the Boolean values. So the server first receives a
value and then does a case analysis on the received name. If the value received
is true (i.e., equal to T), then it simply forwards the value received on the other
channel y to z; if the value is false, then always output F on z no matter what
value arrived on y; otherwise, the process is stuck. It is not at all straight-
forward to tell whether the AND process realises the Boolean connective. Of
course, we could build a library of processes modelling various kinds of data.
However, it is a significant effort to find such encodings and verify that they
are correct. What is more, often encodings require communication to drive
computation, thus introducing additional behaviour.

The approach taken by applied process calculi is to instead reuse the the-
ories that have been developed for data and to extend, or add, operations to
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handle the data. In an applied process calculus with the Boolean a∧b opera-
tion, the AND server could instead be modelled as

AND(x,y,z) = x(a).y(b).z(a∧b).

The spi-calculus [2], for example, introduces, on top of the pi-calculus,
primitives necessary to model cryptographic protocols. It extends the data do-
main with natural numbers, ordered pairs, shared cryptographic keys, public
key cryptography, among others. It also adds operators for handling the cryp-
tographic data like encryption and decryption of messages using a shared key,
and others.

The applied pi-calculus [1] goes further. It has no built-in operations on
data but parametrises the data with user supplied operations and equations
that act as computation rules. For example, symmetric key cryptography
can be specified with two operations decrypt and encrypt and the equation
decrypt(encrypt(M,k),k) = M. In this way, it is possible to express the kind
of primitives the spi-calculus has. The applied pi-calculus introduces a com-
positional store as a process called an active substitution {M/x} for data M and
variable x. Processes may read information stored therein via the variable x if
they are in a parallel composition with an active substitution. In this way, it is
possible to share data among processes such as a private key.

It is not at all obvious how one would encode the kind of operations de-
scribed above in the pi-calculus. Furthermore, having the right primitives al-
lows for straightforward modelling and analysis of a concurrent system.

The challenge then is to find appropriate operators that are general enough
and show that extensions preserve the behaviour and do not interfere with the
basic operators. There is a need for systematic study of such extensions, and
this is what Bengtson et al. [5] does with the psi-calculi. The papers II and IV
are directly concerned with the psi-calculi. In the next section, we introduce
psi-calculi briefly.

Psi-calculi
The Psi-calculi framework generalises the pi-calculus even further and is a the-
ory that unifies many extensions of the pi-calculus that have been introduced
(see [5] and Paper II for examples).

Psi-calculi generalises the pi-calculus by extending the data domain be-
yond names to arbitrary sets, and by extending the tests that the processes
can perform not just on the name equality or disequality but arbitrary formu-
las. Similarly to the applied pi-calculus, the psi-calculi introduces a process
that contains some state about the data that processes share, which contains
arbitrary logical assertions that affect the tests that the processes can perform.

Psi-calculi has the same kind of actions as the pi-calculus for input, output,
bound output, and communication. However, the names are generalised to
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an arbitrary set of terms2 denoted by T ranged over by M,N, which is a
parameter in the psi-calculi framework. The terms themselves may contain
names. The input action is M N where M and N are terms with a similar
meaning to the pi-calculus, where the data N is received via the channel M.
Thus, in psi-calculi it is possible to use structured data like integers, lists, and
trees as channels and transmitted data. Output and bound output generalise
in a similar fashion. Output is M N and the bound output is M(νa1, . . . ,an)N
for terms M and N. Since N in bound output may contain multiple names and
thus extend the scope for more than one name, bound output uses a sequence
of names a1, . . . ,an to record this fact.

The psi-calculi generalises the pi-calculus input by replacing the names
with terms. The input construct of psi-calculi also admit pattern matching,
thus input not only receives a value but matches it accordingly and binds it to
the names that are considered as pattern variables. The syntax is the following

M(λx1, . . . ,xn)N.P

where x1, . . . ,xn are the pattern variables, N is the pattern and M is the channel.
The behaviour of the input process is also generalised in psi-calculi. Since

the channels may be structured, a condition is introduced, called channel equiv-
alence, to determine their equality3 M .↔ N for channels M and N. The psi-
calculi also introduces a logic as a parameter: a set of conditions C ranged
over by ϕ , a set of assertions A ranged over by Ψ, and an entailment relation
Ψ ` ϕ determining the condition ϕ that is made true by the assertion Ψ.

Channel equivalence is also a condition that is asserted by the entailment
relation. The substitution function is also a parameter in psi-calculi, written
as [x1 := N1, . . . ,xn := Nn] for x1, . . . ,xn names and N1, . . . ,Nn terms. In psi-
calculi, the transitions are indexed by assertions. So, operationally, the input
process works as follows

Ψ . M(λx1, . . . ,xn)N.P M ′N′−−−→ P[x1 := N1, . . . ,xn := Nn]

where the process M(λx1, . . . ,xn)N.P performs an action M′N′ such that M
and M′ are channel equivalent in the current assertion environment Ψ, that
is, Ψ ` M .↔ M′. Furthermore, the pattern N pattern matches the data N′ by
binding the matches N1, . . . ,Nn to the variables x1, . . . ,xn, formally, N[x1 :=
N1, . . . ,xn := Nn] = N′.

The psi-calculi processes for the output are similar to those of the pi-calculus
with the obvious generalisation:

M N.P
2 In fact, the sets are required to be nominal sets [13, 27], however, this is a very mild restriction.
A nominal set is simply a set that may mention atomic objects that are not sets and are taken
to represent names of a process calculus, and for each element of a nominal set, there is a
permutation action that permutes the mentioned names of that element. Trivially, every set is a
nominal set for which permutation action is the identity function.
3Partial equivalence.
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The behaviour of this process is similar to the pi-calculus as well

Ψ . M N.P M ′N−−→ P

where Ψ `M .↔M′.
The caseϕ1 : P1 · · · ϕn : Pn construct is a generalisation of the non deter-

ministic choice, match and mismatch operators of the pi-calculus where the
name equality and disequality are replaced by the arbitrary conditions ϕ ∈ C.
For example, if we have negation ¬ in the condition language defined in C,
then if-then-else if ϕ then P else Q can be defined as caseϕ : P ¬ϕ : Q . The
choice of the pi-calculus can be recovered as follows. Given that there is an
always entailed condition true (i.e., for any Ψ, Ψ ` true), then P+Q can be
expressed in psi-calculi as case true : P true : Q .

The novel construct in the psi-calculi is the assertion process:

LΨM
By itself it has no behaviour but what it does is to contribute to the current as-
sertion environment of the parallel processes via the assertion composition ⊗,
which is a parameter in psi-calculi.

The behaviour of the parallel operator in psi-calculi is generalised to ac-
count for the presence of assertions as parallel components and to propagate
the current assertion to processes.

Let us take a simple example. Let terms T be the name set; assertions A
be the finite sets of names, and conditions C be simply pairs of names. Then,
define a .↔ b to be (a,b), and Ψ ` (a,b) if {a,b} ⊆ Ψ, and lastly Ψ⊗Ψ′ =
Ψ∪Ψ′. In the following we assume that a 6= b. Consider the following process

R = L{a}M | L{b}M | a(λx)x.P | bc.Q.

The process can behave as

R τ−→ L{a}M | L{b}M | P[x := c] | Q
due to the following facts. The shared assertion environment Ψ is a com-
position of all parallel assertions {a}⊗{b}. By definition, Ψ = {a}⊗{b} =
{a}∪{b}= {a,b}. Then, we need to check that the channel equivalence is en-
tailed Ψ` a .↔ b by expanding the definitions {a,b} ` (a,b) iff {a,b}⊆ {a,b},
which is true. Finally, pattern matching is successful, that is, x[x := c] = c.

The following process, however,

R′ = L{a}M | a(λx)x.P | bc.Q 6 τ−→
has no transitions since {a} ` a .↔ b does not hold, as {a,b} 6⊆ {a}. This
example illustrates the fact that in psi-calculi communication is determined
not necessarily by the identity check on the channels, and that communication
can be disabled by breaking the channel linkage.
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x ∈ N name
M,N ∈ T term

ϕ1, . . . ,ϕn ∈ C condition
Ψ ∈ A assertion

.↔ ∈ T×T→ C channel equivalence
⊗ ∈ A×A→ A assertion composition
` ⊆ A×C entailment

[x̃ := Ñ] ∈ T→ T substitution function

P,Q ::= M(λ x̃)N.P input
M N.P output
P | Q parallel
!P replication
(νx)P restriction
LΨM assertion
caseϕ1 : P1 · · · ϕn : Pn case
0 inaction

Figure 2.3. The parameters and grammar of psi-calculi processes.

A significant modelling flexibility of psi-calculi comes from the fact that
Ψ ` ϕ can be seen as a two-valued logic. In the above example, we inter-
preted the assertions as a set of names that are known to be equivalent, and
the channel equivalence condition as an equality query. We could as well take
the assertions to be sets of equations on terms, and the conditions to be also
equations, then the ` can be defined to be a proof derivation of this equational
logic. We can take this even further, we could define assertions to be sets
of predicate formulas (including the universal and existential quantifiers), and
likewise conditions to be formulas, then ` could be defined as a validity re-
lation of the predicate logic or proof derivation relation. Thus, in psi-calculi
it is quite straightforward to reuse already developed theories, e.g., of data
structures, cryptographic primitives, etc.

Psi-calculi has also been extended to encompass more process calculi: the
higher order communication [25], and unreliable broadcast communication [7].
The full syntax of psi-calculi is given in Figure 2.3, where we use x̃ and Ñ to
denote arbitrary sequences x1, . . . ,xn and N1, . . . ,Nn.

Psi-calculi are a major part of this thesis. The Psi-calculi framework is
the main subject of Paper II and Paper IV. The logic of Paper I arose from
considering the generalised actions with multiple binders and the behavioural
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equivalences of psi-calculi. Paper VI, the precursor of Paper III, uses psi-
calculi via encoding to give meaning to a broadcast process calculus.

2.2 Formal Semantics
The two most common methods of formalising the meaning of processes in
process calculi are structural operational semantics (SOS) and reduction se-
mantics. Both of these methods formalise a transition relation that describes
how a process evolves from state to state.

The idea is to induce a structure called a labelled transition system. A
labelled transition system is a tuple (→,A ,P) where A is a set of actions
(labels), P is a set of processes (also called states), and →⊆P ×A ×P

is a transition relation, written P α−→ P′ for (P,α,P′) ∈ −→. If the set of labels
is a singleton set, then the structure is called simply a transition system and is
isomorphic to (→,P) where−→⊆P×P . The labelled transition system can
be thought of as a directed graph with labelled edges. These kind of structures
are used to formalise the arrow notation that we used informally in Section 2.1.

Typically, when defining a transition system with either SOS or reduction
semantics, one makes use of structural congruence to reduce the number of
SOS rules or to convert a process into a shape matched by reduction rules.
A structural congruence is a congruence relation4, denoted by ≡, that cap-
tures the most basic and intuitive invariants of a process syntax, e.g. the com-
mutativity of a parallel operator. Usually, a structural congruence is defined
inductively on the structure of processes.

For example, a structural congruence may include such facts that the par-
allel operator is commutative, associative and that its identity is the inaction
process 0:

P | Q ≡ Q | P
(P | Q) | R ≡ P | (Q | R)

P | 0 ≡ P

In process calculi like the pi-calculus with a restriction operator, it is com-
mon to include in the structural congruence the scope extrusion law:

(νa)P | Q≡ (νa)(P | Q) if a 6∈ fn(Q)

2.2.1 Structural Operational Semantics
The structural operational semantics (SOS) approach consists of defining a set
of rules specifying a mathematical relation on processes to formalise the state
transitions of a process. The key aspect is that the rules are defined inductively

4An equivalence relation that is preserved by all of the operators of the language.
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on the syntax of the processes. The name structural refers to this aspect. The
rules are of the form

p1
α1−→ p′1 · · · pn

αn−→ p′n

p α−→ p′

where p, q, p1, . . . , pn, and p′1, . . . , p′n are processes, and α1, . . . ,αn are actions.
Intuitively, the rule reads: whenever p1 performs an action α1 and continues
as p′1 and analogously for other process pi for i = 2, . . . ,n, then p performs an
action α and continues as p′. The terms above the line are called premises,
and the term below the line is called conclusion. The premises may be empty,
in that case we call the rule an axiom. The rules may also contain logical
formulas, often called side conditions that may additionally constrain the type
of processes and actions used.

As an example, let us take look at how one can formalise the somewhat
informal description of processes behaviour that we have presented in Sec-
tion 2.1. Let us take a subcalculus of CCS (Section 2.1.1) defined by the
following grammar (subset of Figure 2.1)

P,Q ::= 0 a.P a.P P | Q .

The rules for actions are simply the following:

a.P a−→ P a.P a−→ P

The parallel operator behaviour can then be described with SOS rules as
follows where the α is either a or a for some action a.

P α−→ P′

P | Q α−→ P′ | Q
Q α−→ Q′

P | Q α−→ P | Q′

A parallel process behaves the same way as either of its parallel components
do (see Section 2.1.1). The synchronisation of a parallel composition can be
captured by the following rules:

P a−→ P′ Q a−→ Q′

P | Q τ−→ P′ | Q′
P a−→ P′ Q a−→ Q′

P | Q τ−→ P′ | Q′

Note the rules are solely syntax-directed: they define the behaviour of a pro-
cess by its structure. That is, P |Q transition with the action τ to P′ |Q′ above
is defined in terms of the transition from P to P′ with the action a, and Q
transition to Q′ with the action a.

To illustrate, let us use the rules to derive the transition

a.0 | (b.0 | a.0) τ−→ 0 | (b.0 | 0)
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where the first and the last parallel components synchronise:

a.0 a−→ 0

a.0 a−→ 0

b.0 | a.0 a−→ b.0 | 0
a.0 | (b.0 | a.0) τ−→ 0 | (b.0 | 0)

By enumerating all the possible applications of the above rules, we would get
the possible transitions describing the behaviours of a given process. The way
the rules are applied resembles a tree

where the conclusion is the root and premises are branching subtrees, and a
rule without a premise is a leaf node.

This observation leads to the two most common interpretations of the rules:
(1) as the smallest relation with regard to set inclusion that is satisfied by the
rules, let us write it as→, which is a subset of P×A ×P where P is a set
of processes as defined by the grammar, and A is the set of actions; and (2)
as a tree construction by the rules which we already witness in the example
above. The first interpretation gives what is known as rule induction. Thus,
to prove a property of a process transitions, say the set P ⊆P ×A ×P ,
one only needs to show that it satisfies the rules, and thus whenever we use the
smallest relation→ to derive processes the property P is implied since→⊆ P.

The second interpretation allows us to use the complete induction princi-
ple5 on natural numbers to show properties on transition systems. One can
associate a number with a tree usually called depth or length that is recur-
sively defined to be the maximum of depths of its subtrees plus 1, and leafs
have 1. Intuitively, the number of a tree is just the length of its longest path
to a leaf node from the root. So, a conclusion always has a depth larger than
its premises, and thus one can use the following induction principle based on
complete induction on the depth: to show a property P holds, one needs to
show, for each rule, that it holds for the conclusion by assuming that it holds
for its premises. This induction principle is typically invoked with “by induc-
tion on the depth of derivation. . . ”

The syntax-directed nature of the rules, and the resulting intuitive induc-
tion principles are key advantages of the SOS approach, and perhaps this is
why SOS is so prevalent in process calculi. We use this kind of semantics in
Paper II and Paper IV.

5P(n) for all natural numbers n follows if one can prove P(m+1) by assuming that for all i≤m
holds P(i).
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2.2.2 Reduction Semantics
Reduction semantics formalise only the process evolution that results from
communication (synchronisation). As with SOS, reduction semantics defines
a transition relation from a set of inductive rules. The rules again match the
syntax of a process, however, behaviour is defined not based on the substruc-
ture of a process, but rather on the form of a process that can proceed in com-
munication.

We can formalise the communication for CCS with the following rule:

a.P | a.Q→ P | Q
The rule says that whenever there is a parallel component with processes that
are prefixed with dual actions, then it can proceed by consuming those actions,
i.e., synchronise. This one rule is not sufficient to allow us to reduce more
complex processes, so the following rules are typically included

P≡ P′ P′→ Q′ Q′ ≡ Q

P→ Q
P→ P′

P | Q→ P′ | Q
where the first rule says that reductions are invariant under the structural con-
gruence. Thus, if the structural congruence includes associativity and commu-
tativity of parallel operator, the parallel composition is a kind of solution [6]
where parallel components float freely to form a reduction term that can be
matched by the basic reduction rules like the synchronisation reduction rule
given above. The second rule says that we can reduce the parallel composition
in terms of its parallel components (in lieu of the structural congruence rule).

Let us develop a reduction of the process a.0 | (b.0 | a.0) from the previous
section:

a.0 | (b.0 | a.0)≡ (a.0 | a.0) | b.0
a.0 | a.0→ 0 | 0

(a.0 | a.0) | b.0→ (0 | 0) | b.0 (0 | 0) | b.0≡ 0 | (b.0 | 0)
a.0 | (b.0 | a.0)→ 0 | (b.0 | 0)

In the above, we used the structural congruence rule to shuffle the parallel
components into the right order so that we can ignore the right most parallel
component to get a reducible process.

For the pi-calculus, one also includes a rule that describes reduction within
the scope of a restriction operator

P→ P′

(νa)P→ (νa)P′

and the structural congruence also includes the scope-extrusion law: (νa)P |
Q≡ (νa)(P |Q) if a 6∈ fn(Q). Also, the communication rule is straightforward
in the pi-calculus:

a(x).P | ab.Q→ P{b/x} | Q
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Reduction semantics are used prominently as they are fairly straightforward
to understand and usually have fewer rules than SOS. However, the rules are
not defined on the substructure of a process, and can be quite non-trivial to use
if one is interested in proving properties with the structural induction on the
process syntax since the reduction rules are only defined on particular form of
a process. This also makes reduction rules more complex when the process
calculus has the choice operator. The reduction semantics approach is quite
attractive if one only wants to show properties on a system that has no external
observer, such as the one that is found in Paper III.

2.3 A Behavioural Equivalence: Bisimilarity
The standard notion of equivalence on processes in process calculi is labelled
bisimilarity. Bisimilarity is a behavioural equivalence: it is defined on the
observed actions that are performed by the processes, and not on the structure
(i.e. syntax) of processes. In fact, it is definable directly on a labelled transition
system.

Bisimilarity is defined in terms of bisimulation relations. Bisimulation, as
the name suggests, is in turn defined in terms of simulation, that is, bisimilar
processes simulate each other in lockstep. Simulation is a property of two pro-
cesses such that one can mimic the actions taken by the other process. More
specifically, take two processes P and Q. We say Q simulates P, if a process P
has a transition P α−→ P′, then the process Q must be able to repeat this ac-
tion with a transition Q α−→ Q′ and furthermore Q′ must be able to continue
repeating actions taken by P′ and so on.

Consider the following two transition systems:

P1
a

��

a

��

Q1

a
��

P2

b
��

P3

b
��

Q2

b
��

P4 P5 Q3

In the following we argue that the process Q1 simulates the process P1.
The process P1 has two possible transitions with the same action a to two
states P2 and P3. Now, if it chooses the first transition to P2 with the action a,
then Q1 can repeat the same action by transitioning to Q2. Then, P2 can only
do one transition to P4 with the action b; Q2 easily mimics this by transitioning
to Q3. P4 has no transition. Thus Q3 does not need to repeat any actions, and
incidentally Q3 also has no transitions. If P2 choose the latter transition with
the action a to P3, then Q1 can again repeat it with the transition to Q2, the
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argument plays out in the same fashion from process P3 as from P2. In the
same way, we see that P1 can simulate Q1 as well.

Now consider the following two systems (note that the action labels differ
from the previous systems):

R1
a

~~

a

  

S1

a
��

R2

b
��

R3

c
��

S2
b

��

c

��
R4 R5 S3 S4

Here R1 does not simulate S1 because of the following. The only transition
that S1 can make is to S2 with the action a, and the R1 has to make a choice
in order to be able to simulate S1 either to R2 or R3. Suppose the transition
to R2 was made. However, S2 now can transition to S3 with b or to S4 with c,
but R2 can only mimic a transition with b to R4 and cannot mimic a transition
with c. If R1 had made a choice to transition to R3, then R3 can only mimic a
transition with c but not with b.

Let us use the notation AR B to mean (A,B) ∈ R for a set R which we
call binary relation. Formally, we define simulation as a property on a binary
relation on processes, that is, R ⊆P×P .

The binary relation R is a simulation, whenever for all processes P and Q,
if PR Q, then the following holds: if, for all α and P′, we have P α−→ P′, then
there is Q′ such that Q α−→ Q′ and furthermore P′RQ′.

Returning to the first example, formally Q1 simulates P1, as witnessed by
the relation R = {(P1,Q1),(P2,Q2),(P3,Q2),(P4,Q3),(P5,Q3)}. That is, P1
and Q1 are related by P1 R Q1. So, the simulation relation R relates the nodes
of the transition system as follows where the dotted arrows denote an ordered
pair in the relation:

P1
a

��

a

��

R

)) Q1

a
��

P2

b
��

R

**P3

b
��

R 22 Q2

b
��

P4

R

**P5 R 22 Q3

The bisimulation relation R is defined by simply requiring that the simula-
tion relation R is symmetric, that is, if PR Q, then also QR P. Thus, for the
above example, the relation R ′ = R ∪R−1 is a bisimulation relation where
R−1 = {(Q,P) : (P,Q) ∈R}. Thus, P1 and Q1 are bisimilar, that is, P1R

′Q1.
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The bisimilarity relation denoted by ∼ is defined to be the largest bisimu-
lation relation with regard to set inclusion. And it is the equivalence relation
that we have been after. So, in the above example, P1 is bisimilar to Q1, that
is, P1 ∼ Q1 because P1R

′Q1 implies that P1 ∼ Q1. This follows from the fact
that we defined bisimilarity to be the largest bisimulation, that is, any other
bisimulation is included in bisimilarity R ′ ⊆ ∼. So to prove that two pro-
cesses are bisimilar, we need to find a bisimulation relation that includes those
processes6. Alternatively, bisimilarity may be defined as P ∼ Q if there is a
bisimulation relation R such that PR Q. However, these two definitions are
equivalent.

The bisimilarity relation is defined in the same way for the CCS process
calculus. The first transition system can be expressed as the CCS process
P1 = a.b.0+a.b.0, and the second as Q1 = a.b.0. Thus,

a.b.0+a.b.0 ∼ a.b.0

The transition systems from the second example can be described as R1 =
a.b.0+a.c.0 and S1 = a.(b.0+ c.0). Therefore, we have that

a.b.0+a.c.0 6∼ a.(b.0+ c.0)

as there is no bisimulation relation.
The definition of bisimulation relation becomes slightly more complicated

for more advanced calculi. In the pi-calculus, we need to be careful at picking
sufficiently fresh names while simulating transitions with bound output ac-
tions. In the psi-calculi, in addition to the same concerns as in the pi-calculus,
the bisimulation relation is expanded with more clauses and indexed with an
assertion that make sure the assertion environment of the simulating processes
enables the same conditions, and that the simulation is possible even after ex-
panding the current assertion in all possible ways.

The bisimulation relation that we defined is usually known as strong bisim-
ulation as the processes mimic each other’s transitions exactly. In practice,
the processes may do some internal computation and generate τ transitions
that we may not want the other process to mimic. Thus, strong bisimulation
may be too strong and distinguish between processes that we would like to be
identified. To address this the notion of weak bisimulation is introduced that
ignores the τ transitions.

The relation W is a weak bisimulation if W is symmetric and for all PW Q:
• if P τ−→ P′, then there is Q′ that Q τ−→ ·· · τ−→ Q′, and P′W Q′; and
• if P α−→ P′, then there is Q′ that Q τ−→ ·· · τ−→ α−→ τ−→ ·· · τ−→ Q′, and P′W Q′;

Note in the above definition τ−→ ·· · τ−→ may be an empty sequence of transi-
tions. Thus, a process ignores the τ transitions while simulating.

Weak bisimilarity ≈ is defined in the same way as in the strong case as the
largest weak bisimulation. For example, in CCS, τ.b.0 ≈ b.0.

6This is an example of coinduction. Indeed, the bisimilarity relation is a coinductive relation.
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Labelled bisimulation is central to the work in this thesis. We restate the
definitions and theorems concerning bisimulation in Paper II to gain assurance
of the correctness of our new development of sorts and pattern matching. In the
tool in Paper IV, we implement both strong and weak bisimulation generation
algorithms for reasoning with processes. A modal logic should not be able to
distinguish between processes that are bisimilar (Section 2.4), and we carry
out this test for our logic in Paper I.

2.4 Logic for Transition Systems
A prominent method of expressing properties of a transition system was in-
troduced by Hennessy and Milner [16] as a variant of modal logic now called
Hennessy-Milner Logic (HML). The logic consists of modal formulas, in ad-
dition to the standard logic connectives, for testing whether processes may or
must make a transition with a specified action. A transition system is then
viewed as a model of an HML formula, and reciprocally the logic is viewed as
an observer of a transition system.

The logic induces an equivalence between processes such that two pro-
cesses are logically equivalent whenever they are indistinguishable by the
logic, i.e. processes satisfy exactly the same formulas. A logic is called ade-
quate if the induced logic equivalence corresponds to the behavioural equiva-
lence of a given transition system. That is, given two behaviourally equivalent
processes, there is no formula in the logic that is satisfied by one process but
not the other, and if the processes are logically equivalent, then they are also
behaviourally equivalent. The adequacy property is desirable as it ensures that
the logical properties that we verified for a process still hold for behaviourally
equivalent processes.

Given a labelled transition system (→,A ,P) (Section 2.2) where → ⊆
P×A ×P is a transition relation, A , ranged over by α , is a set of actions,
and P is a set of processes. Then, the formulas of HML is defined by the
following grammar

A,B ::= 〈α〉A may modality
[α]A must modality
A∧B conjunction
¬A negation
true truth constant

The meaning of formulas is given by the satisfaction relation

P � A
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that is defined by the following

P �〈α〉A if exists P′ such that P α−→ P′ and P′ � A
P � [α]A if for all P′ such that P α−→ P′ then P′ � A
P � A∧B if P � A and P � B
P � ¬A if it is not the case P � A
P � true is always true for any P

The satisfaction relation asserts that the may modality 〈α〉A requires the
process P to have a transition with the action α to P′ and then the formula
A must be satisfied by P′. Similarly, the must modality [α]A requires that all
processes P′ must satisfy A resulting from all the transition of P with the ac-
tion α . Formally, only one modality is necessary to be defined as they are
inter-definable, i.e., 〈α〉A = ¬[α]¬A, and [α]A = ¬〈α〉¬A. Other logical for-
mulas are obtained in the standard way: false = ¬true, A∨B = ¬(¬A∧¬B),
and A =⇒ B = ¬A∨B.

Now we can define the logical equivalence relation between two processes.
Processes P and Q are logically equivalent

P ��Q

if for all formulas A, P � A if and only if Q � A.
Let us recall examples from the previous section, Section 2.3. We have that

a.b.0 ��a.b.0+a.b.0

as a formula A does not exist such that a.b.0 � A and a.b.0+a.b.0 6� A. How-
ever, the following are not logically equivalent

a.b.0+a.c.0 6��a.(b.0+ c.0)

since we can find a distinguishing formula, namely 〈a〉(〈b〉true∧〈c〉true), such
that

a.(b.0+ c.0) �〈a〉(〈b〉true∧〈c〉true)

but
a.b.0+a.c.0 6�〈a〉(〈b〉true∧〈c〉true).

We say that a labelled transition system is image-finite if for all processes P
and actions α the set of continuation processes {P′ : P α−→ P′} is finite. For
an image-finite labelled transition system, the above logic is adequate, or the
logical relation characterises the bisimilarity relation, meaning that for any P
and Q, P∼ Q if and only if P ��Q. That is, the two relation coincide:

∼ = ��

To be able to characterise the bisimilarity relation in non-image-finite tran-
sition systems such as the pi-calculus and psi-calculi, the logic typically is
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extended with an infinite conjunction formula that is powerful enough to enu-
merate the infinite number of transitions of these systems. The infinite con-
junction can then be defined to be

∧

i∈I

Ai

where each Ai is a formula and I is an indexing set that may be infinite. The
meaning is then simply

P �
∧

i∈I

Ai if P � Ai for all i ∈ I.

HML as presented here is purposely minimal; it contains the formulas
needed for stating the adequacy property. Typically, HML variants would have
other formulas, for example, state predicates that hold for particular processes.
The adequacy result is then used as a test for extensions of HML in order to
get a logic that asserts properties of processes that are compatible with be-
havioural equivalence reasoning.

We have developed an extension of HML for nominal transition systems
that we discuss in Paper I.

2.5 Session Types
Behavioural types are types that themselves can be seen as processes, or rather
abstractions of a processes. Behavioural types are used as an abstract speci-
fication for distributed concurrent system protocols. The type checking of
a process is then a method of checking that an implementation (i.e., a pro-
cess) conforms to a specification (i.e., a type). Session types are perhaps
the most prominent example of behavioural types. They typically ensure not
only the correspondence between protocol specification and implementation
but also properties guaranteed by type safety like the absence of deadlock due
to communication mismatch. Here we present a version of the original ses-
sion type system that is now known as binary session types introduced by
Honda et al. [18].

The idea of binary session types is to describe the reciprocal behaviour of
communication between two processes on a private session channel. Consider
the following system expressed in a pi-calculus like language:

(νs)(P | Q) | R

where R represent the rest of the parallel components of the system; note that
the scope of the restriction s does not extend to R. In order for P and Q
to proceed on the session channel s, either P is capable of sending and Q is
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capable of receiving on s, or vice versa. For example, the following is a safe
interaction resulting in a communication on channel s:

(νs)(s(x).P′ | sm.Q′) | R → (νs)(P{m/x} | Q) | R

but the following results in communication mismatch on s (i.e. deadlock):

(νs)(sm.P′ | sn.Q′) | R.

The processes P′ and Q′ need to have the same property that all their commu-
nication operations are reciprocal. One abstracts the communicated messages
to just their type and the operators to their capabilities of input or output.

With session types, we can describe the safe interactions within a session.
The session s is assigned a session type that describes the interactions from
the perspective of one session participant, and the type of the other participant
can be derived by dualising all of the interactions.

For the above safe example, we can assign to s the type int.T , written
s : int.T . The type says: receive an integer and continue as T . So, the process
s(x).P′ is well-typed according to the type assignment where x : int and P′ is
well-typed with respect to T . The partner process sm.Q′ is well-typed with
int.T ′ where m : int and Q′ is well-typed with regard to s : T ′. The type de-
scribes the output of an integer and continuation with the type T ′. The two
types int.T and int.T ′ describe interactions on a opposite endpoints of the
session channel. They are dual in the sense that the capabilities of input are
flipped to output, and vice versa. Thus, we only need one type to obtain the
type of the other participant. So, the channel s in the unsafe example above has
no session type, and thus it is prevented statically by the session type system.

Let us be more formal and introduce the basic language that is typed using
session types. We distinguish between several kinds of names in the calculus.
The name s denotes a session channel, the name a denotes shared channels,
and the name x denotes a variable. We use m to denote some data that are
not names. Let L be a set of labels, ranged over by `. Then, the calculus is
defined by the following which is a version of the pi-calculus (cf. Section 2.1.1
and Figure 2.2)

P,Q ::= a(s).P a(s).P s(x).P sm.P P | Q if ϕ then P else Q
A (νs)P (νa)P 0
s⊕`.P s&{`1 : P1, . . . , `n : Pn}

The operators are mostly as they are in the pi-calculus. The input and output
operators are duplicated because they operate on different data. The first two
operators are called accept and request of a session s. They have slightly dif-
ferent semantics from the usual communication as they describe the following
interaction

a(s).P | a(s).Q→ (νs)(P | Q)
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where accept and request establish a private sessions s between two processes.
Thus, the shared channels act as an interface for establishing sessions.

The branching operator s&{`1 : P1, . . . , `n : Pn} is a specialisation of the
non deterministic choice that we have seen in Section 2.1.1. The branching
contains labels for the possible choices, allowing an external process to trigger
a branch with the selection operator s⊕`.P. We can describe it as

s⊕`.P | s&{`1 : P1, . . . , `n : Pn}→ P | Pi

where ` = `i for some i = 1, . . . ,n. So s⊕`.P forces branching on its parallel
component on label ` via session s. The process A is just a process constant
(Section 2.1.1).

Let B be a set of data types (base types) that, for example, may include
types for integers, strings, and similar. Then, the binary session types are
defined as follows7

T ::= β .T input
β .T output
end inaction type
⊕{`1 : T1, . . . , `n : Tn} selection
&{`1 : T1, . . . , `n : Tn} branching
µt.T recursion
t type variable

Note the similarity of the type language with CCS of Section 2.1.1, except
that this language is not interpreted operationally but as a type. The input
and output types are as described above. The end type merely signifies the
termination of the type. The selection type describes the selections that the
process may perform, and similarly the branching type describes the branches
that the process can take. The recursion type and the type variable allows for
describing unbounded behaviours of the process.

The duality of types is defined as follows where note that the capabilities
(input, output, selection, and branching) are reversed.

dual(β .T ) = β .dual(T )
dual(β .T ) = β .dual(T )
dual(end) = end

dual(⊕{`1 : T1, . . . , `n : Tn}) = &{`1 : dual(T1), . . . , `n : dual(Tn)}
dual(&{`1 : T1, . . . , `n : Tn}) = ⊕{`1 : dual(T1), . . . , `n : dual(Tn)}

dual(µt.T ) = µt.dual(T )
dual(t) = t

7It is the subset of [18] with the types for session delegation omitted.
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We assign types to shared channels as a : T . Then, the typing rules assign
the dual types for the accept and request session channels. The request process
as.P is typed with the assignment s : T where T is inherited from a : T , while
the accept process a(s).P is typed with the dual type assignment s : dual(T ),
where again T is inherited from a : T . When typing already established ses-
sions, one needs to be careful to give the right type and dual type to the parallel
components.

Formally, assigning types is defined as a relation of the form

Γ;∆ ` P

where Γ is a list of type assignments to the shared channels, and ∆ is the type
assignments to the session channels.

The soundness of the type system is demonstrated by establishing the sub-
ject reduction property. Subject reduction states if Γ;∆ ` P and P→ P′ then
there is ∆′ such that Γ;∆′ ` P′. This means that a well-typed process reduces
to a well-typed process. In a well-typed process, some bad behaviour is absent
such as the communication mismatch that we alluded in the example above.
Thus, typing also ensures the safety of communication, referred to as type-
safety.

Paper III adapts the standard binary session types to systems with unreliable
and broadcast communication.
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3. Summary of Contributions

3.1 Paper I: Modal Logics for Nominal Transition
Systems

Often in more advanced process calculi the labelled transition system would
contain names that also bind into the derivative. Furthermore, transitions
would adhere to a principle that the choice of these names is immaterial if
they are sufficiently fresh for the derivative. Examples of such systems in-
clude the pi-calculus and psi-calculi that we have introduced in the sections
Section 2.1.1 and Section 2.1.2. In Paper I, we have introduced a notion of
labelled transition system and logic to canonically reason about them.

In Paper I, we introduce a general notion of a nominal labelled transition
system with labels whose names may bind into the derivative. Formally, we
generalise the standard labelled transition system (see Section 2.2) to include
state predicates and a labelling relation on states and state predicates. We add
structure to actions by requiring a function that denotes the binding names of
an action. Finally, the transition relation is required to be invariant under the
consistent renaming of the binding names in the action and the derivative.

We define a notion of bisimulation relation for a nominal transition system.
The definition of bisimulation is standard except for the addition of the clause
of static implication which ensures that the related states enable the same state
predicates, and a refinement of the simulation clause with the requirement that
binding names are chosen fresh for the related state (as it is done in the pi-
calculus, and psi-calculi).

Finally, we define an infinitary Hennessy-Milner logic (Section 2.4) for
nominal transition systems. The difference to the standard HML (Section 2.4)
is that the action α in the formula 〈α〉A may contain binding names that bind
into the formula A and that the formulas are required to be finitely supported
(roughly, to have a finite set of free names). We show that this logic is ad-
equate for bisimilarity relation. The novel construct in our logic is the in-
finitary finitely-supported conjunction. Significantly, it allows us to express
formulas with quantification, in particular, we can quantify over names, i.e.
∀n ∈N .A(n) as

∧
n∈N A(n) that was not possible with previous HML logics

that required uniformly bounded formulas for each member of the infinitary
conjunction.

Adequate variants of our logic are defined for various notions of bisimi-
larity that have been introduced over the years. In particular, we can capture
early bisimilarity, early congruence, late bisimilarity and equivalence, open
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bisimilarity and hyperbisimilarity. We also introduce a variant of our logic to
characterise weak bisimilarity.

Our logic is expressive: many standard modal logic and HML connectives
are definable in our logic. We show that the least fixpoint operator (allowing
recursive logical formulas) is definable in our logic. The next-step operator
is also definable in our logic. Thus, we can express formulas of standard
branching time logics like CTL.

We demonstrate the expressiveness of our logic, by instantiating it to pro-
vide an adequate HML for CCS, the pi-calculus, the spi-calculus, the applied
pi-calculus, the fusion calculus, the concurrent constraint pi-calculus, and psi-
calculi.

The main results have been formalised and proved in the theorem prover
Isabelle, giving us significant trust in the correctness of the results. In particu-
lar, we have formalised adequacy of the logic, and adequacy of the variant of
logic.

3.1.1 Comments on My Participation
I participated in exploring the design space by developing a less minimal, more
concrete Hennesy-Milner logic with adequacy results for psi-calculi.

In the paper, I have introduced the encoding of the least fixpoint operator.
I have initially introduced the formula valuation in sets of states and proved
that the valuation of least fixpoint operator is indeed the least fixpoint in sets
of states. Later I collaborated with my coauthors to refine the proofs and
definitions, who found problems with the encodings.

I had contributed text on the fixpoint operator and as well some text on the
derived operators section.

3.2 Paper II: A Sorted Semantic Framework for Applied
Process Calculi

The theory of psi-calculi (Section 2.1.2) is untyped. This becomes cumber-
some when expressing more complex data in psi-calculi. Since any name may
be used as a variable and the substitution function needs to be a total function,
the set of terms need to include terms that result from substituting variables
for any other terms, even when the terms are meaningless. All substitutions
need to be accounted as substitutions in psi-calculi arise in the input process.

In Paper II, we introduce a sort system for the psi-calculi where we move
away from any substitutions to only well-sorted substitutions by giving sorts
to the names, terms, and patterns. The sort not only solves the problem but
also gives additional expressive power. We also generalise the input process
and input rule to allow more general pattern matching that allows arbitrary
computation.
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We generalise the pattern matching performed by the input rule. Formally,
we introduce another parameter set for patterns that we denote by X. The
input process now is defined to be M(λx1, . . . ,xn)X .P where M is a term, but
now X is a pattern drawn from X. We also distinguish names that occur in
pattern X between names as data and names that are pattern variables bound
by x1, . . . ,xn. We do this by introducing the operation VARS(X) to return a set
of sets of pattern variables. The pattern matching is also parametrised with
the operation MATCH(M,(x1, . . . ,xn),X) to return a set of list of terms that are
assigned to the pattern variables x1, . . . ,xn by matching the pattern X against
the term M. The MATCH function is allowed to return more than one possible
match, allowing for non-deterministic behaviour in the input.

We found that this fine control of the input process is important for mod-
elling security protocols. For example, a(λm,k)enc(m,k).P is allowed in psi-
calculi where the pattern enc(m,k) representing the cypher of the message m
encrypted with the key k is decrypted by simply pattern matching. However,
with fine control over the binding names we can disallow k from being a pat-
tern variable in the pattern enc(m,k), and thus the only allowed input form is
a(λm)enc(m,k).P where now the meaning subtly changes to the decrypting
of a message with the key k since the process must have the knowledge of k as
it is free.

The sort system is also parametric. The sorts are given by defining the set of
sorts S; the sort assigning function SORT that assigns a sort to terms, patterns,
and names; and four capability relations: (1) capability to input a pattern of
sort s via a channel of sort s′, (2) capability to output a term of sort s via a
channel of sort s′, (3) capability of substituting a term of sort s for a name
of sort s′, (4) capability of being able to restrict a name of sort s. The input,
output and restriction constructs are are required to respect the capability re-
lations. We call processes that respect capability relations well-formed. The
capabilities for output and input together with the MATCH function need also
be compatible with the substitution capability relation.

The subject reduction property holds for any instance of our sort system:
a well-formed process transitions to a well-formed process. We then go on
to re-establish the main results for psi-calculi with the new input process and
SOS rule, and the sort system. More specifically, we show that the resulting
strong and weak congruences satisfy the usual structural congruence laws.
We establish this result in the theorem prover Isabelle for the pattern matching
extension, and for the sort system we do this manually for technical limitations
of the package that we rely on. The manual check is simplified by reducing
the sorted process calculi to a more manageable simpler form.

In order to relate encodings, we introduce a notion of representation of
a process calculus by a psi-calculi instance. Representation is a map that we
require to be homomorphic with regard to a context, and the transition systems
operationally correspond with regard to this map up to a structural congruence.
Representation is complete if a map is also surjective up to bisimulation. This
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notion of encoding is quite stronger than the standard encoding criteria by
Gorla [14].

The extended psi-calculi with generalised pattern matching and sorts is ex-
pressive and capable of presenting many well-known process calculi. The
extended psi-calculi completely represents both unsorted and sorted polyadic
pi-calculus. Also, the subcalculus with inputs of the process calculus LINDA
falls out as a special case. We can also represent polyadic synchronisation
pi-calculus and value-passing CCS.

3.2.1 Comments on My Participation
I contributed to encodings and representation proofs, and implemented the sort
system in the PWB tool.

3.3 Paper III: A Session Type System for Unreliable
Broadcast Communication

Session type systems rely on the reliability of communication, that is, no mes-
sage loss is allowed, to ensure that the process follows the protocol specified
by the session type. In Paper III, we forgo reliability of communication. We
introduce a process calculus with unreliable synchronous broadcast and equip
it with a sound binary session type system, meaning that the subject reduction
property is established.

With the broadcast process calculus that we propose we capture many com-
munication features found in ad-hoc and wireless sensor networks. The pro-
cesses of the calculus are annotated with labels that represent locations, called
nodes. Communication in the calculus operates with respect to a connectiv-
ity graph where edges denote connections between locations. The graph is
arbitrary. However, the graph is static, meaning it does not evolve during the
execution of the system. We capture two common operations in such networks
that we call scatter and gather. Scatter is simply a broadcast to neighbouring
nodes (one-to-many) with regard to the connectivity graph. Notably, the scat-
tered data may be lost: it is not necessarily received by all, or indeed any,
of the neighbouring nodes. Gather is an operation that aggregates received
data from the neighbouring nodes (many-to-one). Again, not all of the data is
received and aggregated due to message loss.

To cope with unreliability, we introduce a recovery process. The recov-
ery mechanism is autonomous, that is, it occurs non-deterministically without
any particular trigger. Thus, recovery does not involve communication. Fur-
thermore, the nodes keep track of the session state they are in to ensure that
communication can only occur if they are in the same protocol stage. The re-
sulting reduction semantics for the broadcast calculus is quite straightforward.
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Our session type system is based on the standard binary session types. In
particular, the session endpoints of scatter and input are assigned dual session
types, and similarly for gather and output. When typing the session channel
we allow multiple copies of a type assignment to a session channel, as there
may be multiple nodes following the same protocol. Also, when typing nodes,
the context containing sessions is synchronised with the session state in the
nodes.

The subject reduction property holds for our system. That is, if a well-
typed network reduces, then it is still well-typed. However, a reduced network
may make use of fewer session channels due to some nodes recovering. Fur-
thermore, we formalise a type-safety property such that type-safe nodes in
the same session state have the dual communication capabilities. In our sys-
tem, a progression of a network is always guaranteed as we may always lose
messages; so in our system, progress occurs via communication. We also
demonstrate that we can give a type to a standard data aggregation algorithm
in wireless sensor networks.

3.3.1 Comments on My Participation
I am the principal author of this paper. The idea to use session types in systems
with unreliable broadcast is mine. I introduced the calculus and typing rules,
however, the final form is certainly a product of collaboration. I have done the
proofs and wrote most of the paper.

3.4 Paper IV: The Psi-Calculi Workbench: A Generic
Tool for Applied Process Calculi

In Paper IV, we present a tool for modelling concurrent systems called the
Psi-calculi workbench (PWB). The tool accepts psi-calculi as the modelling
language for processes. The tool implements an interactive command inter-
preter for inputting processes and interacting with various sub-tools. Most
notably, we implement a execution for psi-calculi processes and a bisimula-
tion generator for given processes. Both of these are also provided with the
weak transition versions.

PWB implements a variant of psi-calculi. It includes both the usual syn-
chronous point-to-point and unreliable synchronous broadcast communica-
tion. PWB extends psi-calculi with process constant definitions and process
constant invocations for the convenience of developing large models. Further-
more, PWB implements the sorts extension of Paper II. However, there is no
pattern matching in PWB, although polyadic communication is allowed. The
weak symbolic semantics and bisimulation generation algorithm require the
weakening of assertions to hold, that is, conditions that are entailed by an
assertion are also entailed by all of the extensions of that assertion.
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In the paper, we introduce the symbolic structural operational semantics for
psi-calculi that include both point-to-point and unreliable broadcast commu-
nication. Symbolic semantics is a way of abstracting infinite behaviour of a
process to a finite symbolic version coupled with finite formulas that charac-
terise that behaviour. We show that the symbolic semantics correspond to the
standard structural operational semantics of psi-calculi. PWB indeed imple-
ments the symbolic semantics.

PWB has a modular and parametric architecture. It is parametrised by the
structures for defining the psi-calculi parameters and solvers for solving the
symbolic transition formulas (constraints). By providing the appropriate pa-
rameters, one obtains a tool, for example, for the pi-calculus, broadcast pi-
calculus, spi-calculus.

We show the utility of the tool with examples of instantiating PWB with pa-
rameters and showing examples of symbolic execution. We have implemented
an instance and provided a model in psi-calculi for the alternating bit proto-
col. We also, to demonstrate the broadcasting capabilities of a tool, provided
an instance with constraint solver and a model in psi-calculi for a simple data
aggregation protocol in wireless sensor networks. We also show an example
of the utility of psi-calculi assertions to model dynamic connectivity graphs.
All of the examples use structured data and channels.

PWB is a useful tool for modelling distributed concurrent systems. It pro-
vides tools for experimenting and developing models of those systems. One
can use the behavioural equational reasoning for showing properties of the
models. The tool can also be used for implementing new verification tech-
niques.

3.4.1 Comments on My Participation
I have implemented PWB with the exception of parts of the broadcasting ex-
tension. I have devised and implemented the examples. I contributed text to
the section on the tool and examples.
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4. Conclusion and Future Work

In this dissertation, we presented contributions in the psi-calculi process cal-
culi framework, Hennessy-Milner logic for nominal transition systems, and
behavioural types for systems with unreliable communication.

The psi-calculi framework reduces the effort for defining new process cal-
culi that share common traits such as shared channels, synchronous point-
to-point communication, structured data, logical environment, pi-calculus like
syntax and semantics. To obtain a new calculus with a bisimulation theory, one
needs to instantiate a handful of parameters that must satisfy fairly straightfor-
ward requirements. It has been shown that many process calculi are captured
by the psi-calculi [5], e.g., the pi-calculus, CCS, the concurrent constraint cal-
culus and others. In this work, we have extended the expressiveness and gen-
erality of the psi-calculi even further by equipping the psi-calculi with a simple
type system and generalising the pattern matching mechanism in the input rule
to arbitrary and non-deterministic computation. This allowed us to directly
capture the value passing CCS, the sorted and unsorted polyadic pi-calculus,
and the polyadic synchronisation pi-calculus. The correspondence between
the psi-calculi and the mentioned calculi are much stronger than the now stan-
dard Gorla’s expressiveness criteria [14]. The sorts and pattern matching give
powerful yet simple tools for developing new process calculi theory.

Furthermore, in this thesis, we developed a tool for the psi-calculi frame-
work called the psi-calculi workbench (PWB). The tool is both a software
library and an interactive command line tool. A user is capable of extend-
ing the tool with new process calculi by implementing the parameters of psi-
calculi and constraint solvers that drive the symbolic execution and bisimu-
lation generation modules. Thus, an implementer of a calculus in PWB can
also distribute a derived tool just for a specific process calculus to other users.
Therefore, the derived tool ships with an interactive symbolic execution in-
terface of a process and a bisimulation relation generator with far less effort
than developing a new tool from scratch. PWB makes it simpler to experiment
with new definitions of process calculi and also explore the specification of
concurrent systems in those calculi.

Modal logic is a way of specifying properties and verifying systems ab-
stractly. We have developed a Hennessy-Milner modal logic (HML) for tran-
sition systems that make use of binding names in their actions, which we call
nominal transition systems. The process calculi literature is rich with these
kinds of systems, chief among them the pi-calculus and its many derivatives.
Our logic is infinitary; namely, the conjunction operator is constructed from
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an infinite set of formulas. The innovative feature in our logic is that we do not
require the formation of an infinite conjunction to have a uniformly bounded
finite support (free names of the formula), but require the set of formulas of
infinite conjunction to have a finite support. Crucially, this feature still allows
us to have well-defined alpha-conversion of formulas. We obtain, by consider-
ing such formulas, a significant expressive power over other Hennessy-Milner
logics for transition systems: in our logic, we are able to define quantification
over names, and the fresh quantifier found in nominal logics (e.g. [26]). In
our logic, we are also capable of encoding fixpoint formulas as derived op-
erators. By having such general HML, we can provide an adequate logic for
many systems that no logical system has been considered and capture many
that have. For example, our logic is adequate (in the sense of Section 2.4) for
the pi-calculus and the psi-calculi framework.

Session type systems are prominent specification language for distributed
system protocols. In this thesis, we have adapted a standard binary session
type system to a new setting: we have devised a typing relation for process
calculus with unreliable broadcasting communication. The system is novel in
the sense that up to now there were no session type systems for process calculi
that have unreliable communication semantics.

Future work
There is a lot of work that remains to be done.

Sorts are a simple and straightforward way of modelling data invariants
in the sorted psi-calculi. However, more advanced typing system should be
considered for the psi-calculi, for instance, binary session type system. Hüttel
has devised several type systems for psi [19, 20], however, his systems do not
consider psi-calculi in full generality and have quite complicated conditions.
A major challenge with adapting more advanced type systems for psi-calculi
is the non-monotonic logic of the assertion environments. For example, a
psi-calculi process can easily disable the session channel connectivity after
a transition and thus diverge from the session protocol. One could consider
monotonic logics for psi-calculi only; or, treat the session channels specially in
the way that they are not affected by the assertions; or, one could also consider
some type of dependency of assertion environment in type judgements. Thus,
there is a non-trivial design space to explore to arrive at a satisfactory type
system for psi-calculi.

The symbolic execution of PWB is based on the symbolic semantics for
psi-calculi where the idea is to abstract the values to make the transitions fi-
nite. There is an established correspondence between standard psi-calculi se-
mantics and symbolic semantics. However, the semantics differ in significant
ways. For one, it does not cover the full psi-calculi. Specifically, it is not
obvious how to extend the current symbolic semantics to handle the general
pattern matching of the psi-calculi input process of Paper II. Furthermore, the
abstracted values and names in processes are conflated. This puts restrictions
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on the psi-calculi parameters that are not present in the original. Devising
symbolic semantics, in general, can be an arduous and ad-hoc process. In-
stead, we can consider a general format for SOS rules and derive sound and
complete symbolic semantics for such rules. This idea looks promising, and
we already started exploring such rule formats (Paper VII).

For the Hennessy-Milner logic for nominal transition systems, we envi-
sion a sound and complete proof system. The challenge here is providing
proof rules for the infinitary conjunction with finite support and modalities
with binding names. A development of a finitary subset of our logic and a
model checking algorithm would be beneficial for applications.

The broadcast process calculus and binary session type system are just the
first steps towards applying session type to unreliable systems. There are
shortcomings to our system. The biggest is the recovery system is too strong.
We would like to investigate other forms of recovery, e.g., exceptions. How-
ever, this is not entirely obvious how to achieve this without communicating
that an exception has occurred to other participants. The system would benefit
from an extension to multiparty session types and choreographies. Choreogra-
phies, in particular, for the unreliable broadcast systems seem quite removed
from standard choreographies. It seems there is a need for the notion of neigh-
bourhood which counter-intuitively is a notion of locality to particular nodes.
Communication is synchronous in our system, which may be not fitting cer-
tain classes of applications. We would like to reformulate our system to use
asynchronous communication.
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MODAL LOGICS FOR NOMINAL TRANSITION SYSTEMS

JOACHIM PARROW, JOHANNES BORGSTRÖM, LARS-HENRIK ERIKSSON, RAMŪNAS
GUTKOVAS, TJARK WEBER

Uppsala University, Sweden

Abstract. We define a uniform semantic substrate for a wide variety of process calculi
where states and action labels can be from arbitrary nominal sets. A Hennessy-Milner
logic for these systems is introduced, and proved adequate for bisimulation equivalence. A
main novelty is the use of finitely supported infinite conjunctions. We show how to treat
di↵erent bisimulation variants such as early, late, open and weak in a systematic way, and
make substantial comparisons with related work. The main definitions and theorems have
been formalized in Nominal Isabelle.

1. Introduction

Transition systems. Transition systems are ubiquitous in models of computing, and
specifications to say what may and must happen during executions are often formulated
in a modal logic. There is a plethora of di↵erent versions of both transition systems and
logics, including a variety of higher-level constructs such as updatable data structures, new
name generation, alias generation, dynamic topologies for parallel components etc. In this
paper we formulate a general framework where such aspects can be treated uniformly, and
define accompanying modal logics which are adequate for bisimulation. This is related to,
but independent of, our earlier work on psi-calculi [BJPV11], which proposes a particular
syntax for defining behaviours. The present paper does not depend on any such language,
and provides general results for a large class of transition systems.

In any transition system there is a set of states P, Q, . . . representing the configurations
a system can reach, and a relation telling how a computation can move between them.
Many formalisms, for example all process algebras, define languages for expressing states,
but in the present paper we shall make no assumptions about any such syntax.

In systems describing communicating parallel processes the transitions are labelled with
actions ↵, �, representing the externally observable e↵ect of the transition. A transition

P
↵�! P 0 thus says that in state P the execution can progress to P 0 while conducting the

action ↵, which is visible to the rest of the world. For example, in CCS these actions are
atomic and partitioned into output and input communications. In value-passing calculi the
actions can be more complicated, consisting of a channel designation and a value from some
data structure to be sent along that channel.

Scope openings. With the advent of the pi-calculus [MPW92] an important aspect of
transitions was introduced: that of name generation and scope opening. The main idea is
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that names (i.e., atomic identifiers) can be scoped to represent local resources. They can also
be transmitted in actions, to give a parallel entity access to this resource. In the monadic
pi-calculus such an action is written a(⌫b), to mean that the local name b is exported along

the channel a. These names can be subjected to alpha-conversion: if P
a(⌫b)���! P 0 and c

is a fresh name then also P
a(⌫c)���! P 0{c/b}, where P 0{c/b} is P 0 with all bs replaced by

cs. Making this idea fully formal is not entirely trivial and many papers gloss over it. In
the polyadic pi-calculus several names can be exported in one action, and in psi-calculi
arbitrary data structures may contain local names. In this paper we make no assumptions
about how actions are expressed, and just assume that for any action ↵ there is a finite set
of names bn(↵), the binding names, representing exported names. In our formalization we
use nominal sets, an attractive theory to reason about objects depending on names on a
high level and in a fully rigorous way.

State predicates. The final general components of our transition systems are the state
predicates ranged over by ', representing what can be concluded in a given state. For
example state predicates can be equality tests of expressions, or connectivity between com-
munication channels. We write P ` ' to mean that in state P the state predicate '
holds.

A structure with states, transitions, and state predicates as discussed above we call a
nominal transition system.

Hennessy-Milner Logic. Modal logic has been used since the 1970s to describe how
facts evolve through computation. We use the popular and general branching time logic
known as Hennessy-Milner Logic [HM85] (HML). Here the idea is that an action modality
h↵i expresses a possibility to perform an action ↵. If A is a formula then h↵iA says that it
is possible to perform ↵ and reach a state where A holds. With conjunction and negation
this gives a powerful logic shown to be adequate for bisimulation equivalence: two processes
satisfy the same formulas exactly if they are bisimilar. In the general case, conjunction
must take an infinite number of operands when the transition systems have states with an
infinite number of outgoing transitions. The fully formal treatment of this requires care in
ensuring that such infinite conjunctions do not exhaust all names, leaving none available
for alpha-conversion. All previous works that have considered this issue properly have used
uniformly bounded conjunction, i.e., the set of all names in all conjuncts is finite.

Contributions. Our definition of nominal transition systems is very general since we
leave open what the states, transitions and predicates are. The only requirement is that
transitions satisfy alpha-conversion. A technically important point is that we do not assume

the usual name preservation principle, that if P
↵�! P 0 then the names occurring in P 0 must

be a subset of those occurring in P and ↵. This means that the results are applicable to
a wide range of calculi. For example, the pi-calculus represents a trivial instance where
there are no state predicates. CCS represent an even more trivial instance where bn always
returns the empty set. In the fusion calculus and the applied pi-calculus the state contains an
environmental part which tells what expressions are equal to what. In the general framework
of psi-calculi the states are processes with assertions describing their environments.

We define a modal logic with the h↵i operator that binds the names in bn(↵), and
contains operators for state predicates. Instead of uniformly bounded conjunction we use
the notion of finite support from nominal sets: a conjunction of an infinite set of formulas is
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admissible if the set has finite support. This results in greater generality and expressiveness.
For example, we can now define quantifiers and the next step modalities as derived operators.
The main technical di�culty is to ensure that formulas and their alpha-equivalence classes
throughout are finitely supported, i.e., only depend on a finite set of names, even in the
presence of infinite conjunction.

We establish that logical equivalence coincides with bisimilarity. Compared to previous
such adequacy results our proof takes a new twist. We also show how variants of the logic
correspond to late, open and hyperbisimilarity in a uniform way. Such logics have to some
extent been proposed before in ad-hoc ways; our contribution here is a systematic framework
where one adequacy proof covers all of them.

We obtain an adequacy result for weak bisimulation through the weak modality hh↵ii, to
represent a sequence of actions with observable content ↵. Weak bisimulation for nominal
transition systems with state predicates is notoriously di�cult, and we need an extra logical
operator � also A to express that through unobservable actions we can reach a state
satisfying both the potentially infinite but finitely supported set of state predicates � and
the formula A.

Finally we compare our logic to several other proposed logics for CCS and developments
of the pi-calculus. A conclusion is that we can easily represent most of them. The corre-
spondence is not exact because of our slightly di↵erent treatment of conjunction, but we
certainly gain simplicity and robustness in otherwise complicated logics. We also show how
our framework can be applied to obtain logics where none have been suggested previously.

Formalization. Our main definitions and theorems have been formalized in Nominal Is-
abelle [UK12]. This has required significant new ideas to represent data types with infinitary
constructors like infinite conjunction and their alpha-equivalence classes. As a result we cor-
rected several details in our formulations and proofs, and now have very high confidence in
their correctness. The formalization e↵ort has been substantial, but certainly less than half
of the total e↵ort, and we consider it a very worthwhile investment.

Exposition. In the following section we provide the necessary background on nominal sets.
In Section 3 we present our main definitions and results on nominal transition systems and
modal logics. In Section 4 we derive useful operators such as quantifiers and fixpoints, and
indicate some practical uses. Section 5 shows how to treat variants of bisimilarity such as
late and open in a uniform way, and in Section 6 we treat a logic for weak bisimilarity.
In Section 7 we compare with related work and demonstrate how our framework can be
applied to recover earlier results uniformly. Finally Section 8 concludes with some remarks
on the formalization in Nominal Isabelle.

This paper is an extended version of [PBE+15]. The present paper contains a new
section on logics for weak bisimilarity as well as more explanations, examples and proofs.

2. Background on nominal sets

Nominal sets [Pit13] is a general theory of objects which depend on names, and in
particular formulates the notion of alpha-equivalence when names can be bound. The
reader need not know nominal set theory to follow this paper, but some key definitions will
make it easier to appreciate our work and we recapitulate them here.
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We assume an infinitely countable multi-sorted set of atomic identifiers or names N
ranged over by a, b, . . .. A permutation is a bijection on names that leaves all but finitely
many names invariant. The singleton permutation which swaps names a and b and has no
other e↵ect is written (a b), and the identity permutation that swaps nothing is written id.
Permutations are ranged over by ⇡, ⇡0. The e↵ect of applying a permutation ⇡ to an object
X is written ⇡ · X. Formally, the permutation action · can be any operation that satisfies
id · X = X and ⇡ · (⇡0 · X) = (⇡ � ⇡0) · X, but a reader may comfortably think of ⇡ · X as
the object obtained by permuting all names in X according to ⇡.

A set of names N supports an object X if for all ⇡ that leave all members of N invariant
it holds ⇡ · X = X. In other words, if N supports X then names outside N do not matter
to X. If a finite set supports X then there is a unique minimal set supporting X, called
the support of X, written supp(X), intuitively consisting of exactly the names that matter
to X. As an example the set of names textually occurring in a datatype element is the
support of that element, and the set of free names is the support of the alpha-equivalence
class of the element. Note that in general, the support of a set is not the same as the union
of the support of its members. An example is the set of all names; each element has itself
as support, but the whole set has empty support since ⇡ · N = N for any ⇡.

We write a#X, pronounced “a is fresh for X”, for a 62 supp(X). The intuition is that
if a#X then X does not depend on a in the sense that a can be replaced with any fresh
name without a↵ecting X. If A is a set of names we write A#X for 8a 2 A . a#X.

A nominal set S is a set with a permutation action such that X 2 S ) ⇡ · X 2 S,
and where each member X 2 S has finite support. A main point is that then each member
has infinitely many fresh names available for alpha-conversion. Similarly, a set of names
N supports a function f on a nominal set if for all ⇡ that leave N invariant it holds
⇡ · f(X) = f(⇡ · X), and similarly for relations and functions of higher arity. Thus we
extend the notion of support to finitely supported functions and relations as the minimal
finite support, and can derive general theorems such as supp(f(X)) ✓ supp(f) [ supp(X).

An object that has empty support we call equivariant. For example, a unary function
f is equivariant if ⇡ · f(X) = f(⇡ · X) for all ⇡, X. The intuition is that an equivariant
object does not treat any name special.

3. Nominal transition systems and Hennessy-Milner logic

Definition 1. A nominal transition system is characterized by the following

• states: A nominal set of states ranged over by P, Q.
• pred: A nominal set of state predicates ranged over by '.
• An equivariant binary relation ` on states and pred. We write P ` ' to mean

that in state P the state predicate ' holds.
• act: A nominal set of actions ranged over by ↵.
• An equivariant function bn from act to finite sets of names, which for each ↵ returns

a subset of supp(↵), called the binding names.
• An equivariant transition relation ! on states and residuals. A residual is a pair

of action and state. For ! (P, (↵, P 0)) we write P
↵�! P 0. The transition relation

must satisfy alpha-conversion of residuals: If a 2 bn(↵), b#↵, P 0 and P
↵�! P 0 then

also P
(a b)·↵����! (a b) · P 0.
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As an example, basic CCS from [Mil89] is a trivial nominal transition system. Here the
states are the CCS agents, act the CCS actions, bn(↵) = ; for all actions, and pred = ;.
For the pi-calculus, states are the pi-calculus agents, and act the four kinds of pi-calculus
actions (silent, output, input, bound output). In the early semantics bn returns the empty
set except for bound outputs where bn(a(⌫x)) = {x}. In the late semantics there are actions
like a(x) where x is a placeholder so also bn(a(x)) = {x}. In the polyadic pi-calculus each
action may bind a finite set of names.

In the original terminology of these and similar calculi these names are referred to as
“bound”. We believe a better terminology is “binding”, since they bind into the target
state. For higher-order calculi this distinction is important. Consider an example where
objects transmitted in a communications are processes, and a communicated object contains
a bound name:

P
a(⌫b)Q����! R

The action here transmits the process (⌫b)Q along the channel a. The name b is local to
Q, so alpha-converting b to some new name a↵ects only Q. Normally agents are considered
up to alpha-equivalence, this means that b is not in the support of the action, and we have
bn(a(⌫b)Q) = ;.

In the same calculus we may also have a di↵erent action

P
(⌫b)aQ����! R

Again this transmits a process along the channel a, but the process here is just Q. The
name b is shared between Q and R, and is extruded in the action. An alpha conversion of b
thus a↵ects both Q and R simultaneously. In the action b is a free name, in the sense that
b is in its support, and it cannot be replaced by another name in the action alone. Here we
have bn((⌫b)aQ) = {b}.

In all of the above we have pred = ; since communication is the only way a process
may influence a parallel process, and thus communications are the only things that matter
for process equivalence. More general examples come from psi-calculi [BJPV11] where
there are so called “conditions” representing what holds in di↵erent states; those would
then correspond to pred. Other calculi, e.g. [WG05, BM07], also have mechanisms where
processes can influence each other without explicit communication, such as fusions and
updates of a constraint store. All of these are straightforward to accommodate as nominal
transition systems. Section 8 contains further descriptions of these and other examples.

Definition 2. A bisimulation R is a symmetric binary relation on states in a nominal
transition system satisfying the following two criteria: R(P, Q) implies

(1) Static implication: P ` ' implies Q ` '.

(2) Simulation: For all ↵, P 0 such that bn(↵)#Q there exist Q0 such that if P
↵�! P 0

then Q
↵�! Q0 and R(P 0, Q0)

We write P
·⇠ Q to mean that there exists a bisimulation R such that R(P, Q).

Static implication means that bisimilar states must satisfy the same state predicates;
this is reasonable since these can be tested by an observer or parallel process. The simulation
requirement is familiar from the pi-calculus. Note that this definition corresponds to “early”
bisimulation in the pi-calculus. In Section 6 we will consider other variants of bisimilarity.

Proposition 1.
·⇠ is an equivariant equivalence relation.
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Proof: The proof has been formalized in Isabelle. Equivariance is a simple calculation,
based on the observation that if R is a bisimulation, then ⇡ · R is a bisimulation. To prove

reflexivity of
·⇠, we note that equality is a bisimulation. Symmetry is immediate from Def. 2.

To prove transitivity, we show that the composition of
·⇠ with itself is a bisimulation; the

simulation requirement is proved by a considering an alpha-variant of P
↵�! P 0 where bn(↵)

is fresh for Q.

The minimal HML for nominal transition systems is the following.

Definition 3. The nominal set of formulas A ranged over by A is defined by induction as
follows:

A ::=
^

i2I

Ai | ¬A | ' | h↵iA

Support and name permutation are defined as usual (permutation distributes over all
formula constructors). In

V
i2I Ai it is assumed that the indexing set I has bounded car-

dinality, by which we mean that |I|   for some fixed infinite cardinal  that is larger
than the cardinality of states, act and pred. It is also required that the set of conjuncts
{Ai | i 2 I} has finite support; this is then the support of the conjunction. Alpha-equivalent
formulas are identified; the only binding construct is in h↵iA where bn(↵) binds into A.

For a simple example related to the pi-calculus with the late semantics, consider the
formula ha(x)ihbxi> where > is the empty conjunction and thus always true. We have
bn(a(x))) = {x} and therefore an alpha-variant of the formula is ha(y)ihbyi>. It says that
it must be possible to input something along a and then output it along b. In the early
semantics, where the input action contains the object received rather than a placeholder,
the corresponding formula is ^

x2N
haxihbxi>

in other words, the conjunction is over the set of formulas S = {haxihbxi> | x 2 N}. This
set has finite support, in fact the support is just {a, b}. The reason is that for c, d#{a, b}
we have (c d) · S = S. Note that this set has no finite common support, i.e., there is no
finite set of names that supports all elements, and thus the conjunction is not expressible
in the usual logics for the pi-calculus.

This example highlights one of the main novelties in Definition 3, that we use con-
junction of a possibly infinite and finitely supported set of conjuncts. In comparison, the
earliest HML for CCS, Hennessy and Milner (1985) [HM85], uses finite conjunction, mean-
ing that the logic is adequate only for finite branching transition systems. In his subsequent
book (1989) [Mil89] Milner admits arbitrary infinite conjunction, disregarding the danger
of running into paradoxes. Abramsky (1991) [Abr91] employs a kind of uniformly bounded
conjunction, with a finite set of names that supports all conjuncts, an idea that is also
used in the first HML for the pi-calculus (1993) [MPW93]. All subsequent developments
follow one of these three approaches. Our main point is that both finite and uniformly
bounded conjunction are expressively weak, in that the logic is not adequate for the full
range of nominal transition systems, and in that quantifiers over infinite structures are not
definable. In contrast, our use of finitely supported sets of conjuncts is adequate for all
nominal transition systems (cf. Theorems 1 and 2 below) and admits quantifiers as derived
operators (cf. Section 4 below). As in the simple example above, universal quantification
over names 8x 2 N .A(x) is usually defined to mean that A(n) must hold for all n 2 N .
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We can define this as the (infinite) conjunction of all these A(n). This set of conjuncts is
not uniformly bounded if n 2 supp(A(n)). But it is supported by supp(A) since, for any
permutation ⇡ not a↵ecting supp(A) we have ⇡ · A(n) = A(⇡(n)) which is also a conjunct;
thus the set of conjuncts is una↵ected by ⇡.

Another novelty is the use of a nominal set of actions ↵ with binders, and the formal
definition of alpha-equivalence.We define it by structural recursion over formulas. Two
conjunctions

V
i2I Ai and

V
i2I Bi are alpha-equivalent if for every conjunct Ai there is an

alpha-equivalent conjunct Bj , and vice versa. The other cases are standard; two formulas
h↵iA and h�iB are alpha-equivalent if there exists a permutation ⇡, renaming the binding
names of ↵ to those of �, such that ⇡ · A and B are alpha-equivalent, and ⇡ · ↵ = �.
Moreover, ⇡ must leave names that are free in A invariant. The free names in a formula
are also defined by structural recursion. Most cases are standard again; a name is free in
h↵iA if it is in supp(↵) or free in A, and not contained in bn(↵). However, the free names
in a conjunction are given by the support of its alpha-equivalence class (rather than by the
union of free names in all conjuncts). This is analogous to the situation for nominal sets
in general, whose support is not necessarily the same as the union of the support of its
members. Fortunately, our formalization proves that we need not keep the details of this
construction in mind, but can simply identify alpha-equivalent formulas. The notions of
free names and support then coincide.

The validity of a formula A for a state P is written P |= A and is defined by recursion
over A as follows.

Definition 4.

P |= V
i2I Ai if for all i 2 I it holds that P |= Ai

P |= ¬A if not P |= A
P |= ' if P ` '

P |= h↵iA if there exists P 0 such that P
↵�! P 0 and P 0 |= A

In the last clause we assume that h↵iA is a representative of its alpha-equivalence class
such that bn(↵)#P .

Lemma 1. |= is equivariant.

Proof: By the Equivariance Principle in Pitts (2013) [Pit13, page 21]. A more detailed
proof that verifies P |= A () ⇡ · P |= ⇡ · A for any permutation ⇡ has been formalized
in Isabelle. The proof proceeds by structural induction on A, using equivariance of all
involved relations. For the case h↵iA in particular, we use the fact that if h↵0iA0 = h↵iA,
then h⇡ · ↵0i(⇡ · A0) = h⇡ · ↵i(⇡ · A).

Definition 5. Two states P and Q are logically equivalent, written P
·
= Q, if for all A it

holds that P |= A i↵ Q |= A

Theorem 1. P
·⇠ Q =) P

·
= Q

Proof: The proof has been formalized in Isabelle. Assume P
·⇠ Q. We show P |= A ()

Q |= A by structural induction on A.

(1) Base case: A = '. Then P |= A () P ` ' () Q ` ' () Q |= A by static

implication and symmetry of
·⇠.

(2) Inductive steps
V

i2I Ai and ¬A: immediate by induction.
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(3) Inductive step h↵iA: Assume P |= h↵iA. Then for some alpha-variant h↵0iA0 =

h↵iA, 9P 0 . P ↵0
�! P 0 and P 0 |= A0. Without loss of generality we assume also

bn(↵0)#Q, otherwise just find an alpha-variant of h↵0iA0 where this holds. Then by

simulation 9Q0 . Q ↵0
�! Q0 and P 0 ·⇠ Q0. By induction and P 0 |= A0 we get Q0 |= A0,

whence by definition Q |= h↵iA. The proof of Q |= h↵iA =) P |= h↵iA is

symmetric, using the fact that P
·⇠ Q entails Q

·⇠ P .

The converse result uses the idea of distinguishing formulas.

Definition 6. A distinguishing formula for P and Q is a formula A such that P |= A and
not Q |= A.

The following lemma says that we can find such a formula where, a bit surprisingly, the
support does not depend on Q.

Lemma 2. If P 6 ·= Q then there exists a distinguishing formula B for P and Q such that
supp(B) ✓ supp(P ).

Proof: The proof has been formalized in Isabelle. If P 6 ·= Q then there exists a dis-
tinguishing formula A for P and Q, i.e., P |= A and not Q |= A. Let ⇧P = {⇡ | n 2
supp(P ) ) ⇡(n) = n} be the group of name permutations that leave supp(P ) invariant and
let B be the ⇧P -orbit of A, i.e.,

B = {⇡ · A | ⇡ 2 ⇧P }
In the terminology of Pitts [Pit13] ch. 5, B is hullsupp(P )A. Clearly, if a, b#P and ⇡ 2 ⇧P

then (a b) � ⇡ 2 ⇧P . Thus (a b) · B = B and therefore supp(B) ✓ supp(P ). This means that
the formula B =

VB is well-formed and supp(B) ✓ supp(P ). For all ⇡ 2 ⇧P we have by
definition P = ⇡ · P and by equivariance ⇡ · P |= ⇡ · A, i.e., P |= ⇡ · A. Therefore P |= B.
Furthermore, since the identity permutation is in ⇧P and not Q |= A we get not Q |= B.

Note that in this proof B uses a conjunction which is not uniformly bounded.

Theorem 2. P
·
= Q =) P

·⇠ Q

Proof: The proof has been formalized in Isabelle. We establish that
·
= is a bisimulation.

Obviously it is symmetric. So assume P
·
= Q, we need to prove the two requirements on a

bisimulation.

(1) Static implication. P ` ' i↵ P |= ' i↵ Q |= ' i↵ Q ` '.

(2) Simulation. The proof is by contradiction. Assume that
·
= does not satisfy the

simulation requirement. Then there exist P, Q, P 0, ↵ with bn(↵)#Q such that P
·
= Q

and P
↵�! P 0 and, letting Q = {Q0 | Q

↵�! Q0}, for all Q0 2 Q it holds that P 0 6 ·= Q0.
Assume bn(↵)#P , otherwise just find an alpha-variant of the transition satisfying

this. By P 0 6 ·= Q0, for all Q0 2 Q there exists a distinguishing formula for P 0 and Q0.
The formula may depend on Q0, and by Lemma 2 we can find such a distinguishing
formula BQ0 for P 0 and Q0 with supp(BQ0) ✓ supp(P 0). Therefore the formula

B =
^

Q02Q
BQ0

is well-formed with support included in supp(P 0). We thus get that P |= h↵iB but

not Q |= h↵iB, contradicting P
·
= Q.
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This proof of the simulation property is di↵erent from other such proofs in the literature.
For finite branching transition systems, Q is finite so finite conjunction is enough to define

B. For transition systems with the name preservation property, i.e., that if P
↵�! P 0

then supp(P 0) ✓ supp(P ) [ supp(↵), uniformly bounded conjunction su�ces with common
support supp(P ) [ supp(Q) [ supp(↵). Without the name preservation property, we here
use a not uniformly bounded conjunction in Lemma 2.

4. Derived formulas

Dual connectives. We define logical disjunction
W

i2I Ai in the usual way as ¬V
i2I ¬Ai,

when the indexing set I has bounded cardinality and {Ai | i 2 I} has finite support. A
special case is I = {1, 2}: we then write A1 ^A2 instead of

V
i2I Ai, and dually for A1 _A2.

We write > for the empty conjunction
V

i2;, and ? for ¬>. We also write A =) B for
B _ ¬A. The must modality [↵]A is defined as ¬h↵i¬A, and requires A to hold after every
possible ↵-labelled transition from the current state. Note that bn(↵) bind into A. For
example, [↵](A ^ B) is equivalent to [↵]A ^ [↵]B, and dually h↵i(A _ B) is equivalent to
h↵iA _ h↵iB.

Quantifiers. Let S be any finitely supported set of bounded cardinality and use v to
range over members of S. Write A{v/x} for the substitution of v for x in A, and assume
this substitution function is equivariant. Then we define 8x 2 S.A as

V
v2S A{v/x}. There

is not necessarily a common finite support for the formulas A{v/x}, for example if S is
some term algebra over names, but the set {A{v/x} | v 2 S} has finite support bounded by
{x} [ supp(S) [ supp(A). In our examples in Section 8, substitution is defined inductively
on the structure of formulas, based on primitive substitution functions for actions and state
predicates, avoiding capture and preserving the binding names of actions.

Existential quantification 9x 2 S.A is defined as the dual ¬8x 2 S.¬A. When X is a
metavariable used to range over a nominal set X , we simply write X for “X 2 X”. As an
example, 8a.A means that the formula A{n/a} holds for all names n 2 N .

New name quantifier. The new name quantifier Nx.A intuitively states that P |= A{n/x}
holds where n is a fresh name for P . For example, suppose we have actions of the form a b
for input, and a b for output where a and b are free names, then the formula Nx.[a x]hb xi>
expresses that whenever a process inputs a fresh name x on channel a, it has to be able to
output that name on channel b. If the name received is not fresh (i.e., already present in P )
then P is not required to do anything. Therefore this formula is weaker than 8x.[a x]hb xi>.

Since A and P have finite support, if P |= A{n/x} holds for some n fresh for P , by
equivariance it also holds for almost all n, i.e., all but finitely many n. Conversely, if it
holds for almost all n, it must hold for some n# supp(P ). Therefore Nx is often pronounced
“for almost all x”. In other words, P |= Nx.A holds if {x | P |= A(x)} is a cofinite set of
names [Pit13, Definition 3.8].

To avoid the need for a substitution function, we here define the new name quantifier
using name swapping (a n). Compared to using the standard notion of substitution for nom-
inal term algebras our definition yields the same result, but is applicable without assuming
any particular structure on actions or predicates. Letting cof = {S ✓ N | N \ S is finite}
we thus encode Nx.A as

W
S2cof

V
n2S(x n) ·A. This formula states there is a cofinite set

of names such that for all of them A holds. The support of
V

n2S(x n) ·A is bounded by
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(N \ S)[ supp(A) where S 2 cof, and the support of the encoding
W

S2cof

V
n2S(x n)·A is

bounded by supp(A).

Next step. We can generalise the action modality to sets of actions: if T is a finitely
supported set of actions, we write hT iA for

W
↵2T h↵iA. The support of {h↵iA | ↵ 2 T} is

bounded by supp(T )[supp(A) and thus finite. Dually, we write [T ]A for ¬hT i¬A, denoting
that A holds after all transitions with actions in T . Note that binding names in actions in
T bind into A, and so h↵iA is equivalent to h{↵}iA for any ↵.

To encode the next-step modality, let actA = {↵ | bn(↵)#A}. Note that supp(actA) ✓
supp(A) is finite. We write h iA for hactAiA, meaning that we can make some (non-
capturing) transition to a state where A holds. As an example, h i> means that the current
state is not deadlocked. The dual modality [ ]A = ¬h i¬A means that A holds after every
transition from the current state. Larsen [Lar88] uses the same approach to define next-step
operators in HML, though his version is less expressive since he uses a finite action set to
define the next-step modality.

5. Fixpoint operators

Fixpoint operators are a way to introduce recursion into a logic. For example, they
can be used to concisely express safety and liveness properties of a transition system, where
by safety we mean that some invariant holds for all reachable states, and by liveness that
some property will eventually hold. Kozen [Koz83] introduced the least (µX.A) and the
greatest (⌫X.A) fixpoints operators in modal logic. Intuitively, the least fixpoint operator
states a property that holds for states of a finite path, while the greatest holds for states of
an infinite path.

By combining the fixpoints and next-step operators, we can encode the temporal logic
CTL [CE82], following Emerson [Eme96]. The CTL formula AGA, which states that A
holds along all paths, is defined as ⌫X.A^ [ ]X. Dually the formula EF A, stating the there
is some path where A eventually holds, is defined µX.A _ h iX. These are special cases of
more general formulas: the formula A[A U B] states that for all paths A holds until B holds,
and dually E[A U B] states that there is a path along which A holds until B. They are
encoded as ⌫X.B _ ([ ]X ^ A) and µX.B _ (h iX ^ A), respectively. For example, deadlock
freedom is given by the CTL formula AG h i> expressing that every reachable state has a
transition. The encoding of this formula is ⌫X.h i> ^ [ ]X.

We extend the logic of Definition 3 with the least fixpoint operator and give meaning to
formulas as sets of satisfying states. We show that the meaning of the fixpoint operator is
indeed a fixpoint. We then proceed to show that the least fixpoint operator can be directly
encoded in the logic.

5.1. Logic with the least fixpoint operator.

Definition 7. We extend the nominal set of formulas with the least fixpoint operator:

A ::=
^

i2I

Ai | ¬A | ' | h↵iA | X | µX.A

where X ranges over a countable set of equivariant variables. We require that all occurrences
of a variable X in a formula µX.A are in the scope of an even number of negations.
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An occurrence of a variable X in A is said to be free if it is not a subterm of some µX.B.
We say that a formula A is closed if for every variable X, none of its occurrences in A are
free. We use a capture-avoiding substitution function [A/X] on formulas that substitutes A
for free occurrences of the variable X. In particular, (h↵iB)[A/X] = h↵i(B[A/X]) when
bn(↵) is fresh for A.

We give a semantics to formulas containing fixpoint modalities as sets of satisfying
states.

Definition 8. A valuation function " is a finitely supported map from variables to (finitely
supported) sets of states. We write "[X 7! S] for the valuation function that maps X to S,
and any variable X 0 6= X to "(X 0).
We define the interpretation of formula A under valuation " by structural induction as the
set of states JAK":

JVi2I AiK" =
T

i2IJAiK"
J¬AK" = states � JAK"

J'K" = {P | P ` '}
Jh↵iAK" =

n
P | 9↵0 A0 P 0 . h↵iA = h↵0iA0 ^ bn(↵0)#P, " ^ P

↵0
�! P 0 ^ P 0 2 JA0K"

o

JXK" = "(X)
JµX.AK" =

T�
S 2 Pfs(states) | JAK"[X 7!S] ✓ S

 

We write J K for the function (A, ") 7! JAK".
Lemma 3. J K is equivariant.

Proof. By the Equivariance Principle [Pit13, page 21].

Lemma 4. For any formula A and valuation function ", JAK" 2 Pfs(states).

Proof. By equivariance of J K, supp(JAK") ✓ supp(A) [ supp(").

Temporal operators such as “eventually” can be encoded using the least fixpoint opera-
tor: the formula µX.h↵iX_A states that eventually A holds along some path labelled with ↵.
We define the greatest fixpoint operator ⌫X.A in terms of the least as ¬µX.¬A[¬X/X].
Using the greatest fixpoint operator we can state global invariants: ⌫X.[↵]X ^A expresses
that A holds along all paths labelled with ↵. We can freely mix the fixpoint operators to
obtain formulas like ⌫X.[↵]X ^ (µY.h�iY _ A), which means that for each state along any
path labelled with ↵, a state where A holds is reachable along a path labelled with �.

As sanity checks for our definition, we prove that the interpretation of formulas without
fixpoint modalities is unchanged, and that the interpretation of the formula µX.A is indeed
the least fixpoint of the function F "

A : S 7! JAK"[X 7!S].

Proposition 2. Let A be a formula as in Definition 3. Then for any valuation function "
and state P , P |= A if and only if P 2 JAK".
Proof. By structural induction on A. The clauses for X and µX.A0 in Definition 8 are not
used. The interesting case is

Case h↵iA0: Assume P |= h↵iA0. Without loss of generality assume also bn(↵)#P, ",
otherwise just find an alpha-variant of h↵iA0 where this holds. From Definition 4

we obtain P 0 such that P
↵�! P 0 and P 0 |= A0. Then P 0 2 JA0K" by the induction

hypothesis, hence P 2 Jh↵iA0K" by Definition 8.
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Next, assume P 2 Jh↵iA0K". From Definition 8 we obtain an alpha-variant h↵0iA00 =

h↵iA0 and P 0 such that bn(↵0)#P , P
↵0
�! P 0 and P 0 2 JA00K". Then P 0 |= A00 by the

induction hypothesis. Hence P |= h↵0iA00 = h↵iA0 by Definition 4.

Lemma 5. For any formula A and valuation function ", F "
A has finite support.

Proof. By equivariance of J K, supp(F "
A) ✓ supp(A) [ supp(").

Lemma 6. For any formula µX.A and valuation function ", the function F "
A : Pfs(states) !

Pfs(states) is monotonic with respect to subset inclusion.

Proof. By structural induction on A, for arbitrary ". Let S, T 2 Pfs(states) such that S ✓ T .
We prove a more general statement: if all occurrences of X in A are positive (i.e., within
the scope of an even number of negations), F "

A(S) ✓ F "
A(T ), and if all occurrences of X

in A are negative (i.e., within the scope of an odd number of negations), F "
A(T ) ✓ F "

A(S).
The interesting case is

Case µX 0.A0: If X = X 0, note that for any U , V 2 Pfs(states), "[X 7! U ][X 7! V ] =
"[X 7! V ]. Therefore, JµX 0.A0K"[X 7!S] = JµX 0.A0K"[X 7!T ] is immediate from Defini-
tion 8.

Otherwise, X 6= X 0. Suppose that all occurrences of X in A are positive. Then all
occurrences of X in A0 are positive, and for any V 2 Pfs(states), JA0K"[X0 7!V ][X 7!S] ✓
JA0K"[X0 7!V ][X 7!T ] by the induction hypothesis applied to A0 and "[X 0 7! V ]. Since
X 6= X 0, for any U , V 2 Pfs(states), "[X 7! U ][X 0 7! V ] = "[X 0 7! V ][X 7! U ].
Thus,

JµX 0.A0K"[X 7!S] =
\�

S0 2 Pfs(states) | JA0K"[X 7!S][X0 7!S0] ✓ S0 ✓
\�

S0 2 Pfs(states) | JA0K"[X 7!T ][X0 7!S0] ✓ S0 = JµX 0.A0K"[X 7!T ].

The case where all occurrences of X in A are negative is similar.

We use a nominal version of Tarski’s fixpoint theorem [Tar55] to show existence, unique-
ness, and the construction of the least fixpoint of F "

A. Note that the usual Tarski fixpoint
theorem does not apply, since the lattice Pfs(states) is not necessarily complete.

Theorem 3. Suppose X is a nominal set, and f : Pfs(X) ! Pfs(X) is finitely supported
and monotonic with respect to subset inclusion. Then f has a least fixpoint lfp f , and

lfp f =
\

{S 2 Pfs(states) | f(S) ✓ S} .

Proof. (Due to Pitts [Pit15])
Since f is finitely supported and

T
is equivariant, also

T {S 2 Pfs(states) | f(S) ✓ S} is
finitely supported (with support bounded by supp(f)). It then follows by a replay of the
usual Tarski argument that

T {S 2 Pfs(states) | f(S) ✓ S} is the least fixpoint of f .

Finally, we can show that the interpretation of a fixpoint formula µX.A is the least
fixpoint of the function F "

A.

Proposition 3. For any formula µX.A and valuation function ", JµX.AK" = lfp F "
A.

Proof. Using Lemmas 5 and 6, the proposition is immediate from Theorem 3.
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5.2. Encoding the least fixpoint operator. The least fixpoint operator can be encoded
in our logic of Section 3. The idea here is simple: we translate the fixpoint modality
into a transfinite disjunction that at each step ↵ unrolls the formula ↵ times. This then
semantically corresponds to a limit of an increasing chain generated by a monotonic function,
i.e., a least fixpoint.

Definition 9. We define the formula unroll↵(µX.A) where ↵ is an ordinal bounded by 
(Definition 3) by transfinite induction.

unroll0(µX.A) = ?
unroll↵+1(µX.A) = A[unroll↵(µX.A)/X]

unroll�(µX.A) =
W

↵<� unroll↵(µX.A) when � is a limit ordinal

We define the formula A homomorphically on the structure of A. The encoding µX.A of a
fixpoint is its unrolling up to .

V
i2I Ai =

V
i2I Ai

¬A = ¬A
' = '

h↵iA = h↵iA
X = X

µX.A = unroll(µX.A)

Since unroll↵ is equivariant for all ↵  , and moreover A 7! A is equivariant, the
encoding preserves the finite support property for conjunctions in A, and the disjunction in
the fixpoint case has finite support bounded by supp(A). Clearly, A does not contain any
fixpoint operators. Moreover, if A is closed, then A does not contain any variables, and is
therefore a formula in the sense of Definition 3.

To show that the interpretation of unroll(µX.A) indeed is the least fixpoint of F "
A, we

use a nominal version of a chain fixpoint theorem for sets by Kuratowski (1922), augmented
with a bound on the depth of the unrolling.

Theorem 4. Suppose X is a nominal set, and f : Pfs(X) ! Pfs(X) is finitely supported and
monotonic with respect to subset inclusion. Set f0 = ;, f↵+1 = f(f↵), and f� =

S
↵<� f↵

for limit ordinals �. Then f has a least fixpoint lfp f , and for any cardinal  with  > |X|
we have

lfp f = f.

Proof. First, f is finitely supported, since supp(f↵) ✓ supp(f) for all ordinals ↵ by trans-
finite induction. Also, using monotonicity of f , we have f↵ ✓ f� for all ↵  �.

We then show that f has a fixpoint f↵ with ↵ < , by contradiction. Otherwise, for
each ↵ <  there is x↵ 2 f↵+1 \ f↵. This yields an injective function g :  ! X with
g(↵) = x↵, which is a contradiction since  > |X|.

We then have f� = f↵ for all � � ↵, by transfinite induction. Since  > ↵, we have
that f = f↵ is a fixpoint of f .

Let y be any fixpoint of f . For every ordinal �, f� ✓ y by transfinite induction, so in
particular f ✓ y. Thus f is the least fixpoint of f .

Lemma 7. For any formulas A, B and valuation function ", if A does not contain any
fixpoint operators, then JA[B/X]K" = JAK"[X 7!JBK"].

Proof. By structural induction on A. The clause for µX.A0 in Definition 8 is not used.
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Theorem 5. For any formula A and valuation function ", JAK" = JAK".
Proof. By structural induction on A, for arbitrary ". The interesting case is

Case µX.A0: We need to show that JµX.A0K" = JµX.A0K". First, we compute the
left-hand side to JµX.A0K" = Junroll(µX.A0)K". For the right-hand side, we have
JµX.A0K" = lfp F "

A0 = (F "
A0) by Proposition 3 and Theorem 4, whose assumptions

follow from Lemmas 5 and 6. It therefore su�ces to show Junroll↵(µX.A0)K" = (F "
A0)↵

for all ↵  . We proceed by transfinite induction on ↵.
(1) Base case: Junroll0(µX.A0)K" = J?K" = ; = (F "

A0)0 by definition.
(2) Inductive step:

Junroll↵+1(µX.A0)K" = JA0[unroll↵(µX.A0)/X]K"
(1)
= JA0K"[X 7!Junroll↵(µX.A0)K"]
(2)
= JA0K"[X 7!(F "

A0 )↵]

(3)
= JA0K"[X 7!(F "

A0 )↵]

= F "
A0((F "

A0)↵)

= (F "
A0)↵+1

as required. Above, equality (1) follows from Lemma 7, equality (2) follows
from the induction hypothesis for ↵, and equality (3) follows from the outer
induction hypothesis applied to A0 and "[X 7! (F "

A0)↵].
(3) Limit case: The limit case is straightforward. We have

Junroll�(µX.A0)K" = J
_

↵<�

unroll↵(µX.A0)K"

=
[

↵<�

Junroll↵(µX.A0)K"

(1)
=

[

↵<�

(F "
A0)↵

= (F "
A0)�

where equality (1) follows from the induction hypothesis for all ↵ < �.

Every closed formula containing fixpoint operators can be translated into an equivalent
formula without fixpoint operators.

Corollary 1. For any ", P and closed formula A, we have P |= A i↵ P 2 JAK".
Proof. By Theorem 5 and Proposition 2.
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6. Logics for variants of bisimilarity

The bisimilarity of Section 3 is of the early kind: any substitutive e↵ect of an input
(typically replacing a variable with the value received) must have manifested already in
the action corresponding to the input, since we apply no substitution to the target state.
Alternative treatments of substitutions include late-, open- and hyperbisimilarity, where
the input action instead contains the variable to be replaced, and there are di↵erent ways
to make sure that bisimulations are preserved by relevant substitutions.

In our definition of nominal transition systems there are no particular input variables
in the states or in the actions, and thus no a priori concept of “substitution”. We therefore
choose to formulate the alternatives using so-called e↵ect functions. An e↵ect is simply a
finitely supported function from states to states. For example, in the monadic pi-calculus the
e↵ects would be the functions replacing one name by another. In a value-passing calculus
the e↵ects would be substitutions of values for variables. In the psi-calculi framework
the e↵ects would be sequences of parallel substitutions. Our definitions and results are
applicable to any of these; our only requirement is that the e↵ects form a nominal set which
we designate by F . Variants of bisimilarity then correspond to requiring continuation after
various e↵ects. For example, if the action contains an input variable x then the e↵ects
appropriate for late bisimilarity would be substitutions for x.

We will formulate these variants as F/L-bisimilarity, where F (for first) represents the
set of e↵ects that must be observed before following a transition, and L (for later) is a
function that represents how this set F changes depending on the action of a transition,
i.e., L(↵, F ) is the set of e↵ects that must follow the action ↵ if the previous e↵ect set was
F . In the following let Pfs(F) ranged over by F be the finitely supported subsets of F , and
L range over equivariant functions from actions and Pfs(F) to Pfs(F).

Definition 10. An L-bisimulation where L : act ⇥ Pfs(F) ! Pfs(F) is a Pfs(F)-indexed
family of symmetric binary relations on states satisfying the following:

If RF (P, Q) then:

(1) Static implication: for all f 2 F it holds that f(P ) ` ' implies f(Q) ` '.
(2) Simulation: For all f 2 F and ↵, P 0 such that bn(↵)#f(Q), F there exist Q0 such

that
if f(P )

↵�! P 0 then f(Q)
↵�! Q0 and RL(↵,F )(P

0, Q0)

We write P
F/L⇠ Q, called F/L-bisimilarity, to mean that there exists an L-bisimulation

R such that RF (P, Q).

Most strong bisimulation varieties can be formulated as F/L-bismilarity. Write idstates
for the identity function on states, ID for the singleton set {idstates} and allID for the
constant function �(↵, F ).ID.

• Early bisimilarity, precisely as defined in Definition 2, is ID / allID-bisimilarity.
• Early equivalence, i.e., early bisimilarity under all possible e↵ects, is F / allID-

bisimilarity.
• Late bisimilarity is ID / L-bisimilarity, where L(↵, F ) yields the e↵ects that represent

substitutions for variables in input actions ↵ (and ID for other actions).
• Late equivalence is similarly F / L-bisimilarity.
• Open bisimilarity is F / L-bisimilarity where L(↵, F ) is the set F minus all e↵ects

that change bound output names in ↵.
• Hyperbisimilarity is F / �(↵, F ).F-bisimilarity.
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All of the above are generalizations of known and well-studied definitions. The original
value-passing variant of CCS [Mil89] uses early bisimilarity. The original bisimilarity for
the pi-calculus is of the late kind [MPW92], where it also was noted that late equivalence
is the corresponding congruence. Early bisimilarity and equivalence and open bisimilarity
for the pi-calculus were introduced in 1993 [MPW93, San93], and hyperbisimilarity for the
fusion calculus in 1998 [PV98].

In view of this we only need to provide a modal logic adequate for F/L-bisimilarity; it
can then immediately be specialized to all of the above variants. For this we introduce a
new kind of logical operator as follows.

Definition 11. For each f 2 F the logical unary e↵ect consequence operator hfi has the
definition

P |= hfiA if f(P ) |= A

Thus the formula hfiA means that A holds if the e↵ect f is applied to the state.
Note that by definition this distributes over conjunction and negation, e.g. P |= ¬hfiA i↵
P |= hfi¬A i↵ not f(P ) |= A etc. The e↵ect consequence operator is similar in spirit to
the action modalities: both hfiA and h↵iA assert that something (an e↵ect or action) must
be possible and that A holds afterwards. Indeed, e↵ects can be viewed as a special case
of transitions (as formalised in Definition 13 below) which is why we give the operators a
common syntactic appearance.

Now define the formulas that can directly use e↵ects from F and after actions use e↵ects
according to L, ranged over by AF/L, in the following way:

Definition 12. Given L as in Definition 10, for all F 2 Pfs(F) define AF/L as the set of
formulas given by the mutually recursive definitions:

AF/L ::=
^

i2I

A
F/L
i | ¬AF/L | hfi' | hfih↵iAL(↵,F )/L

where we require f 2 F and that the conjunction has bounded cardinality and finite support.
Validity of a formula for a state P is defined as in Definitions 4 and 11, where in the last
clause we assume that the formula is a representative of its alpha-equivalence class such
that bn(↵)#P, F .

Lemma 8. If A 2 AF/L is a distinguishing formula for P and Q, then there exists a
distinguishing formula B 2 AF/L for P and Q such that supp(B) ✓ supp(P, F ).

Proof: The proof has been formalized in Isabelle. It is an easy generalisation of the
proof of Lemma 2, just replace A by AF/L and supp(P ) by supp(P, F ) everywhere. We

additionally need to prove that B 2 AF/L. Since L is equivariant we have supp(AF/L) ✓
supp(F ), which means that ⇡ · A 2 AF/L for all ⇡ 2 ⇧P , this establishes B 2 AF/L.

Let P
F/L
= Q mean that P and Q satisfy the same formulas in AF/L.

Theorem 6. P
F/L⇠ Q , P

F/L
= Q

Proof: The proof has been formalised in Isabelle. Direction ) is a generalization of
Theorem 1.

(1) Base case: A = hfi' and f 2 F . Then f(P ) ` '. By static implication f(Q) ` ',
which means Q |= A.
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(2) Inductive step hfih↵iA where A 2 AF/L: Assume P |= hfih↵iA. Then 9P 0 . f(P )
↵�!

P 0 and P 0 |= A. Without loss of generality we assume also bn(↵)#f(Q), otherwise
just find an alpha-variant of the transition where this holds. Then by simulation

9Q0 . f(Q)
↵�! Q0 and P 0 L(↵,F )/L⇠ Q0. By induction and P 0 |= A and A 2 AF/L we

get Q0 |= A, whence by definition Q |= hfih↵iA.

The direction ( is a generalization of Theorem 2: we prove that
F/L
= is an F/L-

bisimulation. The modified clauses are:

(1) Static implication. Assume f 2 F , then f(P ) ` ' i↵ P |= hfi' i↵ Q |= hfi' i↵
f(Q) ` '.

(2) Simulation. The proof is by contradiction. Assume that
F/L
= does not satisfy the

simulation requirement. Then there exist f 2 F, P, Q, P 0, ↵ such that P
F/L
= Q

and f(P )
↵�! P 0 and, letting Q = {Q0 | f(Q)

↵�! Q0}, for all Q0 2 Q it holds

not P 0 L(↵,F )/L
= Q0. Choose bn(↵)#f(P ). Thus, for all Q0 2 Q there exists a

distinguishing formula in AL(↵,F )/L for P 0 and Q0. The formula may depend on Q0,
and by Lemma 8 we can find such a distinguishing formula BQ0 2 AL(↵,F )/L for P 0

and Q0 with supp(BQ0) ✓ supp(P 0, L(↵, F )). Therefore the formula

B =
^

Q02Q
BQ0

is well formed in AL(↵,F )/L with support included in supp(P 0, L(↵, F )). We thus get

that P |= hfih↵iB but not Q |= hfih↵iB, contradicting P
F/L
= Q.

An alternative to the e↵ect consequence operators is to transform the transition system
such that standard (early) bisimulation on the transforms coincides with F/L-bisimilarity.
The idea is to let the e↵ect function be part of the transition relation, thus f(P ) = P 0

becomes P
f�! P 0.

Definition 13. Assume F and L as above. The L-transform of a nominal transition system
T is a nominal transition system where:

• The states are of the form ac(F, f(P )) and ef(F, P ), for f 2 F 2 Pfs(F) and states
P of T. The intuition is that states of kind ac can perform ordinary actions, and
states of kind ef can commit e↵ects.

• The state predicates are those of T.
• ac(F, P ) ` ' if in T it holds P ` ', and ef(F, P ) ` ' never holds.
• The actions are the actions of T and the e↵ects in F .
• bn is as in T, and additionally bn(f) = ; for f 2 F .

• The transitions are of two kinds. If in T it holds P
↵�! P 0, then there is a transition

ac(F, P )
↵�! ef(L(↵, F ), P 0). And for each f 2 F it holds ef(F, P )

f�! ac(F, f(P )).

Theorem 7. P
F/L⇠ Q in T if and only if ef(F, P )

·⇠ ef(F, Q) in the L-transform of T.

Proof: For the direction ), assume that R is an L-bisimulation. Define R0 on the L-
transform by including (ef(F, P ), ef(F, Q)) and (ac(F, f(P )),ac(F, f(Q))) for all P, Q, f, F
such that f 2 F and RF (P, Q). We now prove R0 to be a simulation. Assume R0(S, T ).



18 PARROW, BORGSTRÖM, ERIKSSON, GUTKOVAS, WEBER

(1) Static implication: Assume S ` '. Then S = ac(F, f(P )) for some F , f 2 F and
P and f(P ) ` ' holds in T, and T = ac(F, f(Q)) with RF (P, Q). Thus f(Q) ` '
whence T ` '.

(2) Simulation: Assume S
↵�! S0. There are two cases:

• S = ef(F, P )
f�! ac(F, f(P )) = S0 and f 2 F . Then T = ef(F, Q) where

RF (P, Q). We get T
f�! ac(F, f(Q)) = T 0 and R0(S0, T 0). Note here and below

that bn(f) = ;.
• S = ac(F, f(P ))

↵�! ef(L(↵, F ), P 0) = S0 and f(P )
↵�! P 0, with bn(↵)#ac(F, f(Q)).

Then also bn(↵)#f(Q). We get T = ac(F, f(Q)) where RF (P, Q), so also

f(Q)
↵�! Q0 with RL(↵,F )(P

0, Q0). Thus T
↵�! ef(L(↵, F ), Q0) = T 0, and

R0(S0, T 0) as required.

For the direction (, assume that R0 is a bisimulation in the L-transform of T. Define RF

by RF (P, Q) if R0(ef(F, P ), ef(F, Q)). We prove R an L-bisimulation. Assume RF (P, Q).

(1) Static implication: Let f 2 F and assume f(P ) ` '. Then ef(F, P )
f�! ac(F, f(P )).

Since R0 is a bisimulation we get ef(F, Q)
f�! ac(F, f(Q)). Now f(P ) ` ' means

ac(F, f(P )) ` ', and again since R0 is a bisimulation ac(F, f(Q)) ` ', which
means f(Q) ` ' as required.

(2) Simulation: Assume f 2 F and f(P )
↵�! P 0 with bn(↵)#f(Q). Without loss of

generality additionally assume the transition is represented by an alpha-variant such
that bn(↵)#F . We get the transitions

ef(F, P )
f�! ac(F, f(P ))

↵�! ef(L(↵, F ), P 0)

Since R0 is a bisimulation and bn(↵)#F, f(Q) we get a simulating sequence

ef(F, Q)
f�! ac(F, f(Q))

↵�! ef(L(↵, F ), Q0)

This means that f(Q)
↵�! Q0 with RL(↵,F )(P

0, Q0) as required.

A direct consequence is that P
F/L⇠ Q i↵ ef(F, P )

·
= ef(F, Q) in the L-transform of T.

Here the actions in the logic would include e↵ects f 2 F .

7. Logics and bisimulations with unobservable transitions

The logics and bisimulations considered so far are all of the strong variety, in the sense
that all transitions are regarded as equally significant. In many models of concurrent com-
putation there is a special action which is unobservable in the sense that in a bisimulation,
and also in the definition of the action modalities, the presence of extra such transitions does
not matter. This leads to notions of weak bisimulation and accompanying weak modal log-
ics. For example, a process that has no transitions is weakly bisimilar with any process that
has only unobservable transitions, and these satisfy the same weak modal logic formulas.
We shall here introduce these ideas into the nominal transition systems. The main source
of complication over similar treatments in process algebras turns out to be the presence
of state predicates. In general weak bisimulation for nominal transition systems is quite
intricate and for details we refer to [JBPV10], where we explore psi-calculi, a particular
class of nominal transition systems, and investigate di↵erent versions of weak bisimilarity.
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To cater for unobservable transitions in our nominal transition systems, assume a special
action ⌧ with empty support. As usual, define P ) P 0 to mean that there exist P0, . . . , Pn

with P = P0 and P 0 = Pn such that for all i 2 [0, n� 1] it holds Pi
⌧�! Pi+1, where we allow

the case n = 0 and P = P 0. Intuitively, P ) P 0 means that P can evolve to P 0 without

an observer noticing. Also let P
↵) P 0 mean that there exist P 00, P 000 such that P ) P 00

and P 00 ↵�! P 000 and P 000 ) P 0. Finally let P
↵̂) P 0 mean P ) P 0 if ↵ = ⌧ and P

↵) P 0

otherwise. Intuitively P
↵̂) P 0 means that P can evolve to P 0 through transitions with the

only observable content ↵.
We shall here only pursue the special case where state predicates are persistent in the

sense that if P ` ' and P
⌧�! P 0 then also P 0 ` '. Persistent models are common enough

that they merit interest; examples include most versions of the pi-calculus and models of
constraint stores without retracts. Briefly put, without this assumption the weak bisimula-
tion in Definition 16 below would not be preserved by natural forms of parallel composition
of transition systems. Although we shall not go into details of parallel composition or other
operators on transition systems in this paper, we do not want to exclude the possibility of
studying them later. Without persistence the definition would have to become much more
complicated, and we leave that for further work.

The normal way to define weak bisimilarity is to replace Q
↵�! Q0 with Q

↵̂) Q0 in the
simulation requirement. This results in the weak simulation criterion:

Definition 14. A binary relation R on states is a weak simulation if R(P, Q) implies that
for all ↵, P 0 such that bn(↵)#Q there exist Q0 such that

if P
↵�! P 0 then Q

↵̂) Q0 and R(P 0, Q0)

However, just replacing the simulation requirement with weak simulation will not suf-
fice. The reason is that through static implication an observer can still observe the state
predicates directly, and thus distinguish between a state that satisfies ' and a state that
can silently evolve to something that satisfies '. Therefore we need a weak counterpart of
static implication where ⌧ transitions are treated specially. A first guess could be that if
P ` ' then Q ) Q0 ` ', i.e., that for Q to be weakly bisimilar it is enough that Q can
unobservably evolve to a state that satisfies ', but also this turns out to be insu�cient. In
the follwing we give some examples to illustrate the di�culties. The first is that we need
to consider sets of simultaneously satisfied predicates, since we may have an observer that
can test for such sets.

Example 1.
Let there be an enumerable set {'i}i2N of state predicates, a state P satisfying all of

them, and for each i 2 N a state Qi such that Qi ` 'j i↵ j < i. Let there be transitions

Qi
⌧�! Qi+1 for all i 2 N:

P
⌧

'0, '1, . . .
Q0 Q1 Q2

'0 '0, '1

⌧ ⌧
. . .

Adopting the first guess above, that Q ) Q0 ` ' is enough, we would have that P is weakly
bisimilar to all Qi. The reason is that for each 'j there is a Q0 such that Qi ) Q0 ` 'j .
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However, an observer could observe all 'i simultaneously in P but not in Qi, and thus
distinguish them. For example, in a model of concurrent computation with a parallel
operator and conditionals we can admit a tester of kind “if 8i 2 N . 'i then . . . ” . We
therefore need weak static implication to consider simultaneously satisfied sets of predicates.
The idea is to strengthen

8'. if P ` ' then 9Q0. Q ) Q0 ` '

to
9Q0. Q ) Q0 ^ 8'. if P ` ' then Q0 ` '

In other words, a single state Q0 must simultaneously satisfy all state predicates true of P .
The second di�culty has to do with the interplay between state predicates and transi-

tions.

Example 2. Consider states P, P0, P1 such that P
⌧�! Pi and Pi ` ', and where P0 has

a transition ↵ and P1 has another transition �. Let also Q
⌧�! Pi, and the only di↵erence

between P and Q be that P ` ' but not Q ` ':

P'
Q

P0 P1' '
↵ �

⌧⌧

⌧ ⌧

Here we do not want to regard P and Q as weakly equivalent. Intuitively, an observer of
Q that determines that ' holds must already have chosen one of P0 and P1, whereas this
choice can be unresolved for the corresponding situation with P . For example, P in parallel
with a process of kind “if ' then �” can perform � and retain the possibility of both ↵
and �. For that reason we need weak bisimilarity to recur in the definition of weak static
implication.

This leads to the following, where we use the notation P  Q to mean that for all ' it
holds P ` ' implies Q ` '.

Definition 15. A binary relation R on states is a weak static implication if R(P, Q) implies
that there exists Q0 such that Q ) Q0 and R(P, Q0) and P  Q0.

Note that the weak static implication is a quite strong requirement: Q must be able to
evolve to some Q0 which satisfies all state predicates of P and at the same time remains in
R.

Definition 16. A weak bisimulation is a symmetric binary relation on states satisfying

both weak simulation and weak static implication. We write P
·⇡ Q to mean that there

exists a weak bisimulation R such that R(P, Q).

Lemma 9. If P
·⇡ Q and P

↵̂) P 0 then for some Q0 it holds P 0 ·⇡ Q0 and Q
↵̂) Q0.
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The proof is just by applying the weak simulation property repeatedly.

Lemma 10.
·⇡ is an equivariant equivalence.

Proof: Equivariance follows from the equivariance principle. Reflexivity and symmetry
are immediate. For transitivity assume R1 and R2 are weak bisimulations, we prove that
R = R1 � R2 is a weak bisimulation. Symmetry is immediate, and weak simulation is easy
using Lemma 9. For weak static implication, assume (1) R1(P1, Q) and (2) R2(Q, P2). By
(1) and weak static implication, for some Q0 we have Q ) Q0 and R1(P1, Q

0) and P  Q0.
By (2) and Lemma 9 there is P 0

2 such that P2 ) P 0
2 and (3) R2(Q

0, P 0
2). By (3) and weak

static implication we get P 00
2 such that P 0

2 ) P 00
2 and R2(Q

0, P 00
2 ) and Q0  P 00

2 . So we have
P2 ) P 00

2 and since  is transitive also P1  P 00
2 , and by definition R(P1, P

00
2 ), as required.

We shall now define a modal logic adequate for weak bisimilarity. As expected the logic
has a weak action modality hh↵ii to talk about a sequence of transitions with observable
content ↵. The main di↵erence from the logic in Definition 3 is that there is an operator to
check the simultaneous satisfaction of both a finitely supported set of state predicates and
a modal logic formula. In the following we let � range over finitely supported sets of state
predicates.

Definition 17. The set of weak formulas ranged over by W is defined inductively as

W ::=
^

i2I

Wi | ¬W | � also W | hh↵iiW

As in Definition 3, in the conjunction we require that {Wi}i2I is of bounded cardinality
and finitely supported. We introduce the abbreviation P ` � to mean 8' 2 � . P ` '.

Definition 18.

P |= V
i2I Wi if for all i 2 I it holds that P |= Wi

P |= ¬W if not P |= W
P |= � also W if 9P 0 . P ) P 0 and P 0 ` � and P 0 |= W

P |= hh↵iiW if 9P 0 . P ↵̂) P 0 and P 0 |= W

Note that � also W is stronger than requiring both � and W separately, since it is
required that a single P 0 satisfies both.

We write > for the empty conjunction and abbreviate � also > to � when there is no
risk of misunderstanding. As an example consider the formula {'i}i2N. This says that it is
possible to reach a state through unobservable transitions where all 'i hold. In Example 1
above it holds for P but not for any Qi. In constrast the formula

V
i2N{'i} holds for both

P and all Qi. For Example 2 consider the formula

{'} also (hh↵ii> ^ hh�ii>)

saying that there must be a similarly reachable state where both ' holds and actions with
observable content ↵ and � respectively must be possible. This holds for P but not for Q.
In contrast the formula {'} ^ hh↵ii> ^ hh�ii> holds for both P and Q.

Proposition 4. |= is equivariant.

Proof: By the equivariance principle.
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Definition 19. Two states P and Q are weakly logically equivalent, written P
·⌘ Q, if

for all W it holds that P |= W i↵ Q |= W

To prove that weak logical equivalence coincides with weak bisimilarity we first intro-
duce �P as the set of state predicates satisfied by P .

Definition 20. �P = {' | P ` '}
Note that Q ` �P i↵ P  Q.

Lemma 11. supp(�P ) ✓ supp(P )

The proof is by standard nominal reasoning using equivariance of `.

Theorem 8.
P

·⇡ Q , P
·⌘ Q

The proof of direction ) is as for Theorem 1 using structural induction on formulas.
Note that the empty conjunction is now the only base case. The significant new case is the
inductive step � also W . For this inductive step, assume P |= � also W . Then for some

P 0 it holds P ) P 0 with P 0 ` � and P 0 |= W . By P
·⇡ Q and Lemma 9 we get Q0 such

that Q ) Q0 and P 0 ·⇡ Q0. By weak static implication and P 0 ` � there must exist Q00

such that Q0 ) Q00 with Q00 ` � and P 0 ·⇡ Q00, the latter by induction implies Q00 |= W .
With Q ) Q0 ) Q00 this gives Q |= � also W as required.

The other inductive steps are similar to Theorem 1. For the case hh↵iiW Lemma 9 is
again needed.

For direction ( we establish that
·⌘ is a weak bisimulation. So assume P

·⌘ Q. We need
to prove the requirements on a weak bisimulation. For weak static implication the proof is

by contradiction. Assume that
·⌘ does not satisfy the weak static implication requirement.

Then there exist P, Q such that for all Q0 such that Q ) Q0 and Q0 ` �P there exists
a distinguishing formula BQ0 such that P |= BQ0 and not Q0 |= BQ0 . By a variant of
Lemma 2 for weak formulas (that lemma only depends on infinitary conjunction in the
logic and works regardless of all other operators) supp(BQ0) ✓ supp(P ) which means that
the infinite conjunction B of all these BQ0 is well formed. By Lemma 11 �P has finite
support. We thus have that �P also B is a well formed distinguishing formula for P and

Q, contradicting P
·⌘ Q.

That
·⌘ is a weak simulation is proven just as in Theorem 2.

8. Related work and examples

In this first part of this section we discuss other modal logics for process calculi, with
a focus on how their constructors can be captured by finitely supported conjunction in our
HML. This comparison is by necessity somewhat informal: formal correspondence fails to
hold due to di↵erences in the conjunction operator of the logic (finite, uniformly bounded
or unbounded vs. bounded support). In the later part of this section, we obtain novel,
adequate HMLs for more recent process calculi.
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8.1. Existing Hennessy-Milner Logics.

HML for CCS. The first published HML is Hennessy and Milner (1985) [HM85]. They use
finite (binary) conjunction with the assumption of image-finiteness for ordinary CCS. The
same goes for the value-passing calculus and logic by Hennessy and Liu (1995) [HL95], where
image-finiteness is due to a late semantics and the logic contains quantification over data
values. A similar idea and argument is in a logic for LOTOS by Calder et al. (2002) [CMS02],
though that only considers stratified bisimilarity up to !.

Hennessy and Liu’s value-passing calculus is based on ordinary CCS. In this calculus, a
receiving process a(x).P can participate in a synchronization on a, becoming an abstraction
(x)P where v is a bound variable. Dually, a sending process a v.Q becomes a concretion
(v, Q) where v is a value. The abstraction and concretion above react as part of the synchro-
nization on a, yielding P{v/x} | Q. To capture the operations of abstractions and concretions
in our framework, we add e↵ects idstates and ?v, with ?v((x)P ) = P{v/x}, and transitions

(v, P )
!v�! P . Letting L(a?, ) = {?v | v 2 values} and L(↵, ) = {idstates} otherwise,

late bisimilarity is {idstates}/L-bisimilarity as defined in Section 6. We can then encode
their universal quantifier 8x.A as

V
vh?viA{v/x}, which has support supp(A)\{x}, and their

output modality hc!xiA as hc!iWvh!viA{v/x}, with support {c} [ (supp(A) \ {x}).
An infinitary HML for CCS is discussed in Milner’s book (1989) [Mil89], where also

the process syntax contains infinite summation. There are no restrictions on the indexing
sets and no discussion about how this can exhaust all names. The adequacy theorem is
proved by stratifying bisimilarity and using transfinite induction over all ordinals, where
the successor step basically is the contraposition of the argument in Theorem 2, though
without any consideration of finite support. A more rigorous treatment of the same ideas
is by Abramsky (1991) [Abr91] where uniformly bounded conjunction is used throughout.

Pi-calculus. The first HML for the pi-calculus is by Milner et al. (1993) [MPW93], where
infinite conjunction is used in the early semantics and conjunctions are restricted to use
a finite set of free names. The adequacy proof is of the same structure as in this paper.
The logic of Section 3, applied to the pi-calculus transition system from which bound input
actions x(y) have been removed, contains the logic F of Milner et al., or the equipotent
logic FM if we take the set of name matchings [a = b] as state predicates.

Spi Calculus. Frendrup et al. (2002) [FHNJ02] provide three Hennessy-Milner logics for
the spi calculus [AG99]. All three logics use infinite quantification without any consider-
ation of finite support. The transition system used is a variant of the one by Boreale et
al. (2001) [BDNP01], where a state is a pair � . P of a process P and its environment �: a
substitution that maps environment variables to public names and messages received from
the process. This version of the spi calculus has expressions ⇠, that are terms constructed
from names and environment variables using encryption and decryption operators, and mes-
sages M , that only contain names and encryption. Substitution ⇠� replaces environment
variables in ⇠ with their values in �, and evaluation e(⇠) is a partial function that attempts
to perform the decryptions in ⇠, yielding a message M if all decryptions are successful.

As usual for the spi calculus, the bisimulation (and logic) is defined in terms of the
environment actions, rather than the process actions. In Frendrup’s version of Boreale’s
environment-sensitive transition system, the transition labels are related to the process
actions in the following way: when a process P receives message M on channel a, the label
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of a corresponding environment-sensitive transition � . P
a ⇠�! �0 . P 0 describes how the

environment � computed the message M = e(⇠�). For process output of message M on

channel a, the corresponding environment-sensitive transition is simply � . P
a�! �0 . P 0;

the message M can be recovered from the updated environment �0.
The logics of Frendrup et al. include a matching modality [M = N ]A that is defined

using implication: � . P |= [M = N ]A i↵ e(M�) = e(N�) implies � . P |= A. This
is equipotent to having matching as a state predicate, since we can rewrite all non-trivial
guards by [M = N ]A () A _ ¬[M = N ]>.

The logic of Section 3, applied to the nominal transition system with the environment
labels ⌧ , a and a ⇠ above has the same modalities as the logic F of Frendrup et al. The
logic EM by Frendrup et al. replaces the simple input modality by an early input modality
ha (x)iEA, which (after a minor manipulation of the input labels) can be encoded as the
conjunction

V
⇠ha ⇠iA{⇠/x} with support supp(A) \ {x}. We do not consider their logic LM

that uses a late input modality, since its application relies on sets that do not have finite
support [FHNJ02, Theorem 6.12], which are not meaningful in nominal logic.

Frendrup et al. claim to “characterize early and late versions of the environment sensi-
tive bisimilarity of [BDNP01]”, but this claim only holds with some modification. First the
definition of static equivalence [FNJ01, Definition 22] that is used in the adequacy proofs is
strictly stronger than the one that appears in the published paper [FHNJ02, Definition 3.4].
Thus, the adequacy results [FHNJ02, Theorems 6.3, 6.4, and 6.14] are false as stated, but
can be repaired by substituting the stronger notion of static equivalence. Then Frendrup’s
logics and bisimilarities become sound, but not complete, with respect to the bisimilarity
of [BDNP01], since the latter uses the weaker notion of static equivalence (Definition 3.4).

Applied Pi-calculus. A more recent work is a logic by Hüttel and Pedersen (2007) [HP07]
for the applied pi-calculus by Abadi and Fournet (2001) [AF01], where the adequacy theorem
uses image-finiteness of the semantics in the contradiction argument. Similarly to the spi
calculus, there is a requirement that terms M received by a process P can be computed
from the current knowledge available to an observer of the process, which we here write
M 2 S(P ).

The logic contains atomic formulae for term equality (indistinguishability) in the frame
of a process, corresponding to our state predicates. However, Hüttel and Pedersen use
a notion of equality (and thus static equivalence) that is stronger than the corresponding
relation by Abadi and Fournet, and that is not well-defined modulo alpha-renaming [Ped06,
p. 20]. Since our framework is based on nominal sets, we must identify alpha-equivalent
processes, and instead use Abadi and Fournet’s notion of term equality.

Hüttel and Pedersen’s logic includes an early input modality and an existential quanti-
fier. The early input modality ha (x)iA can be straightforwardly encoded as the conjunctionV

M ha MiA{M/x}, with support {a} [ (supp(A) \ {x}). The definition of the existential
quantifier takes the observer knowledge into account: P satisfies 9x.A if x#P and there is
M 2 S(P ) such that {M/x} | P satisfies A. The condition M 2 S(P ) makes the quantifier
di�cult to encode using e↵ects, since there is no corresponding state predicate (for good
reason: the main property modelled by cryptographic process calculi is that di↵erent cipher
texts E(M, k) and E(N, k) are indistinguishable unless the key k is known). We instead add

an action (x) with bn((x)) = x and transitions P
(x)��! {M/x} | P if M 2 S(P ) and x#P .

We can then encode 9x.A as h(x)iA.
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Fusion calculus. In an HML for the fusion calculus by Haugstad et al. (2006) [HTV06]
the fusions (i.e., equality relations on names) are action labels '. The corresponding modal
operator h'iA has the semantics that the formula A must be satisfied for all substitutive
e↵ects of ' (intuitively, substitutions that map each name to a fixed representative for its
equivalence class). In order to represent fusion actions in the logics in this paper, we add
substitution e↵ects � such that �(P 0) = P 0�. The fusion modality h'iA can then be encoded
in our framework as h'iW�h�iA�, where the parameter � of the disjunction ranges over
the (finite set of) substitutive e↵ects of '. Their adequacy theorem uses the contradiction
argument with infinite conjunction, with no argument about finiteness of names for the
distinguishing formula.

Nominal transition systems. De Nicola and Loreti (2008) [DL08] define a general for-
mat for multiple-labelled transition systems with labels for name revelation and resource
management, and an associated modal logic with name equality predicates, name quantifi-
cation (9 and N), and a fixed-point modality. In contrast, we seek a small and expressive
HML for general nominal transition systems. Indeed, the logic of De Nicola and Loreto can
be seen as a special case of ours: their di↵erent transition systems can be merged into a
single one, and we can encode their quantifiers and fixpoint operator as described in Sec-
tion 4. Nominal SOS of Cimini et al. (2012) [CMRG12] is also a special case of our nominal
transition systems.

8.2. Recent process calculi. In each of the final two examples below, no HML has to our
knowledge yet been proposed, and we immediately obtain one by instantiating the logic in
the present paper.

Concurrent constraint pi calculus. The concurrent constraint pi calculus (CC-pi) by
Buscemi and Montanari (2007) [BM07] extends the explicit fusion calculus [WG05] with a
more general notion of constraint stores c. Using the labelled transition system of CC-pi and
the associated bisimulation (Definition 2), we immediately get an adequate modal logic.

The reference equivalence for CC-pi is open bisimulation [BM08] (closely corresponding
to hyperbisimulation in the fusion calculus [PV98]), which di↵ers from labelled bisimulation
in two ways: First, two equivalent processes must be equivalent under all store extensions.
To encode this, we let the e↵ects F be the set of constraint stores c di↵erent from 0, and let

c(P ) = c | P . Second, when simulating a labelled transition P
↵�! P 0, the simulating process

Q can use any transition Q
��! Q0 with an equivalent label, as given by a state predicate

↵ = �. As an example, if ↵ = ahxi is a free output label then P ` ↵ = � i↵ � = bhyi where
P ` a = b and P ` x = y. To encode this, we transform the labels of the transition system

by replacing them with their equivalence classes, i.e., P
↵�! P 0 becomes P

[↵]P��! P 0 where
� 2 [↵]P i↵ P ` � = ↵. Hyperbisimilarity (Definition 10) on this transition system then
corresponds to open bisimilarity, and the modal logic defined in Section 6 is adequate.

Psi-calculi. In psi-calculi by Bengtson et al. (2011) [BJPV11], the labelled transitions

take the form  . P
↵�! P 0, where the assertion environment  is unchanged after the step.

We model this as a nominal transition system by letting the set of states be pairs ( , P ) of

assertion environments and processes, and define the transition relation by ( , P )
↵�! ( , P 0)

if  . P
↵�! P 0. The notion of bisimulation used with psi-calculi also uses an assertion
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environment and is required to be closed under environment extension, i.e., if  . P ⇠ Q,
then  ⌦  0 . P ⇠ Q for all  0. We let the e↵ects F be the set of assertions, and
define  (( 0, P )) = ( ⌦ 0, P ). Hyperbisimilarity on this transition system then subsumes
the standard psi-calculi bisimilarity, and the modal logic defined in Section 6 is adequate.

9. Conclusion

We have given a general account of transition systems and Hennessy-Milner Logic using
nominal sets. The advantage of our approach is that it is more expressive than previous
work. We allow infinite conjunctions that are not uniformly bounded, meaning that we can
encode e.g. quantifiers and the next-step operator. We have given ample examples of how
the definition captures di↵erent variants of bisimilarity and how it relates to many di↵erent
versions of HML in the literature.

We have formalized the results of Section 3, including Theorems 1 and 2, using Nominal
Isabelle [UK12].1 Nominal Isabelle is an implementation of nominal logic in Isabelle/HOL [NPW02],
a popular interactive proof assistant for higher-order logic. It adds convenient specification
mechanisms for, and automation to reason about, datatypes with binders.

However, Nominal Isabelle does not directly support infinitely branching datatypes.
Therefore, the mechanization of formulas (Definition 3) was challenging. We construct
formulas from first principles in higher-order logic, by defining an inductive datatype of
raw formulas (where alpha-equivalent raw formulas are not identified). The datatype con-
structor for conjunction recurses through sets of raw formulas of bounded cardinality, a
feature made possible only by a recent re-implementation of Isabelle/HOL’s datatype pack-
age [BHL+14].

We then define alpha-equivalence of raw formulas. For finitely branching datatypes,
alpha-equivalence is based on a notion of free variables. Here, to obtain the correct notion
of free variables of a conjunction, we define alpha-equivalence and free variables via mutual
recursion. This necessitates a fairly involved termination proof. (All recursive functions
in Isabelle/HOL must be terminating.) To obtain formulas, we quotient raw formulas by
alpha-equivalence, and finally carve out the subtype of all terms that can be constructed
from finitely supported ones. We then prove important lemmas; for instance, a strong
induction principle for formulas that allows the bound names in h↵iA to be chosen fresh for
any finitely supported context.

Our development, which in total consists of about 2700 lines of Isabelle definitions and
proofs, generalizes the constructions that Nominal Isabelle performs for finitely branching
datatypes to a type with infinite branching. To our knowledge, this is the first mechanization
of an infinitely branching nominal datatype in a proof assistant.
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Abstract. Applied process calculi include advanced programming constructs such as
type systems, communication with pattern matching, encryption primitives, concurrent
constraints, nondeterminism, process creation, and dynamic connection topologies. Several
such formalisms, e.g. the applied pi calculus, are extensions of the the pi-calculus; a growing
number is geared towards particular applications or computational paradigms.

Our goal is a unified framework to represent different process calculi and notions of
computation. To this end, we extend our previous work on psi-calculi with novel abstract
patterns and pattern matching, and add sorts to the data term language, giving sufficient
criteria for subject reduction to hold. Our framework can directly represent several existing
process calculi; the resulting transition systems are isomorphic to the originals up to
strong bisimulation. We also demonstrate different notions of computation on data terms,
including cryptographic primitives and a lambda-calculus with erratic choice. Finally, we
prove standard congruence and structural properties of bisimulation; the proof has been
machine-checked using Nominal Isabelle in the case of a single name sort.

1. Introduction

There is today a growing number of high-level constructs in the area of concurrency. Ex-
amples include type systems, communication with pattern matching, encryption primitives,
concurrent constraints, nondeterminism, and dynamic connection topologies. Combinations
of such constructs are included in a variety of application oriented process calculi. For each
such calculus its internal consistency, in terms of congruence results and algebraic laws,
must be established independently. Our aim is a framework where many such calculi fit
and where such results are derived once and for all, eliminating the need for individual
proofs about each calculus.
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Our effort in this direction is the framework of psi-calculi [BJPV11], which provides
machine-checked proofs that important meta-theoretical properties, such as compositional-
ity of bisimulation, hold in all instances of the framework. We claim that the theoretical
development is more robust than that of other calculi of comparable complexity, since we
use a structural operational semantics given by a single inductive definition, and since we
have checked most results in the interactive theorem prover Nominal Isabelle [Urb08].

In this paper we introduce a novel generalization of pattern matching, decoupled from
the definition of substitution, and add sorts for data terms and names. The generalized pat-
tern matching is a new contribution that holds general interest; here it allows us to directly
capture computation on data in advanced process calculi, without elaborate encodings.

We evaluate our framework by providing instances that correspond to standard calculi,
and instances that use several different notions of computation. We define strong criteria
for a psi-calculus to represent another process calculus, meaning that they are for all prac-
tical purposes one and the same. Representation is stronger than the standard encoding
correspondences e.g. by Gorla [Gor10], which define criteria for one language to encode
the behaviour of another. The representations that we provide of other standard calculi
advance our previous work, where we had to resort to nontrivial encodings with an unclear
formal correspondence to the source calculus.

An extended abstract [BGP+14] of the present paper has previously been published.

1.1. Background: Psi-calculi. In the following we assume the reader to be acquainted
with the basic ideas of process algebras based on the pi-calculus, and explain psi-calculi
by a few simple examples. Full definitions can be found in the references above, and for a
reader not acquainted with our work we recommend the first few sections of [BJPV11] for
an introduction.

A psi-calculus has a notion of data terms, ranged over by K,L,M,N , and we write
M N .P to represent an agent sending the term N along the channel M (which is also a
data term), continuing as the agent P . We write K(λx̃)X .Q to represent an agent that
can input along the channel K, receiving some object matching the pattern X, where x̃
are the variables bound by the prefix. These two agents can interact under two conditions.
First, the two channels must be channel equivalent, as defined by the channel equivalence
predicate M

.↔ K. Second, N must match the pattern X.

Formally, a transition is of kind Ψ ✄ P
α−→ P ′, meaning that in an environ-

ment represented by the assertion Ψ the agent P can do an action α to become P ′.
An assertion embodies a collection of facts used to infer conditions such as the chan-
nel equivalence predicate

.↔. To continue the example, if N = X[x̃ := L̃] we will have

Ψ ✄ M N .P | K(λx̃)X .Q
τ−→ P | Q[x̃ := L̃] when additionally Ψ ⊢ M

.↔ K, i.e. when
the assertion Ψ entails that M and K represent the same channel. In this way we may
introduce a parametrised equational theory over a data structure for channels. Conditions,

ranged over by ϕ, can be tested in the if construct: we have that Ψ ✄ if ϕ then P
α−→ P ′

when Ψ ⊢ ϕ and Ψ ✄ P
α−→ P ′. In order to represent concurrent constraints and local

knowledge, assertions can be used as agents: !Ψ" stands for an agent that asserts Ψ to
its environment. Assertions may contain names and these can be scoped; for example, in
P | (νa)(!Ψ" | Q) the agent Q uses all entailments provided by Ψ , while P only uses those
that do not contain the name a.
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Assertions and conditions can, in general, form any logical theory. Also the data terms
can be drawn from an arbitrary set. One of our major contributions has been to pinpoint the
precise requirements on the data terms and logic for a calculus to be useful in the sense that
the natural formulation of bisimulation satisfies the expected algebraic laws (see Section 2).
It turns out that it is necessary to view the terms and logics as nominal [Pit03]. This means
that there is a distinguished set of names, and for each term a well defined notion of support,
intuitively corresponding to the names occurring in the term. Functions and relations
must be equivariant, meaning that they treat all names equally. In addition, we impose
straight-forward requirements on the combination of assertions, on channel equivalence,
and on substitution. Our requirements are quite general, and therefore our framework
accommodates a wide variety of applied process calculi.

1.2. Extension: Generalized pattern matching. In our original definition of psi-calculi
([BJPV11], called “the original psi-calculi” below), patterns are just terms and pattern
matching is defined by substitution in the usual way: the output object N matches the

pattern X with binders x̃ iff N = X[x̃ := L̃]. In order to increase the generality we now
introduce a function match which takes a term N , a sequence of names x̃ and a pattern X,

returning a set of sequences of terms; the intuition is that if L̃ is in match(N, x̃,X) then

the term N matches the pattern X by instantiating x̃ to L̃. The receiving agent K(λx̃)X .Q

then continues as Q[x̃ := L̃].
As an example we consider a term algebra with two function symbols: enc of arity three

and dec of arity two. Here enc(N,n, k) means encrypting N with the key k and a random
nonce n and and dec(N, k) represents symmetric key decryption, discarding the nonce.
Suppose an agent sends an encryption, as in M enc(N,n, k) . P . If we allow all terms to act
as patterns, a receiving agent can use enc(x, y, z) as a pattern, as in c(λx, y, z)enc(x, y, z) . Q,
and in this way decompose the encryption and extract the message and key. Using the
encryption function as a destructor in this way is clearly not the intention of a cryptographic
model. With the new general form of pattern matching, we can simply limit the patterns
to not bind names in terms at key position. Together with the separation between patterns
and terms, this allows to directly represent dialects of the spi-calculus as in Sections 5.2
and 5.3.

Moreover, the generalization makes it possible to safely use rewrite rules such as
dec(enc(M,N,K),K) → M . In the psi-calculi framework such evaluation is not a primi-
tive concept, but it can be part of the substitution function, with the idea that with each
substitution all data terms are normalized according to rewrite rules. Such evaluating sub-
stitutions are dangerous for two reasons. First, in the original psi-calculi they can introduce
ill-formed input prefixes. The input prefix M (λx̃)N is well-formed when x̃ ⊆ n(N), i.e. the
names x̃ must all occur in N ; a rewrite of the well-formed M(λy)dec(enc(N, y, k), k) . P
to M (λy)N .P yields an ill-formed agent when y does not appear in N . Such ill-formed
agents could also arise from input transitions in some original psi-calculi; with the current
generalization preservation of well-formedness is guaranteed.

Second, in the original psi-calculi there is a requirement that substituting L̃ for x̃ in M

must yield a term containing all names in L̃ whenever x̃ ⊆ n(M). The reason is explained
at length in [BJPV11]; briefly put, without this requirement the scope extension law is
unsound. If rewrites such as dec(enc(M,N,K),K) → M are performed by substitutions
this requirement is not fulfilled, since a substitution may then erase the names in N and K.
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However, a closer examination reveals that this requirement is only necessary for some uses
of substitution. In the transition

M(λx̃)N.P
K N [x̃:=L̃]−−−−−−−→ P [x̃ := L̃]

the non-erasing criterion is important for the substitution above the arrow (N [x̃ := L̃])

but unimportant for the substitution after the arrow (P [x̃ := L̃]). In the present paper,
we replace the former of these uses by the match function, where a similar non-erasing
criterion applies. All other substitutions may safely use arbitrary rewrites, even erasing
ones.

In this paper, we address these three issues by introducing explicit notions of patterns,
pattern variables and matching. This allows us to control precisely which parts of mes-
sages can be bound by pattern-matching and how messages can be deconstructed, admit
computations such as dec(enc(M,N,K),K) → M . We obtain criteria that ensure that well-
formedness is preserved by transitions, and apply these to the original psi-calculi [BJPV11]
(Theorem 2.7) and to pattern-matching spi calculus [HJ06] (Lemma 5.3).

1.3. Extension: Sorting. Applied process calculi often make use of a sort system. The
applied pi-calculus [AF01] has a name sort and a data sort; terms of name sort must not
appear as subterms of terms of data sort. It also makes a distinction between input-bound
variables (which may be substituted) and restriction-bound names (which may not). The
pattern-matching spi-calculus [HJ06] uses a sort of patterns and a sort of implementable
terms; every implementable term can also be used as a pattern.

To represent such calculi, we admit a user-defined sort system on names, terms and
patterns. Substitutions are only well-defined if they conform to the sorting discipline. To
specify which terms can be used as channels, and which values can be received on them, we
use compatibility predicates on the sorts of the subject and the object in input and output
prefixes. The conditions for preservation of sorting by transitions (subject reduction) are
very weak, allowing for great flexibility when defining instances.

The restriction to well-sorted substitution also allows to avoid “junk”: terms that exist
solely to make substitutions total. A prime example is representing the polyadic pi-calculus
as a psi-calculus. The terms that can be transmitted between agents are tuples of names.
Since a tuple is a term it can be substituted for a name, even if that name is already part
of a tuple. The result is that the terms must admit nested tuples of names, which do not
occur in the original calculus. Such anomalies disappear when introducing an appropriate
sort system; cf. Section 4.1.

1.4. Related work. Pattern-matching is in common use in functional programming lan-
guages. Scala admits pattern-matching of objects [EOW07] using a method unapply that
turns the receiving object into a matchable value (e.g. a tuple). F# admits the definition
of pattern cases independently of the type that they should match [SNM07], facilitating
interaction with third-party and foreign-language code. Turning to message-passing sys-
tems, LINDA [Gel85] uses pattern-matching when receiving from a tuple space. Similarly,
in Erlang, message reception from a mailbox is guarded by a pattern.

These notions of patterns, with or without computation, are easily supported by the
match construct. The standard first-match policy can be encoded by extending the pattern
language with mismatching and conjunction [Kri09].
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Pattern matching in process calculi. The pattern-matching spi-calculus [HJ06] limits which
variables may be binding in a pattern in order to match encrypted messages without bind-
ing unknown keys (cf. Section 5.3). The Kell calculus [SS05] also uses pattern languages
equipped with a match function. However, in the Kell calculus the channels are single
names and appear as part of the pattern in the input prefix, patterns may match multiple
communications simultaneously (à la join calculus), and first-order pattern variables only
match names (not composite messages) which reduces expressiveness [Giv14].

The applied pi-calculus [AF01] models deterministic computation by using for data
language a term algebra modulo an equational logic. ProVerif [Bla11] is a specialised tool
for security protocol verification in an extension of applied pi, including a pattern matching
construct. Its implementation allows pattern matching of tagged tuples modulo a user-
defined rewrite system; this is strictly less general than the psi-calculus pattern matching
described in this paper (cf. Section 5.1).

Other tools for process calculi extended with datatypes include mCRL2 [CGK+13] for
ACP, which allows higher order sorted term algebras and equational logic, and PAT3 [LSD11]
which includes a CSP♯ [SLDC09] module where actions built over types like booleans and
integers are extended with C♯-like programs. In all these cases, the pattern matching is
defined by substitution in the usual way.

Sort systems for mobile processes. Sorts for the pi-calculus were first described by Mil-
ner [Mil93], and were developed in order to remove nonsensical processes using polyadic
communication, similar to the motivation for the present work.

In contrast, Hüttel’s dependently typed psi-calculi [Hüt11, Hüt14] is intended for a more
fine-grained control of the behaviour of processes, and is capable of capturing a wide range
of earlier type systems for pi-like calculi formulated as instances of psi-calculi. In Hüttel’s
typed psi-caluli the term language is a free term algebra (without name binders), using
the standard notions of substitution and matching, and not admitting any computation on
terms.

In contrast, in our sorted psi-calculi terms and substitution are general. A given term
always has a fixed sort, not dependent on any term or value and independent of its context.
We also have important meta-theoretical results, with machine-checked proofs for the case
of a single name sort, including congruence results and structural equivalence laws for well-
sorted bisimulation, and the preservation of well-sortedness under structural equivalence; no
such results exist for Hüttel’s typed psi-calculi. Indeed, our sorted psi-calculi can be seen
as a foundation for Hüttel’s typed psi-calculi: we give a formal account of the separation
between variables and names used in Hüttel’s typed psi-calculi, and substantiate Hüttel’s
claim that “the set of well-[sorted] terms is closed under well-[sorted] substitutions, which
suffices” (Theorem 3.19).

The state-of-the art report [HV13] of WG1 of the BETTY project (EU COST Action
IC1201) is a comprehensive guide to behavioural types for process calculi.

Fournet et al. [FGM05] add type-checking for a general authentication logic to a process
calculus with destructor matching; there the authentication logic is only used to specify
program correctness, and does not influence the operational semantics in any way.

1.5. Results and outline. In Section 2 we define psi-calculi with the above extensions and
prove preservation of well-formedness. In Section 3 we prove the usual algebraic properties
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of bisimilarity. The proof is in two steps: a machine-checked proof for calculi with a single
name sort, followed by manual proof based on the translation of a multi-sorted psi calculus
instance to a corresponding single-sorted instance. We demonstrate the expressiveness of
our generalization in Section 4 where we directly represent standard calculi, and in Section 5
where we give examples of calculi with advanced data structures and computations on them,
even nondeterministic reductions.

2. Definitions

Psi-calculi are based on nominal data types. A nominal data type is similar to a traditional
data type, but can also contain binders and identify alpha-variants of terms. Formally,
the only requirements are related to the treatment of the atomic symbols called names as
explained below. In this paper, we consider sorted nominal datatypes, where names and
members of the data type may have different sorts.

We assume a set of sorts S. Given a countable set of sorts for names SN ⊆ S, we
assume countably infinite pair-wise disjoint sets of atomic names Ns, where s ∈ SN . The
set of all names, N = ∪sNs, is ranged over by a, b, . . . , x, y, z. We write x̃ for a tuple of
names x1, . . . , xn and similarly for other tuples, and x̃ also stands for the set of names
{x1, . . . , xn} if used where a set is expected. We let π range over permutations of tuples of
names: π · x̃ is a tuple of names of the same length as x̃, containing the same names with
the same multiplicities.

A sorted nominal set [Pit03, GP01] is a set equipped with name swapping functions
written (a b), for any sort s and names a, b ∈ Ns, i.e. name swappings must respect sorting.
An intuition is that for any member T of a nominal set we have that (a b) · T is T with
a replaced by b and b replaced by a. The support of a term, written n(T ), is intuitively
the set of names that can be be affected by name swappings on T . This definition of
support coincides with the usual definition of free names for abstract syntax trees that may
contain binders. We write a#T for a ̸∈ n(T ), and extend this to finite sets and tuples by
conjunction. A function f is equivariant if (a b) · (f(T )) = f((a b) · T ) always holds; a
relation R is equivariant if x R y implies that (a b) · x R (a b) · y holds; and a constant
symbol C is equivariant if (a b) · C = C. In particular, we require that all sorts s ∈ S are
equivariant. A nominal data type is a nominal set together with some equivariant functions
on it, for instance a substitution function.

2.1. Original Psi-calculi Parameters. Sorted psi-calculi is an extension of the original
psi-calculi framework [BJPV11], which are given by three nominal datatypes (data terms,
conditions and assertions) as discussed in the introduction.

Definition 2.1 (Original psi-calculus parameters). The psi-calculus parameters from the
original psi-calculus are the following nominal data types: (data) terms M,N ∈ T, condi-
tions ϕ ∈ C, and assertions Ψ ∈ A; equipped with the following four equivariant operators:
channel equivalence

.↔ : T × T → C, assertion composition ⊗ : A × A → A, the unit
assertion 1 ∈ A, and the entailment relation ⊢ ⊆ A × C.

The binary functions
.↔ and ⊗ and the relation ⊢ above will be used in infix form.

Two assertions are said to be equivalent, written Ψ ≃ Ψ ′, if they entail the same conditions,
i.e. for all ϕ we have that Ψ ⊢ ϕ ⇔ Ψ ′ ⊢ ϕ.
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We impose certain requisites on the sets and operators. In brief, channel equivalence
must be symmetric and transitive modulo entailment, the assertions with (⊗,1) must form
an abelian monoid modulo ≃, and ⊗ must be compositional w.r.t. ≃ (i.e. Ψ1 ≃ Ψ2 =⇒
Ψ ⊗ Ψ1 ≃ Ψ ⊗ Ψ2). (For details see [BJPV11], and for examples of machine-checked valid
instantiations of the parameters see [ÅP10].) In examples in this paper, we usually consider
the trivial assertion monoid A = {1}, and let channel equivalence be term equality (i.e.
1 ⊢ M

.↔ N iff M = N).

2.2. New parameters for generalized pattern-matching. To the parameters of the
original psi-calculi we add patterns X,Y , that are used in input prefixes; a function vars
which yields the possible combinations of binding names in the pattern, and a pattern-
matching function match, which is used when the input takes place. Intuitively, an input

pattern (λx̃)X matches a message N if there are L̃ ∈ match(N, x̃,X); the receiving agent

then continues after substituting L̃ for x̃. If match(N, x̃,X) = ∅ then (λx̃)X does not
match N ; if |match(N, x̃,X)| > 1 then one of the matches will be non-deterministically
chosen. Below, we use “variable” for names that can be bound in a pattern.

Definition 2.2 (Psi-calculus parameters for pattern-matching). The psi-calculus parame-
ters for pattern-matching include the nominal data type X of (input) patterns, ranged over
by X,Y , and the two equivariant operators

match : T × N ∗ × X → Pfin(T∗) Pattern matching
vars : X → Pfin(Pfin(N)) Pattern variables

The vars operator gives the possible (finite) sets of names in a pattern which are
bound by an input prefix. For example, we may want an input prefix with a pairing
pattern ⟨x, y⟩ to be able to bind both x and y, only one of them, or none, and so we define
vars(⟨x, y⟩) = {{x, y}, {x}, {y}, {}}. This way, we can let the input prefix c(λx)⟨x, y⟩ only
match pairs where the second argument is the name y. To model a calculus where input
patterns cannot be selective in this way, we may instead define vars(⟨x, y⟩) = {{x, y}}. This
ensures that input prefixes that use the pattern ⟨x, y⟩ must be of the form M (λx, y)⟨x, y⟩,
where both x and y are bound. Another use for vars is to exclude the binding of terms in
certain positions, such as the keys of cryptographic messages (cf. Section 5.3).

Requisites on vars and match are given below in Definition 2.5. Note that the four
data types T, C, A and X are not required to be disjoint. In most of the examples in this
paper the patterns X is a subset of the terms T.

2.3. New parameters for sorting. To the parameters defined above we add a sorting
function and four sort compatibility predicates.

Definition 2.3 (Psi-calculus parameters for sorting). The psi-calculus parameters for sort-
ing include the equivariant sorting function sort : N1T1X → S, and the four compatibility
predicates

∝ ⊆ S × S can be used to receive,
∝ ⊆ S × S can be used to send,
# ⊆ S × S can be substituted by,

Sν ⊆ SN can be bound by name restriction.
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The sort operator gives the sort of a name, term or pattern; on names we require
that sort(a) = s iff a ∈ Ns. This is similar to Church-style lambda-calculi, where each
well-formed term has a unique type.

The sort compatibility predicates are used to restrict where terms and names of certain
sorts may appear in processes. Terms of sort s can be used to send values of sort t if s ∝ t.
Dually, a term of sort s can be used to receive with a pattern of sort t if s ∝ t. A name a
can be used in a restriction (νa) if sort(a) ∈ Sν . If sort(a) # sort(M) we can substitute
the term M for the name a. In most of our examples, # is a subset of the equality relation.
These predicates can be chosen freely, although the set of well-formed substitutions depends
on #, as detailed in Definition 2.4 below.

2.4. Substitution and Matching. We require that each datatype is equipped with an
equivariant substitution function, which intuitively substitutes terms for names. The req-
uisites on substitution differ from the original psi-calculi as indicated in the Introduction.
Substitutions must preserve or refine sorts, and bound pattern variables must not be re-
moved by substitutions.

We define two usage preorders ≤T and ≤X on S. Intuitively, s1 ≤T s2 if terms of sort s1

can be used as a channel or message whenever s2 can be, and s1 ≤X s2 if patterns of sort s1

can be used whenever s2 can be. Formally s1 ≤T s2 iff ∀t ∈ S.(s2 ∝ t ⇒ s1 ∝ t) ∧ (s2 ∝
t ⇒ s1 ∝ t) ∧ (t ∝ s2 ⇒ t ∝ s1). Similarly, we define s1 ≤X s2 iff ∀t ∈ S.(t ∝ s2 ⇒ t ∝ s1).

Intuitively, substitutions must map every term of sort s to a term of some sort s′ with
s′ ≤T s and similarly for patterns, or else a sort compatibility predicate may be violated.
The usage preorders compare the sorts of terms (resp. patterns), and so do not have any
formal relationship to # (which relates the sort of a name to the sort of a term). In particular,
# is not used in the definition of usage preorders.

Definition 2.4 (Requisites on substitution). If ã is a sequence of distinct names and Ñ
is an equally long sequence of terms such that sort(ai) # sort(Ni) for all i, we say that

[ã := Ñ ] is a substitution. Substitutions are ranged over by σ.
For each data type among T,A,C we define an equivariant substitution operation

on members T of that data type as follows: we require that Tσ is an member of the

same data type, and that if (ã b̃) is a (bijective) name swapping such that b̃#T, ã then

T [ã := Ñ ] = ((ã b̃) · T )[̃b := Ñ ] (alpha-renaming of substituted variables). For terms we
additionally require that sort(Mσ) ≤T sort(M).

For patterns X ∈ X, we require that substitution is equivariant, that Xσ ∈ X, and
that if x̃ ∈ vars(X) and x̃#σ then sort(Xσ) ≤X sort(X) and x̃ ∈ vars(Xσ) and alpha-
renaming of substituted variables (as above) holds for σ and X.

Intuitively, the requirements on substitutions on patterns ensure that a substitution
on a pattern with binders ((λx̃)X)σ with x̃ ∈ vars(X) and x̃#σ yields a pattern (λx̃)Y
with x̃ ∈ vars(Y ). As an example, consider the pair patterns discussed above with X =
{⟨x, y⟩ : x ̸= y} and vars(⟨x, y⟩) = {{x, y}}. We can let ⟨x, y⟩σ = ⟨x, y⟩ when x, y#σ.
Since vars(⟨x, y⟩) = {{x, y}} the pattern ⟨x, y⟩ in a well-formed agent will always occur
directly under the binder (λx, y), i.e. as (λx, y)⟨x, y⟩, and here a substitution for x or y will
have no effect. It therefore does not matter what e.g. ⟨x, y⟩[x := M ] is, since it will never
occur in derivations of transitions of well-formed agents. We could think of substitutions as
partial functions which are undefined in such cases; formally, since substitutions are total,
the result of this substitution can be assigned an arbitrary value.
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In the original psi-calculi there is no requirement that substitution preserves names that
are used as input variables (i.e., n(Nσ) ⊇ n(N) \ n(σ)). As seen in the introduction, this
means that the original psi semantics does not always preserve the well-formedness of agents
(an input prefix M(λx̃)N .P is well-formed when x̃ ⊆ n(N)) although this is assumed by the
operational semantics [BJPV11]. In pattern-matching psi-calculi, substitution on patterns is
required to preserve variables, and the operational semantics does preserve well-formedness
as shown below in Theorem 2.11.

Matching must be invariant under renaming of pattern variables, and the substitution
resulting from a match can only mention names that are from the matched term or the
pattern.

Definition 2.5 (Requisites on pattern matching). For the function match we require that

if x̃ ∈ vars(X) are distinct and Ñ ∈ match(M, x̃,X) then it must hold that [x̃ := Ñ ] is a

substitution, that n(Ñ ) ⊆ n(M) ∪ (n(X) \ x̃), and that for all name swappings (x̃ ỹ) with

ỹ#X we have Ñ ∈ match(M, ỹ, (x̃ ỹ) · X) (alpha-renaming of matching).

In many process calculi, and also in the symbolic semantics of psi [JVP12], the input
construct binds a single variable. This is a trivial instance of pattern matching where the
pattern is a single bound variable, matching any term.

Example 2.6. Given values for the other requisites, we can take X = N with vars(a) =
{a}, meaning that the pattern variable must always occur bound, and match(M,a, a) =
{M} if sort(a) # sort(M). On patterns we define substitution as aσ = a.

When all substitutions on terms preserve names, we can recover the pattern matching
of the original psi-calculi. Such psi-calculi also enjoy well-formedness preservation (Theo-
rem 2.11).

Theorem 2.7. Suppose (T,C,A) is an original psi-calculus [BJPV11] where n(Nσ) ⊇
n(N) \ n(σ) for all N , σ. Let X = T and vars(X) = P(n(X)) and match(M, x̃,X) =

{L̃ : M = X[x̃ := L̃]} and S = SN = Sν = {s} and ∝ = ∝ = # = {(s, s)} and sort :
N 1 T 1 X → {s}; then (T,X,C,A) is a sorted psi-calculus.

Proof. Straightforward; this result has been checked in Isabelle.

2.5. Agents.

Definition 2.8 (Agents). The agents, ranged over by P,Q, . . ., are of the following forms.

M N.P Output
M(λx̃)X.P Input
case ϕ1 : P1 [] · · · [] ϕn : Pn Case
(νa)P Restriction
P | Q Parallel
!P Replication
!Ψ" Assertion

In the Input all names in x̃ bind their occurrences in both X and P , and in the
Restriction a binds in P. Substitution on agents is defined inductively on their structure,
using the substitution function of each datatype based on syntactic position, avoiding name
capture.
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The output prefix M N.P sends N on a channel that is equivalent to M . Dually,
M(λx̃)X.P receives a message matching the pattern X from a channel equivalent to M . A
non-deterministic case statement case ϕ1 : P1 [] · · · [] ϕn : Pn executes one of the branches
Pi where the corresponding condition ϕi holds, discarding the other branches. Restriction
(νa)P scopes the name a in P ; the scope of a may be extruded if P communicates a data
term containing a. A parallel composition P | Q denotes P and Q running in parallel;
they may proceed independently or communicate. A replication !P models an unbounded
number of copies of the process P . The assertion !Ψ" contributes Ψ to its environment. We
often write if ϕ then P for case ϕ : P , and nothing or 0 for the empty case statement
case.

In comparison to [BJPV11] we additionally restrict the syntax of well-formed agents by
imposing requirements on sorts: the subjects and objects of prefixes must have compatible
sorts, and restrictions may only bind names of a sort in Sν .

Definition 2.9. An occurrence of an assertion is unguarded if it is not a subterm of an
Input or Output. An agent is well-formed if, for all its subterms,

(1) in a replication !P there are no unguarded assertions in P ; and
(2) in case ϕ1 : P1 [] · · · [] ϕn : Pn there is no unguarded assertion in any Pi; and
(3) in an Output M N.P we require that sort(M) ∝ sort(N); and
(4) in an Input M(λx̃)X.P we require that

(a) x̃ ∈ vars(X) is a tuple of distinct names and
(b) sort(M) ∝ sort(X); and

(5) in a Restriction (νa)P we require that sort(a) ∈ Sν .

Requirements 3, 4b and 5 are new for sorted psi-calculi.

2.6. Frames and transitions. Each agent affects other agents that are in parallel with
it via its frame, which may be thought of as the collection of all top-level assertions of the

agent. A frame F is an assertion with local names, written (νb̃)Ψ where b̃ is a sequence of
names that bind into the assertion Ψ . We use F,G to range over frames, and identify alpha-

equivalent frames. We overload ⊗ to frame composition defined by (νb̃1)Ψ1⊗(νb̃2)Ψ2 =

(νb̃1b̃2)(Ψ1⊗Ψ2) where b̃1#b̃2, Ψ2 and vice versa. We write Ψ⊗F to mean (νϵ)Ψ⊗F , and

(νc)((νb̃)Ψ) for (νcb̃)Ψ .
Intuitively a condition is entailed by a frame if it is entailed by the assertion and does

not contain any names bound by the frame, and two frames are equivalent if they entail
the same conditions. Formally, we define F ⊢ ϕ to mean that there exists an alpha variant

(νb̃)Ψ of F such that b̃#ϕ and Ψ ⊢ ϕ. We also define F ≃ G to mean that for all ϕ it holds
that F ⊢ ϕ iff G ⊢ ϕ.

Definition 2.10 (Frames and Transitions). The frame F(P ) of an agent P is defined
inductively as follows:

F(!Ψ") = (νϵ)Ψ F(P | Q) = F(P )⊗F(Q) F((νb)P ) = (νb)F(P )

F(M (λx̃)N .P ) = F(M N .P ) = F(case ϕ̃ : P̃ ) = F(!P ) = 1

The actions ranged over by α, β are of the following three kinds: Output M (νã) N where
ã ⊆ n(N), Input M N , and Silent τ . Here we refer to M as the subject and N as the object.
We define bn(M (νã) N) = ã, and bn(α) = ∅ if α is an input or τ . We also define n(τ) = ∅
and n(α) = n(M) ∪ n(N) for the input and output actions. We write M ⟨N⟩ for M (νε) N .
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In
Ψ ⊢ M

.↔ K L̃ ∈ match(N, ỹ,X)

Ψ ✄ M (λỹ)X.P
K N−−−→ P [ỹ := L̃]

Out
Ψ ⊢ M

.↔ K

Ψ ✄ M N.P
K⟨N⟩−−−→ P

Com
ΨQ⊗Ψ ✄ P

M (νã) N−−−−−−→ P ′ ΨP ⊗Ψ ✄ Q
K N−−−→ Q′ Ψ⊗ΨP ⊗ΨQ ⊢ M

.↔ K

Ψ ✄ P | Q τ−→ (νã)(P ′ | Q′)
ã#Q

Par
ΨQ⊗Ψ ✄ P

α−→ P ′

Ψ ✄ P | Q
α−→ P ′ | Q

bn(α)#Q Case
Ψ ✄ Pi

α−→ P ′ Ψ ⊢ ϕi

Ψ ✄ case ϕ̃ : P̃
α−→ P ′

Rep
Ψ ✄ P | !P α−→ P ′

Ψ ✄ !P
α−→ P ′

Scope
Ψ ✄ P

α−→ P ′

Ψ ✄ (νb)P
α−→ (νb)P ′

b#α, Ψ

Open
Ψ ✄ P

M (νã) N−−−−−−→ P ′

Ψ ✄ (νb)P
M (νã∪{b}) N−−−−−−−−−→ P ′

b#ã, Ψ, M
b ∈ n(N)

Symmetric versions of Com and Par are elided. In the rule Com we assume that

F(P ) = (νb̃P )ΨP and F(Q) = (νb̃Q)ΨQ where b̃P is fresh for all of Ψ, b̃Q, Q,M and P , and

that b̃Q is correspondingly fresh. In the rule Par we assume that F(Q) = (νb̃Q)ΨQ where

b̃Q is fresh for Ψ, P and α. In Open the expression νã ∪ {b} means the sequence ã with b
inserted anywhere.

Table 1: Operational semantics.

A transition is written Ψ ✄ P
α−→ P ′, meaning that in the environment Ψ the well-

formed agent P can do an α to become P ′. The transitions are defined inductively in

Table 1. We write P
α−→ P ′ without an assertion to mean 1 ✄ P

α−→ P ′.

The operational semantics, defined in Table 1, is the same as for the original psi-calculi,
except for the use of match in rule In. We identify alpha-equivalent agents and transitions
(see [BJPV11] for details). In a transition the names in bn(α) bind into both the action
object and the derivative, therefore bn(α) is in the support of α but not in the support of
the transition. This means that the bound names can be chosen fresh, substituting each
occurrence in both the action and the derivative.

As shown in the introduction, well-formedness is not preserved by transitions in the
original psi-calculi. However, in sorted psi-calculi the usual well-formedness preservation
result holds.

Theorem 2.11 (Preservation of well-formedness). If P is well-formed, then

(1) Pσ is well-formed; and

(2) if Ψ ✄ P
α−→ P ′ then P ′ is well-formed.

Proof. The first part is by induction on P . The output prefix case uses the sort preserva-
tion property of substitution on terms (Definition 2.4). The interesting case is input prefix
M(λx̃)X.Q: assume that Q is well-formed, that x̃ ∈ vars(X), that sort(M) ∝ sort(X)
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and that x̃#σ. By induction Qσ is well-formed. By sort preservation we get sort(Mσ) ≤
sort(M), so sort(Mσ) ∝ sort(X). By preservation of patterns by non-capturing substi-
tutions we have that x̃ ∈ vars(Xσ) and sort(Xσ) ≤ sort(X), so sort(Mσ) ∝ sort(Xσ).

The second part is by induction on the transition rules, using part 1 in the In rule.

Since well-formedness is preserved by transitions and substitutions, from this point on we
only consider well-formed agents.

3. Meta-theory

As usual, the labelled operational semantics gives rise to notions of labelled bisimilarity.
Similarly to the applied pi-calculus [AF01], the standard definition of bisimilarity needs
to be adapted to take assertions into account. In this section, we show that both strong
and weak bisimilarity satisfy the expected structural congruence laws and the standard
congruence properties of name-passing process calculi. We first prove these results for
calculi with a single name sort (Theorem 3.12) supported by Nominal Isabelle. We then
extend the results to all sorted psi-caluli (Theorems 3.19, 3.20, and 3.21) by manual proofs.

3.1. Recollection. We start by recollecting the required definitions, beginning with the
definition of strong labelled bisimulation on well-formed agents by Bengtson et al. [BJPV11],
to which we refer for examples and more intuitions.

Definition 3.1 (Strong bisimulation). A strong bisimulation R is a ternary relation on
assertions and pairs of agents such that R(Ψ, P,Q) implies the following four statements.

(1) Static equivalence: Ψ⊗F(P ) ≃ Ψ⊗F(Q).
(2) Symmetry: R(Ψ,Q,P ).
(3) Extension with arbitrary assertion: for all Ψ ′ it holds that R(Ψ⊗Ψ ′, P,Q).

(4) Simulation: for all α,P ′ such that bn(α)#Ψ,Q and Ψ ✄ P
α−→ P ′,

there exists Q′ such that Ψ ✄ Q
α−→ Q′ and R(Ψ, P ′, Q′).

We define bisimilarity P
.∼Ψ Q to mean that there is a bisimulation R such that R(Ψ, P,Q),

and write
.∼ for

.∼1.

Above, (1) corresponds to the capability of a parallel observer to test the truth of a
condition using case, while (3) models an observer taking a step and adding a new assertion
Ψ ′ to the current environment.

We close strong bisimulation under substitutions to obtain a congruence.

Definition 3.2 (Strong bisimulation congruence). P ∼Ψ Q means that for all sequences σ̃
of substitutions it holds that Pσ̃

.∼Ψ Qσ̃. We write P ∼ Q for P ∼1 Q.

To illustrate the definitions of bisimulation and bisimulation congruence, we here prove
a result about the case statement, to be used in Section 4.

Lemma 3.3 (Flatten Case). Suppose that there exists a condition ⊤ ∈ C such that Ψ ⊢ ⊤σ̃

for all Ψ and substitution sequences σ̃. Let R = case ⊤ : (case ϕ̃ : P̃ ) [] φ̃ : Q̃ and

R′ = case ϕ̃ : P̃ [] φ̃ : Q̃; then R ∼ R′.
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Proof. We let I :=
⋃

Ψ,P {(Ψ, P, P )} be the identity relation, and

S :=
⋃

Ψ,P̃ ,Q̃,φ̃,ϕ̃

{(Ψ, case ϕ⊤ : (case ϕ̃ : P̃ ) [] φ̃ : Q̃, case ϕ̃ : P̃ [] φ̃ : Q̃) :
ϕ⊤ ∈ C ∧ ∀Ψ ′ ∈ A. Ψ ′ ⊢ ϕ⊤}.

We prove that T := S ∪ S−1 ∪ I is a bisimulation, where S−1 := {(Ψ,Q,P ) : (Ψ, P,Q) ∈ S}.
Then, T (1, Rσ̃,R′σ̃) for all σ̃, so R ∼ R′ by the definition of ∼. The proof that T is a
bisimulation is straightforward:

Static equivalence: The frame of a case agent is always 1, hence static equivalence follows
by reflexivity of ≃.

Symmetry: Follows by definition of T .
Extension with arbitrary assertion: Trivial by the choice of candidate relation, since

the Ψ in S and I are universally quantified.
Simulation: Trivially, any process P simulates itself. Fix (Ψ,R,R′) ∈ S, such that R =

case ϕ⊤ : (case ϕ̃ : P̃ ) [] φ̃ : Q̃ and R′ = case ϕ̃ : P̃ [] φ̃ : Q̃. Here Ψ ⊢ ϕ⊤ follows by
definition of S. Since T includes both S and S−1, we must follow transitions from both
R and R′.
• A transition from R via Pi can be derived as follows:

Case

Case
Ψ ✄ Pi

α−→ P ′
i Ψ ⊢ ϕi

Ψ ✄ case ϕ̃ : P̃
α−→ P ′

i Ψ ⊢ ϕ⊤

Ψ ✄ case ϕ⊤ : (case ϕ̃ : P̃ ) [] φ̃ : Q̃
α−→ P ′

i

Then R′ can simulate this with the following derivation:

Case
Ψ ✄ Pi

α−→ P ′
i Ψ ⊢ ϕi

Ψ ✄ case ϕ̃ : P̃ [] φ̃ : Q̃
α−→ P ′

i

Since I(Ψ, P ′
i , P

′
i ) and I ⊆ T we have T (Ψ, P ′

i , P
′
i ).

• A transition from R′ via Qi can be derived as follows:

Case
Ψ ✄ Qi

α−→ Q′
i Ψ ⊢ φi

Ψ ✄ case ϕ̃ : P̃ [] φ̃ : Q̃
α−→ Q′

i

The process R can simulate this with the following derivation:

Case
Ψ ✄ Qi

α−→ Q′
i Ψ ⊢ φi

Ψ ✄ case ϕ⊤ : (case ϕ̃ : P̃ ) [] φ̃ : Q̃
α−→ Q′

i

Since I(Ψ,Q′
i, Q

′
i) and I ⊆ T we have T (Ψ,Q′

i, Q
′
i).

• Symmetrically, R′ can simulate transitions derived from R via Qi, and R can simulate
transitions derived from R′ via Pi.

Psi-calculi are also equipped with a notion of weak bisimilarity (
.≈) where τ -transitions

cannot be observed, introduced by Bengtson et al. [JBPV10]. We here restate its definition,
but refer to the original publication for examples and more motivation.

The definition of weak transitions is standard.

Definition 3.4 (Weak transitions). Ψ ✄ P =⇒ P ′ is defined inductively by the rules:

(1) Ψ ✄ P =⇒ P
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(2) If Ψ ✄ P
τ−→ P ′′ and Ψ ✄ P ′′ =⇒ P ′, then Ψ ✄ P =⇒ P ′

For weak bisimulation we use static implication (rather than static equivalence) to
compare the frames of the process pair under consideration.

Definition 3.5 (Static implication). P statically implies Q in the environmental assertion
Ψ , written P ≤Ψ Q, if

∀ϕ. Ψ⊗F(P ) ⊢ ϕ ⇒ Ψ⊗F(Q) ⊢ ϕ

Definition 3.6 (Weak bisimulation). A weak bisimulation R is a ternary relation between
assertions and pairs of agents such that R(Ψ, P,Q) implies all of

(1) Weak static implication: for all Ψ ′ there exist Q′, Q′′ such that

Ψ ✄ Q =⇒ Q′ ∧ Ψ⊗Ψ ′ ✄ Q′ =⇒ Q′′ ∧ P ≤Ψ Q′ ∧ R(Ψ⊗Ψ ′, P,Q′′)

(2) Symmetry: R(Ψ,Q,P )
(3) Extension of arbitrary assertion: for all Ψ ′ it holds that R(Ψ⊗Ψ ′, P,Q)

(4) Weak simulation: for all P ′, if Ψ ✄ P
α−→ P ′ then

(a) if α = τ then ∃Q′. Ψ ✄ Q =⇒ Q′ ∧ R(Ψ, P ′, Q′); and
(b) if α ̸= τ and bn(α)#Ψ,Q, then there exists Q′, Q′′, Q′′′ such that

Ψ ✄ Q =⇒ Q′ ∧ Ψ ✄ Q′ α−→ Q′′ ∧ Ψ⊗Ψ ′ ✄ Q′′ =⇒ Q′′′

∧ P ≤Ψ Q′ ∧ R(Ψ⊗Ψ ′, P ′, Q′′′)

We define P
.≈ Q to mean that there exists a weak bisimulation R such that R(1, P,Q) and

we write P
.≈Ψ Q when there exists a weak bisimulation R such that R(Ψ, P,Q).

Above, (1) allows Q to take τ -transitions before and after enabling at least those con-
ditions that hold in the frame of P , as per Definition 3.5. Moreover, when testing these
conditions, the observer may also add an assertion Ψ ′ to the environment. In (4b), the
observer may test the validity of conditions when matching a visible transition, and may
also add an assertion as above.

To obtain a congruence from weak bisimulation, we must require that every τ -transition
is simulated by a weak transition containing at least one τ -transition.

Definition 3.7. A weak τ -bisimulation R is a ternary relation between assertions and pairs
of agents such that R(Ψ, P,Q) implies all conditions of a weak bisimulation (Definition 3.6)
with 4a replaced by

(4a′) if α = τ then ∃Q′, Q′′. Ψ ✄ Q
τ−→ Q′ ∧ Ψ ✄ Q′ =⇒ Q′′ ∧ P ′ .≈Ψ Q′′.

We then let P ≈Ψ Q mean that for all sequences σ̃ of substitutions there is a weak τ -
bisimulation R such that R(Ψ, P σ̃,Qσ̃). We write P ≈ Q for P ≈1 Q.

Lemma 3.8 (Comparing bisimulations). For all relations R ⊆ A × P × P,

• if R is a strong bisimulation then R is a weak τ -bisimulation.
• if R is a weak τ -bisimulation then R is a weak bisimulation.

Corollary 3.9 (Comparing congruences). If P ∼Ψ Q then P ≈Ψ Q.

We seek to establish the following standard congruence and structural properties prop-
erties of strong and weak bisimulation:
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Definition 3.10 (Congruence relation). A relation R ⊆ A × P × P, where (Ψ, P,Q) ∈ R
is written P RΨ Q, is a congruence iff for all Ψ , RΨ is an equivalence relation, and the
following implications hold.

CPar P RΨ Q =⇒ (P | R) RΨ (Q | R)
CRes a#Ψ ∧ P RΨ Q =⇒ (νa)P RΨ (νa)Q
CBang P RΨ Q =⇒ !P RΨ !Q

CCase ∀i.Pi RΨ Qi =⇒ case [] ϕ̃ : P̃ RΨ case [] ϕ̃ : Q̃
COut P RΨ Q =⇒ M N .P RΨ M N .Q
CIn P RΨ Q =⇒ M(λx̃)X .P RΨ M (λx̃)X .Q

A CCase-pseudo-congruence is defined like a congruence, except that CIn is substituted
by the following rule CIn-2.

CIn-2 (∀L̃. P [x̃ := L̃] RΨ Q[x̃ := L̃]) =⇒ M(λx̃)X .P RΨ M(λx̃)X .Q

A pseudo-congruence is defined like a CCase-pseudo-congruence, but without rule CCase.

Definition 3.11 (Structural congruence). Structural congruence, denoted ≡ ∈ P × P, is
the smallest relation such that {(1, P,Q) : P ≡ Q} is a congruence relation, and that
satisfies the following clauses whenever a#Q, x̃,M,N,X, ϕ̃.

case [] ϕ̃ : (νa)P̃ ≡ (νa)case [] ϕ̃ : P̃ !P ≡ P | !P
M (λx̃)X . (νa)P ≡ (νa)M (λx̃)X .P P | (Q | R) ≡ (P | Q) | R

M N . (νa)P ≡ (νa)M N .P P | Q ≡ Q | P
Q | (νa)P ≡ (νa)(Q | P ) P ≡ P | 0
(νb)(νa)P ≡ (νa)(νb)P (νa)0 ≡ 0

A relation R ⊆ P × P is complete with respect to structual congruence if ≡ ⊆ R.

Our goal is to establish that for all Ψ the relations
.∼Ψ , ∼Ψ ,

.≈Ψ and ≈Ψ are complete
with respect to structural congruence; that

.∼ is a CCase-pseudo-congruence; that ∼ is a
congruence; that

.≈ is a pseudo-congruence; and that ≈ is a congruence.

3.2. Psi-calculi with a single name sort. To prove the desired algebraic properties of
strong and weak bisimilarity and their induced congruences, we first adapt the Isabelle
proofs for the original psi-calculi to sorted psi-calculi with a single name sort, and then
manually lift the results to arbitrary sorted psi-calculi. The reason for this approach is the
lack of support in Nominal Isabelle for data types that are parametric in the sorts of names.

Theorem 3.12. If |SN | = |Sν | = 1, then
.∼Ψ , ∼Ψ ,

.≈Ψ and ≈Ψ are complete wrt. structural

congruence for all Ψ ,
.∼ is a CCase-pseudo-congruence, ∼ is a congruence,

.≈ is a pseudo-
congruence, and ≈ is a congruence.

These results have all been machine-checked in Isabelle [ÅP15]. The proof scripts are
adapted from Bengtson’s formalisation of psi calculi [Ben10]. The same technical lemmas
hold and the proof scripts are essentially identical, save for the input cases of inductive
proofs, a more detailed treatment of structural congruence, and the addition of sorts and
compatibility relations. We have also machine-checked Theorem 2.7 (relationship to origi-
nal psi-calculi) and Theorem 2.11 (preservation of well-formedness) in this setting. These
developments comprise 31909 lines of Isabelle code; Bengtson’s code is 28414 lines. This
represents no more than four days of work, with the bulk of the effort going towards proving



16 J. BORGSTRÖM, R. GUTKOVAS, J. PARROW, B. VICTOR, AND J. ÅMAN POHJOLA

a crucial technical lemma stating that transitions do not invent new names with the new
matching construct.

Isabelle is an LCF-style theorem prover, where the only trusted component is a small
kernel that implements the inference rules of the logic and checks that they are correctly
applied. All proofs must be fed through the kernel. Hence the results are highly trustworthy.

As indicated these proof scripts apply only to calculi with a single name sort. This
restriction is a consequence of technicalities in Nominal Isabelle: it requires every name
sort to be declared individually, and there are no facilities to reason parametrically over the
set of name sorts.

Huffman and Urban have developed a new foundation for Nominal Isabelle that lifts
the requirement to declare every name sort individually [HU10]. Unfortunately, the proof
automation for reasoning about syntax quotiented by alpha-equivalence still assumes indi-
vidually declared name sorts. Working around this with manually constructed quotients is
possible in principle, but in practice this approach does not scale well enough to make the
endeavour feasible given the size of our formalisation. A further difficulty is that Huffman
and Urban’s new foundation is still alpha-ware and is not backwards-compatible.

3.3. Trivially name-sorted psi-calculi. A trivially name-sorted psi-calculus is one where
Sν = SN and there is S ⊆ S such that # = SN × S, i.e., the sorts of names do not affect
how they can be used for restriction and substitution.

When generalising the result for single name-sorted calculi above, the main discrepancy
is that the mechanisation works with a single sort of names and thus would allow for ill-
sorted alpha-renamings in the case of multiple name sorts. This is only a technicality, since
every use of alpha-renaming in the formal proofs is to ensure that the bound names in
patterns and substitutions avoid other bound names—thus, whenever we may work with
an ill-sorted renaming, there would be a well-sorted renaming that suffices for the task.

Theorem 3.13. In trivially name-sorted calculi,
.∼Ψ , ∼Ψ ,

.≈Ψ and ≈Ψ are complete wrt.
structural congruence for all Ψ ,

.∼ is a CCase-pseudo-congruence, ∼ is a congruence,
.≈ is

a pseudo-congruence, and ≈ is a congruence.

Proof. By manually checking that all uses of alpha-equivalence in the proof of Theorem 3.12
admit a well-sorted alpha-renaming.

3.4. Arbitrary sorted psi-calculi. We here extend the results of Theorem 3.12 to ar-
bitrary sorted psi-calculi. The idea is to encode arbitrary sorted psi-calculi in trivially
name-sorted psi-calculi by introducing an explicit error element ⊥, resulting from appli-
cation of ill-sorted substitutions. For technical reasons we must also include one extra
condition fail (cf. Example 3.15) and in the patterns we need different error elements with
different support (cf. Example 3.16).

Let I be a sorted psi-calculus with datatype parameters TI ,XI ,CI ,AI . We construct a
trivially name-sorted psi-calculus U(I) with one extra sort, error, and constant symbols ⊥
and fail with empty support of sort error, where ⊥ is not a channel, never entailed,
matches nothing and entails nothing but fail.

The parameters of U(I) are defined by U(I) = (TI ∪ {⊥},XI ∪ {(⊥, A) : A ⊂fin N},
CI ∪ {⊥, fail},AI ∪ {⊥}). We define Ψ⊗⊥ = ⊥⊗Ψ = ⊥ for all Ψ , and otherwise ⊗ is as
in I. match is the same in U(I) as in I, plus match(M, x̃, (⊥, S)) = match(⊥, x̃,X) = ∅.
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Channel equivalence
.↔ is the same in U(I) as in I, plus M

.↔ ⊥ = ⊥ .↔ M = ⊥. For
Ψ ∈ AI we let Ψ ⊢ ϕ in U(I) iff ϕ ∈ CI and Ψ ⊢ ϕ in I, and we let ⊥ ⊢ ϕ iff ϕ = fail.
Substitution is then defined in U(I) as follows:

T [ã := Ñ ]U(I) :=

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

T [ã := Ñ ]I if sort(ai) #I sort(Ni) and
Ni ̸= ⊥ for all i, and T ̸= (⊥, A)

(⊥, S \ ã) if T = (⊥, S) is a pattern
(⊥,

⋃
vars(T )) otherwise, if T is a pattern

⊥ otherwise

We define ◃▹ = (S × {error}) ∪ ({error} × S), and the compatibility predicates of U(I) as
∝ = ∝I ∪ ◃▹ and ∝ = ∝I ∪ ◃▹ and # = SN × {s ∈ S : ∃s′ ∈ SN .s′ #I s} and Sν = SN .

Lemma 3.14. U(I) as defined above is a trivially name-sorted psi-calculus, and any well-
formed process P in I is well-formed in U(I).

Proof. A straight-forward application of the definitions.

The addition of fail is in order to ensure the compositionality of ⊗.

Example 3.15. Let A = {1, 0} and C = {ϕ} such that ⊢ = {(1, ϕ)} and 1 ⊗ 0 = 1. Now
add an assertion ⊥ such that 1⊗⊥ = ⊥, and keep ⊢ unchanged. Compositionality no longer
holds, since 0 ≃ ⊥, but 1 ⊗ 0 = 1 ̸≃ ⊥ = 1 ⊗ ⊥.

No variables can bind into equivariant patterns, so we need different error patterns with
different support to ensure the preservation of pattern variables under substitution.

Example 3.16. Assume that the pattern X is equivariant. Then vars(X) ⊆ {∅}.
Processes in I have the same transitions in U(I).

Lemma 3.17. If P is well-formed in I and Ψ ̸= ⊥, then Ψ ✄ P
α−→ P ′ in U(I) iff

Ψ ✄ P
α−→ P ′ in I.

Proof. By induction on the derivation of the transitions. The cases In, Out, Case and
Com use the fact that match, ⊢ and

.↔ are the same in I and U(I), and that substitutions
in I have the same effect when considered as substitutions in U(I).

Bisimulation in U(I) coincides with bisimulation in I for processes in I.

Lemma 3.18. Assume that P and Q are well-formed processes in I. Then P
.∼Ψ Q in I

iff P
.∼Ψ Q in U(I), and P

.≈Ψ Q in I iff P
.≈Ψ Q in U(I).

Proof. We show only the proof for the strong case; the weak case is similar. Let R be
a bisimulation in U(I). Then {(Ψ, P ′, Q′) ∈ R : Ψ ̸= ⊥ ∧ P ′, Q′ well-formed in I} is a
bisimulation in I: the proof is by coinduction, using Lemma 3.17 and Theorem 2.11 in the
simulation case.

Symmetrically, let R′ be a bisimulation in I, and let R′
⊥ = {(⊥, P,Q) : ∃Ψ.(Ψ, P,Q) ∈

R′}. Then R′ ∪ R′
⊥ is a bisimulation in U(I): simulation steps from R′ lead back to R′

by Lemma 3.17. From R′
⊥ there are no transitions, since ⊥ entails no channel equivalence

clauses. The other parts of Definition 3.1 are straightforward; when applying clause 3 with
Ψ ′ = ⊥ the resulting triple is in R′

⊥.
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With Lemma 3.18, we can lift the structural congruence results for trivially name-sorted
psi-calculi to arbitrary sorted calculi:

Theorem 3.19. For all sorted psi-calculi,
.∼Ψ , ∼Ψ ,

.≈Ψ and ≈Ψ are complete wrt. structural
congruence for all Ψ .

Proof. Fix a sorted psi-calculus I. For strong and weak bisimilarity, we show only the proof
for commutativity of the parallel operator. The other cases are analogous.

Let P and Q be well-formed in I and Ψ ̸= ⊥. By Theorem 3.12, P |Q ∼Ψ Q |P holds in
U(I). By Definition 3.1, (P |Q)σ̃

.∼Ψ (Q |P )σ̃ in U(I) for all σ̃. By Theorem 2.11, when σ̃ is
well-sorted then (P |Q)σ̃ and (Q|P )σ̃ are well-formed. By Lemma 3.18, (P |Q)σ̃

.∼Ψ (Q|P )σ̃
in I for all well-sorted σ̃. P | Q ∼Ψ Q | P in I follows by definition. P | Q ≈Ψ Q | P in I
follows by Corollary 3.9.

Using Lemma 3.18, we can also lift the congruence properties of strong and weak bisim-
ilarity.

Theorem 3.20. In all sorted psi-calculi,
.∼ is a CCase-pseudo-congruence and

.≈ is a
pseudo-congruence.

Proof. Fix a sorted psi-calculus I. We show only the proof that
.∼ is a congruence with

respect to parallel operator, the other cases are analogous.
Assume P

.∼Ψ Q holds in I. By Lemma 3.18, P
.∼Ψ Q holds in U(I). Theorem 3.12

thus yields P | R .∼Ψ Q | R in U(I), and Lemma 3.18 yields the same in I.

Unfortunately, the approach of Theorems 3.19 and 3.20 does not work for proving con-
gruence properties for ∼ or ≈, since the closure of bisimilarity under well-sorted substitu-
tions does not imply its closure under ill-sorted substitutions: consider a sorted psi-calculus
I such that 0 ∼ !1". Here 1σ = ⊥ if σ is ill-sorted, but 0

.∼ !⊥" does not hold since only ⊥
entails fail. We have instead performed a direct hand proof.

Theorem 3.21. In all sorted psi-calculi, ∼ is a congruence and ≈ is a congruence.

Proof. The proofs are identical, line by line, to the proofs for trivially name-sorted psi-
calculi. Theorem 3.20 is used in every case.

4. Representing Standard Process Calculi

We here consider psi-calculi corresponding to some variants of popular process calculi. One
main point of our work is that we can represent other calculi directly as psi-calculi, without
elaborate coding schemes. In the original psi-calculi we could in this way directly repre-
sent the monadic pi-calculus, but for the other calculi presented below a corresponding
unsorted psi-calculus would contain terms with no counterpart in the represented calculus,
as explained in Section 1.3. We establish that our formulations enjoy a strong operational
correspondence with the original calculus, under trivial mappings that merely specialise the
original concrete syntax (e.g., the pi-calculus prefix a(x) maps to a(λx)x in psi).

Because of the simplicity of the mapping and the strength of the correspondence we
say that psi-calculi represent other process calculi, in contrast to encoding them. A repre-
sentation is significantly stronger than standard correspondences, such as the approach to
encodability proposed by Gorla [Gor10]. Gorla’s criteria aim to capture the property that
one language can encode the behaviour of another using some (possibly elaborate) protocol,
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while our criteria aim to capture the property that a language for all practical purposes is
a sub-language of another.

Definition 4.1. A context C of arity k is a psi-calculus process term with k occurrences
of 0 replaced by a hole []. We consider contexts as raw terms, i.e., no name occurrences are
binding. The instantiation C[P1, . . . , Pk] of a context C of arity k is the psi-calculus process
resulting from the replacement of the leftmost occurrence of [] with P1, the second leftmost
occurrence of [] with P2, and so on.

A psi-calculus is a representation of a process calculus with processes P ∈ P and
labelled transition system → ⊆ P × A × P, if there exist an equivariant map $·% from P
to psi-calculus processes and an equivariant relation ! between A and psi-calculus actions
such that

(1) $·% is a simple homomorphism, i.e., for each process constructor f of P there is an
equivariant psi-calculus context C such that $f(P1, . . . , Pn)% = C[$P1%, . . . , $Pn%].

(2) $·% is a strong operational correspondence (modulo structural equivalence), i.e.,

(a) whenever P
β−→ P ′ then there exist α,Q such that $P % α−→ Q and $P ′% ≡ Q and

β ! α; and

(b) whenever $P % α−→ Q then there exist β, P ′ such that P
β−→ P ′ and $P ′% ≡ Q

and β ! α.

A representation is complete if it additionally satisfies

(3) $·% is surjective modulo strong bisimulation congruence, i.e., for each psi process P there
is Q ∈ P such that P ∼ $Q%.
Any representation is a valid encoding in the sense of Gorla, but the converse is not

necessarily true.

• In Gorla’s approach, the contexts that process constructors are translated to may fix
certain names, or translate one name into several names, in accordance with a renaming
policy. We require equivariance, which admits no such special treatment of names.

• Gorla uses three criteria for semantic correspondence: weak operational correspondence
modulo some equivalence for silent transitions, that the translation does not introduce
divergence, and that reducibility to a success process in the source and target processes co-
incides. Clearly strong operational correspondence modulo structural equivalence implies
all of these criteria.

Our use of structural equivalence in the operational correspondence allows to admit rep-
resentations of calculi that use a structural congruence rule to define a labelled semantics
(cf. Section 4.4).

Below, we use the standard notion of simultaneous substitution. Since the calculi we
represent do not use environments, we let the assertions be the singleton {1} in all examples,
with 1 ⊢ ⊤ and 1 ̸⊢ ⊥. Proofs of lemmas and theorems can be found in Appendix A.

4.1. Unsorted Polyadic pi-calculus. In the polyadic pi-calculus [Mil93] the only values
that can be transmitted between agents are tuples of names. Tuples cannot be nested. The
processes are defined as follows.

P,Q ::= 0 | x(ỹ).P | x⟨ỹ⟩.P | [a = b]P | νxP | !P | P | Q | P + Q
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An input binds a tuple of distinct names and can only communicate with an output of equal
length, resulting in a simultaneous substitution of all names. In the unsorted polyadic pi-
calculus there are no further requirements on agents, in particular a(x).P | a⟨y, z⟩.Q is
a valid agent. This agent has no communication action since the lengths of the tuples
mismatch.

We now present the psi-calculus PPI, which we will show represents the polyadic pi-
calculus.

PPI

T = N ∪ {⟨ã⟩ : ã ∈ N ∗}
C = {⊤} ∪ {a = b | a, b ∈ N}
X = {⟨ã⟩ : ã ∈ N ∗ ∧ ã distinct}
.↔ = identity on names
1 ⊢ a = a
vars(⟨ã⟩) = {ã}
match(⟨ã⟩, x̃, ⟨ỹ⟩) = {c̃} if {x̃} = {ỹ} and ⟨ỹ⟩[x̃ := c̃] = ⟨ã⟩
match(M, x̃, ⟨ỹ⟩) = ∅ otherwise

S = {chan, tup}
SN = {chan}
sort(a) = chan

sort(⟨ã⟩) = tup

Sν = {chan}
# = {(chan, chan)}
∝ = ∝ = {(chan, tup)}

This being our first substantial example, we give a detailed explanation of the new instance
parameters. Patterns X are finite vectors of distinct names. The sorts S are chan for
channels and tup for tuples (of names); the only sort of names SN is channels, as is the
sort of restricted names. The only sort of substitutions (#) are channels for channels; the
only sort of sending (∝) and receiving (∝) is tuples over channels. In an input prefix all
names in the tuple must be bound (vars) and a vector of names ã matches a pattern ỹ if
the lengths match and all names in the pattern are bound (in some arbitrary order).

As an example the agent a(λx, y)⟨x, y⟩ . a ⟨y⟩ .0 is well-formed, since chan ∝ tup and
chan ∝ tup, with vars(⟨x, y⟩) = {{x, y}}. This demonstrates that PPI disallows anomalies
such as nested tuples but does not enforce a sorting discipline to guarantee that names
communicate tuples of the same length.

To prove that PPI is a psi-calculus, we need to check the requisites on the parameters
(data types and operations) defined above. Clearly the parameters are all equivariant, since
no names appear free in their definitions. For the original psi-calculus parameters (Defini-
tion 2.1), the requisites are symmetry and transitivity of channel equivalence, which hold
because of the same properties of (entailment of) name equality, and abelian monoid laws
and compositionality for assertion composition, which trivially hold since A = {1}. The
standard notion of simultaneous substitution of names for names preserves sorts, and also
satisfies the other requirements of Definition 2.4. To check the requisites on pattern match-
ing (Definition 2.5), it is easy to see that match generates only well-sorted substitutions

(of names for names), and that n(̃b) = n(⟨ã⟩) whenever b̃ ∈ match(⟨ã⟩, x̃, ⟨ỹ⟩) Finally, for
all name swappings (x̃ ỹ) we have match(⟨ã⟩, x̃, ⟨z̃⟩) = match(⟨ã⟩, ỹ, (x̃ ỹ) · ⟨z̃⟩).

PPI is a representation of the polyadic pi-calculus as presented by Sangiorgi [San93]
(with replication instead of process constants).

Definition 4.2 (Polyadic Pi-Calculus to PPI).
Let $·% be the function that maps the polyadic pi-calculus to PPI processes as follows. The
function $·% is homomorphic for 0, restriction, replication and parallel composition, and is
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otherwise defined as follows:

$P + Q% = case ⊤ : $P % [] ⊤ : $Q%
$[x = y]P % = case x = y : $P %

$x(ỹ).P % = x(λỹ)⟨ỹ⟩.$P %
$x⟨ỹ⟩.P % = x⟨ỹ⟩.$P %

Similarly, we also translate the actions of polyadic pi-calculus. Here each action corresponds
to a set of psi actions, since in a pi-calculus output label “the order of the bound names is
immaterial” [SW01, p. 129], which is not the case in psi-calculi.

$(νỹ)x⟨z̃⟩% = {x (νỹ′) ⟨z̃⟩ : ỹ′ is a permutation of ỹ}
$x⟨z̃⟩% = {x ⟨z̃⟩}

$τ% = {τ}
Although the binders in bound output actions are ordered in psi-calculi, they can be arbi-
trarily reordered.

Lemma 4.3. If Ψ ✄ P
M (νã) N−−−−−−→ Q and c̃ is a permutation of ã then Ψ ✄ P

M (νc̃) N−−−−−−→ Q.

Proof. By induction on the derivation of the transition. The base case is trivial. In the
Open rule, we use the induction hypothesis to reorder the bound names in the premise as
desired; we can then add the opened name at the appropriate position in the action in the
conclusion of the rule. The other induction cases are trivial.

We can now show that $·% is a strong operational correspondence.

Theorem 4.4. If P and Q are polyadic pi-calculus processes, then:

(1) If P
β−→ P ′ then for all α ∈ $β% we have $P % α−→ $P ′%; and

(2) If $P % α−→ P ′′ then there is β such that P
β−→ P ′ and α ∈ $β% and $P ′% = P ′′.

Proof. By induction on the derivation of the transitions, using Lemma 4.3 in the OPEN
case of (1).

We have now shown that the polyadic pi-calculus can be embedded in PPI, with an
embedding $·% that is a strong operational correspondence.

In order to investigate surjectivity properties of the embedding $·%, we also define a
translation P in the other direction.

Definition 4.5 (PPi to Polyadic Pi-Calculus). The translation · is homomorphic for 0,
restriction, replication and parallel composition, and is otherwise defined as follows:

!1" = 0

case ϕ1 : P1 [] . . . [] ϕn : Pn = ϕ1 : P1 + · · · + ϕn : Pn

x(λỹ)⟨z̃⟩.P = x(z̃).P

x⟨ỹ⟩.P = x⟨ỹ⟩.P
where condition-guarded processes are translated as

x = y : P = [x = y]P

⊤ : P = P .

Above, note that the order of the binders in input prefixes is ignored. To show that
the reverse translation is an inverse of $·% modulo bisimilarity, we need to prove that their
order does not matter.
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Lemma 4.6. In PPI, x(λỹ)⟨z̃⟩.P ∼ x(λz̃)⟨z̃⟩.P .

Proof. Straightforward from the definitions of match and substitution on patterns.

We now show that the embeddings · and $·% are inverses, modulo bisimilarity.

Theorem 4.7. If P is a PPI process, then P ∼ $P %.
Proof. By structural induction on P . The input case uses Lemma 4.6. For case agents, we
use an inner induction on the number of branches, with Lemma 3.3 applied in the induction
case.

Let the relation ∼c
e be early congruence of polyadic pi-calculus agents as defined in

[San93]. Then we have

Corollary 4.8. If P is a polyadic pi-calculus process, then P ∼c
e $P %.

We also have

Corollary 4.9. If P and Q are polyadic pi-calculus process, then P ∼c
e Q iff $P % ∼ $Q%.

Proof. Follows from the strong operational correspondence of Theorem 4.4, and $·% com-
muting with substitutions.

This shows that every PPI process corresponds to a polyadic pi-calculus process, mod-
ulo strong bisimulation congruence, since · is surjective on the bisimulation classes of
polyadic pi-calculus, and the inverse of $·%. In other words, PPI is a complete representation.

Theorem 4.10. PPI is a complete representation of the polyadic pi-calculus.

Proof. We let β ! α iff α ∈ $β%.
(1) $·% is a simple homomorphism by definition.
(2) $·% is a strong operational correspondence by Theorem 4.4.
(3) $·% is surjective modulo strong bisimulation congruence by Theorem 4.7.

4.2. LINDA [Gel85]. A process calculus with LINDA-like pattern matching can easily be
obtained from the PPI calculus, by modifying the possible binding names in patterns.

LINDA

Everything as in PPI except:
X = {⟨ã⟩ : ã ⊂fin N}
vars(⟨ã⟩) = P(ã)
match(⟨ã⟩, x̃, ⟨ỹ⟩) = {c̃} if {x̃} ⊆ {ỹ} and ⟨ỹ⟩[x̃ := c̃] = ⟨ã⟩

Here, any subset of the names occurring in a pattern may be bound in the input prefix;
this allows to only receive messages with particular values at certain positions (sometimes
called “structured names” [Gel85]) We also do not require patterns to be linear, i.e., the
same variable may occur more than once in a pattern, and the pattern only matches a tuple
if each occurrence of the variable corresponds to the same name in the tuple.

As an example, a(λx)⟨x, x, z⟩.P | a⟨c, c, z⟩.Q τ−→ P [x := c] | Q while the agent
a(λx)⟨x, x, z⟩.P | a⟨c, d, z⟩.Q has no τ transition.

To prove that LINDA is a psi-calculus, the interesting case is the preservation of
variables of substitution on patterns in Definition 2.4, i.e., that x̃ ∈ vars(⟨ỹ⟩) and x̃#σ
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implies x̃ ∈ vars(⟨ỹ⟩σ). This holds because standard substitution preserves names and
structure: there is z̃ such that ⟨ỹ⟩σ = ⟨z̃⟩, and if x ∈ ỹ and x#σ, then x ∈ z̃.

4.3. Sorted polyadic pi-calculus. Milner’s classic sorting [Mil93] regime for the polyadic
pi-calculus ensures that pattern matching in inputs always succeeds, by enforcing that the
length of the pattern is the same as the length of the received tuple. This is achieved as
follows. Milner assumes a countable set of subject sorts S ascribed to names, and a partial
function ob : S ⇀ S∗, assigning a sequence of object sorts to each sort in its domain. The
intuition is that if a has sort s then any communication along a must be a tuple of sort
ob(s). An agent is well-sorted if for any input prefix a(b1, . . . bn) it holds that a has some
sort s where ob(s) is the sequence of sorts of b1, . . . , bn and similarly for output prefixes.

SORTEDPPI

Everything as in PPI except:
SN = Sν = S S = S ∪ {⟨s̃⟩ : s̃ ∈ S∗}
# = {(s, s) : s ∈ S} ∝ = ∝ = {(s, ⟨ob(s)⟩) : s ∈ S}
sort(⟨a1, . . . , an⟩) = ⟨sort(a1), . . . , sort(an)⟩
match(⟨ã⟩, x̃, ⟨ỹ⟩) = {π · ã} if x̃ = π · ỹ and sort(⟨ã⟩) = sort(⟨ỹ⟩)

We need to show that match always generates well-sorted substitutions: this holds since
whenever c̃ ∈ match(⟨ã⟩, x̃, ⟨ỹ⟩) we have that [x̃ := c̃] = [π · ỹ := π · ã] and sort(yi) =
sort(ai) for all i.

As an example, let sort(a) = s with ob(s) = t1, t2 and sort(x) = t1 with ob(t1) = t2
and sort(y) = t2 then the agent a(λx, y)(x, y) . x y .0 is well-formed, since s ∝ t1, t2 and
t1 ∝ t2, with vars(x, y) = {{x, y}}.

A formal comparison with the system in [Mil93] is complicated by the fact that Milner
uses so called concretions and abstractions as agents. Restricting attention to agents in
the normal sense we have the following result, where $·% is the function from the previous
example.

Theorem 4.11. P is well-sorted iff $P % is well-formed.

Proof. A trivial induction over the structure of P , observing that the requirements are
identical.

Theorem 4.12. SORTEDPPI is a complete representation of the sorted polyadic pi-
calculus.

Proof. The operational correspondence in Theorem 4.4 still holds when restricted to well-
formed agents. The inverse translation · maps well-formed agents to well-sorted processes,
so the surjectivity result in Theorem 4.7 still applies.

4.4. Polyadic synchronisation pi-calculus. Carbone and Maffeis [CM03] explore the
so called pi-calculus with polyadic synchronisation, eπ, which can be thought of as a dual
to the polyadic pi-calculus. Here action subjects are tuples of names, while the objects
transmitted are just single names. It is demonstrated that this allows a gradual enabling
of communication by opening the scope of names in a subject, results in simple encodings
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of localities and cryptography, and gives a strictly greater expressiveness than standard
pi-calculus. The processes of eπ are defined as follows.

P,Q ::= 0 | Σiαi.Pi | P | Q | (νa)P | !P
α ::= ã(x) | ã⟨b⟩

In order to represent eπ, only minor modifications to the representation of the polyadic pi-
calculus in Section 4.1 are necessary. To allow tuples in subject position but not in object
position, we invert the relations ∝ and ∝. Moreover, eπ does not have name matching
conditions a = b, since they can be encoded (see [CM03]).

PSPI

Everything as in PPI except:

C = {⊤,⊥}
X = N
∝ = ∝ = {(tup, chan)}

ã
.↔ b̃ is ⊤ if ã = b̃, and ⊥ otherwise

vars(x) = {{x}}
match(a, x, x) = {a}

To obtain a representation, we consider a dialect of eπ without the τ prefix. This has no cost
in terms of expressiveness since the τ prefix can be encoded within eπ using a communication
over a restricted fresh name. However, the PSPI context C[] = (ν a)(⟨a⟩ a.0 | ⟨a⟩(λa)a.[]])
that encodes the prefix is not admissible as part of a representation since it depends on the
name a and so is not equivariant.

The eπ calculus also uses an operational semantics with late input, unlike psi-calculi. In

order to yield a representation, we consider an early version −→e of the semantics, obtained
by turning bound input actions into free input actions at top-level.

eIn
P

x̃(y)−−→ P ′

P
x̃ z−−→e P ′{z/y}

Out
P

x̃⟨c⟩−−→ P ′

P
x̃⟨c⟩−−→e P ′

BOut
P

x̃⟨νc⟩−−−→ P ′

P
x̃⟨νc⟩−−−→e P ′

Tau
P

τ−→ P ′

P
τ−→e P ′

Definition 4.13 (Polyadic synchronisation pi-calculus to PSPI). $·% is homomorphic for 0,
restriction, replication and parallel composition, and is otherwise defined as follows:

$Σiαi.Pi% = case ⊤i : $αi.Pi%
$x̃⟨y⟩.P % = ⟨x̃⟩ y.$P %
$x̃(y).P % = ⟨x̃⟩(λy)y.$P %

We translate bound and free output, free input, and tau actions in the following way.

$x̃⟨νc⟩% = ⟨x̃⟩ (νc) c

$x̃⟨c⟩% = ⟨x̃⟩ c
$x̃ y% = ⟨x̃⟩ y

$τ% = τ

The transition system in eπ is given up to structural congruence, i.e., for all α we have
α−→ = (≡ α−→≡).
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Definition 4.14. ≡ is the least congruence satisfying alpha conversion, the commutative
monoidal laws with respect to both (|,0) and (+,0) and the following axioms1:

(νx)P | Q ≡ (νx)(P | Q) if x#Q (νx)P ≡ P if x#P

The proofs of operational correspondence are similar to the polyadic pi-calculus case.
We have the following initial results for late input actions.

Lemma 4.15.

(1) If P
x̃(y)−−→ P ′ then for all z, $P % ⟨x̃⟩ z−−−→ P ′′ where P ′′ ≡ $P ′%[y := z].

(2) If $P % ⟨x̃⟩ z−−−→ P ′′ then for all y#P , P
x̃(y)−−→ P ′ where $P ′{z/y}% = P ′′.

Proof. By induction on the derivation of the transitions.

This in turn yields the desired operational correpondence.

Theorem 4.16.

(1) If P
α−→e P ′, then $P % !α"−−→ P ′′ where P ′′ ≡ $P ′%.

(2) If $P % α′
−→ P ′′, then P

α−→e P ′ where $α% = α′ and $P ′% = P ′′.

Proof. By induction on the derivation of the transitions.

Again, these results lead us to say that the polyadic synchronization pi-calculus can be
represented as a psi-calculus.

Theorem 4.17. PSPI is a representation of the polyadic synchronization pi-calculus.

Proof. We let β ! α iff α = $β%.
(1) $·% is a simple homomorphism by definition.
(2) $·% is a strong operational correspondence by Theorem 4.4.

To investigate the surjectivity properties of $·%, we need to consider the fact that
polyadic synchronization pi has only mixed (i.e., prefix-guarded) choice.

Definition 4.18 (Case-guarded). A PSPI process is case-guarded if in all its subterms of
the form case ϕ1 : P1 [] · · · [] ϕn : Pn, for all i ∈ {1, . . . , n}, ϕi = ⊤ implies Pi = M N.Q or
Pi = M(λx̃)X.Q.

We define the translation R from case-guarded PSPI processes to eπ as the translation
with the same name from PPI, except that ⊥-guarded branches of case statements are
discarded.

Theorem 4.19. For all case-guarded PSPI processes R we have R ∼ $R%.
Proof. By structural induction on R. For case agents, we use an inner induction on the
number of branches, with Lemma 3.3 applied in the induction case.

Corollary 4.20. If P is a polyadic synchronization pi-calculus process, then P ∼̇ $P %.
Corollary 4.21. For all eπ processes P , Q, P ∼̇ Q (i.e., P and Q are early labelled
congruent) iff $P % ∼ $Q%.
Proof. By strong operational correspondence 4.16, and $·% commuting with substitutions.

1The original definition of ≡ [CM03] includes an additional axiom [x = x]P ≡ P allowing to contract
successful matches, but this axiom is omitted here since the eπ calculus does not include the match construct.
Unusually, the definition of ≡ does not admit commuting restrictions, i.e., (νx)(νy)P ̸≡ (νy)(νx)P .
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We thus have that polyadic synchronization pi corresponds to the case-guarded PSPI
processes, modulo strong bisimulation.

4.5. Value-passing CCS. Value-passing CCS [Mil89] is an extension of pure CCS to admit
arbitrary data from some set V to be sent along channels; there is no dynamic connectivity
so channel names cannot be transmitted. When a value is received in a communication
it replaces the input variable everywhere, and where this results in a closed expression it
is evaluated, so for example a(x) . c(x + 3) can receive 2 along a and become c 5. There
are conditional if constructs that can test if a boolean expression evaluates to true, as
in a(x) . if x > 3 then P . Formally, the value-passing CCS processes are defined by the
following grammar with x, y ranging over names, v over values, b over boolean expressions,
and L over sets of names.

P,Q ::= x(y).P | x(v).P | Σi Pi | if b then P | P \ L | P | Q | !P | 0

To represent this as a psi-calculus we assume an arbitrary set of expressions e ∈ E including
at least the values V. A subset of E is the boolean expressions b ∈ EB. Names are either
used as channels (and then have the sort chan) or expression variables (of sort exp); only
the latter can appear in expressions and be substituted by values. An expression is closed
if it has no name of sort exp in its support, otherwise it is open. The values v ∈ V are
closed and have sort value; all other expressions have sort exp. The boolean values are
VB := V ∩ EB = {⊤,⊥}, and 1 ⊢ ⊤ but ¬(1 ⊢ ⊥). We let E be an evaluation function
on expressions, that takes each closed expression to a value and leaves open expressions

unchanged. We write e{Ṽ /x̃} for the result of syntactically replacing all x̃ simultaneously

by Ṽ in the (boolean) expression e, and assume that the result is a valid (boolean) expression.
For example (x + 3){2/x} = 2+3, and E(2 + 3) = 5. We define substitution on expressions

to use evaluation, i.e. e[x̃ := Ṽ ] = E(e{Ṽ /x̃}). As an example, (x + 3)[x := 2] = E((x +
3){2/x}) = E(2 + 3) = 5. We use the single-variable patterns of Example 2.6.

VPCCS

T = N ∪ E
C = EB

A = {1}
X = N
a

.↔ a = ⊤
e

.↔ e′ = ⊥ otherwise
vars(a) = {a}
match(v, a, a) = {v} if v ∈ V
match(M, x̃, a) = ∅ otherwise

SN = {chan, exp}
S = SN ∪ {value}
v ∈ V ⇒ sort(v) = value

e ∈ E \ V ⇒ sort(e) = exp

e ∈ E ⇒ e[x̃ := M̃ ] = E(e{M̃/x̃})
# = {(exp, value)}
Sν = {chan}
∝ = ∝ = {(chan, exp), (chan, value)}

Closed value-passing CCS processes correspond to VPCCS agents P where all free
names are of sort chan. To prove that VPCCS is a psi-calculus, the interesting case
is when the sort of a term is changed by substitution: let e be an open term, and σ a
substitution such that n(e) ⊆ dom(σ). Here sort(e) = exp and sort(eσ) = value; this
satisfies Definition 2.4 since value ≤ exp in the subsorting preorder (here exp ≤ value also
holds, but is immaterial since there are no names of sort value).
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We show that VPCCS represents value-passing CCS as defined by Milner [Mil89], with
the following modifications:

• We use replication instead of process constants.
• We consider only finite sums. Milner allows for infinite sums without specifying exactly

what infinite sets are allowed and how they are represented, making a fully formal com-
parison difficult. Introducing infinite sums naively in psi-calculi means that agents might
exhibit cofinite support and exhaust the set of names, rendering crucial operations such
as α-converting all bound names to fresh names impossible.

• We do not consider the relabelling construct P [f ] of CCS at all. Injective relabelings are
redundant in CCS [GSV04], and the construct is not included in the psi-calculi framework.

• We only allow finite sets L in restrictions P \ L. With finite sums, this results in no loss
of expressivity since agents have finite support.

Milner’s restrictions are of sets of names, which we represent as a sequence of ν-binders.
To create a unique such sequence from L, we assume an injective and support-preserving

function −→· : Pfin(Nchan) → (Nchan)
∗. For instance,

−→
L may be defined as sorting the

names in L according to some total order on Nchan, which is always available since Nchan is
countable.

The mapping $·% from value-passing CCS into VPCCS is defined homomorphically on
parallel composition, output and 0, and otherwise as follows.

$x(y).P % = x(λy)y.$P %
$Σi Pi% = case ⊤ : $P1% [] · · · [] ⊤ : $Pi%

$if b then P % = case b : $P %
$P \ L% = (ν

−→
L )$P %

We translate the value-passing CCS actions as follows

$x(v)% = x v
$x(v)% = x v

$τ% = τ

As an example, in a version of VPCCS where the expressions E include natural num-
bers and operations on those,

a(λx)x . case x > 3 : c(x + 3)
a 4−−→ (case x > 3 : c(x + 3))[x := 4]
= case E((x > 3){4/x}) : c(E((x + 3){4/x}))
= case E(4 > 3) : c(E(4 + 3))
= case ⊤ : c7
c 7−→ 0

In our psi semantics, expressions in processes are evaluated when they are closed by
reception of variables (e.g. in the first transition above), while Milner simply identifies closed
expressions with their values [Mil89, p55f].

Lemma 4.22. If P is a closed VPCCS process and P
α−→ P ′, then P ′ is closed.

Theorem 4.23. If P and Q are closed value-passing CCS processes, then

(1) if P
α−→ P ′ then $P % !α"−−→ $P ′%; and

(2) if $P % α′
−→ P ′′ then P

α−→ P ′ where $α% = α′ and $P ′% = P ′′.
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Proof. By induction on the derivations of P ′ and P ′′, respectively. The full proof is given
in Appendix A.3.

As before, this yields a representation theorem.

Theorem 4.24. VPCCS is a representation of the closed agents of value-passing CCS
(modulo the modifications described above).

Proof. We let β ! α iff α = $β%.
(1) $·% is a simple homomorphism by definition.
(2) $·% is a strong operational correspondence by Theorem 4.23.

To investigate the surjectivity of the encoding, we let P = {P : sort(n(P )) ⊆ {chan}}
be the VPCCS processes where all fre names are of channel sort.

Lemma 4.25. If P ∈ P, then there is a CCS process Q such that P ∼ $Q%.
Proof. As before, we define an inverse translation ·, that is homomorphic except for

case b1 : P1 [] · · · [] bi : Pi = (if b1 then P1) + · · · + (if bi then Pi)

Using Lemma 3.3, we get P ∼ $P %.
Example 4.26 (Value-passing pi-calculus). To demonstrate the modularity of psi-calculi,
assume that we wish a variant of the pi-calculus enriched with values in the same way as
value-passing CCS. This is achieved with only a minor change to VPCCS:

VPPI

Everything as in VPCCS except:
match(z, a, a) = {z} if z ∈ V ∪ Nch

# = {(exp, value), (chan, chan)}
∝ = ∝ = {(chan, exp), (chan, value), (chan, chan)}

Here also channel names can be substituted for other channel names, and they can be sent
and received along channel names.

5. Advanced Data Structures

We here demonstrate that we can accommodate a variety of term structures for data and
communication channels; in general these can be any kind of data, and substitution can
include any kind of computation on these structures. This indicates that the word “sub-
stitution” may be a misnomer — a better word may be “effect” — though we keep it to
conform with our earlier work. We focus on our new contribution in the patterns and sorts,
and therefore make the following definitions that are common to all the examples (unless
explicitly otherwise defined).

A = {1} 1 ⊗ 1 = 1 C = {⊤,⊥}
⊢ = {(1,⊤)} M

.↔ M = ⊤ M
.↔ N = ⊥ if M ̸= N

# = {(s, s) : s ∈ S} ∝ = ∝ = S × S Sν = SN = S
If t and u are from some term algebra, we write t ≼ u when t is a (non-strict) subterm of u.
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5.1. Convergent rewrite systems on terms. In Example 4.26, the value language con-
sisted of closed terms, with an opaque notion of evaluation. We can instead work with terms
containing names and consider deterministic computations specified by a convergent rewrite
system. The interesting difference is in which terms are admissible as patterns, and which
choices of vars(X) are valid. We first give a general definition and then give a concrete
instance in Example 5.1.

Let Σ be a sorted signature with sorts S, and · ⇓ be normalization with respect to a
convergent sort-preserving rewrite system on the nominal term algebra over N generated
by the signature Σ. We let terms M range over the range of ⇓, i.e., the normal forms. We

write ρ for sort-preserving capture-avoiding simultaneous substitutions {M̃/̃a} where every

Mi is in normal form; here n(ρ) = n(M̃, ã). A term M is stable if for all ρ, Mρ⇓ = Mρ.
The patterns are all instances of stable terms, i.e., X = Mρ where M is stable. Such a
pattern X can bind any combination of names occurring in M but not in ρ. As an example,
any term M is a pattern (since any name x is stable and M = x{M/x}) that can be used to
match the term M itself (since ∅ ⊆ n(x) \ n(M,x) = ∅).

REWRITE(⇓)

T = X = range(⇓)

M [ỹ := L̃] = M{L̃/̃y}⇓
match(M, x̃,X) = {L̃ : M = X{L̃/̃x}}
vars(X) =

⋃{P(n(M) \ n(ρ)) : M stable ∧ X = Mρ}

We need to show that the patterns are closed under substitution, including preservation of
vars (cf. Definition 2.4), and that matching satisfies the criteria of Definition 2.5. Since
any term is a pattern, the patterns are closed under substitution. Since term substitution
{·/·} and normalization ⇓ are both sort-preserving, term and pattern substitution [· := ·] is
also sort-preserving.

To show preservation of pattern variables, assume that x̃ ∈ vars(X) is a tuple of
distinct names. By definition there are M and ρ such that X = Mρ with M stable and
x̃ ⊆ n(M) \ n(ρ). Assume that x̃#σ; then Xσ = (Mρ)σ = M(σ ◦ ρ) with x̃#σ ◦ ρ, so
x̃ ∈ vars(Xσ).

For the criteria of Definition 2.5, additionally assume that L̃ ∈ match(N, x̃,X) and

let σ = [x̃ := L̃]. Since {L̃/̃x} is well-sorted, so is [x̃ := L̃]. We also immediately have

n(L̃) = n(N) ∪ (n(X) \ x̃), and alpha-renaming of matching follows from the same property
for term substitution.

Example 5.1 (Peano arithmetic). As a simple instance of REWRITE(⇓), we may con-
sider Peano arithmetic. The rewrite rules for addition (below) induce a convergent rewrite
system ⇓Peano, where the stable terms are those that do not contain any occurrence of plus.

PEANO

Everything as in REWRITE(⇓) except:
S = {nat, chan}
Σ = {zero : nat, succ : nat → nat plus : nat × nat → nat}
plus(K, zero) → K plus(K, succ(M)) → plus(succ(K),M)
vars(succn(a)) = {∅, {a}} vars(M) = {∅} otherwise
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Writing i for succi(zero), the agent (νa)(a 2 | a(λy)succ(y) . c plus(3, y)) of
REWRITE(⇓Peano) has one visible transition, with the label c 4. In particular, the object
of the label is plus(3, y)[y := 1] = plus(3, y){1/y}⇓Peano = 4.

5.2. Symmetric cryptography. We can also consider variants of REWRITE(⇓), such
as a simple Dolev-Yao style [DY83] cryptographic message algebra for symmetric cryptog-
raphy, where we ensure that the encryption keys of received encryptions can not be bound
in input patterns, in agreement with cryptographic intuition.

The rewrite rule describing decryption dec(enc(M,K),K) → M induces a convergent
rewrite system ⇓enc, where the terms not containing dec are stable. The construction of
REWRITE(⇓) yields that x̃ ∈ vars(X) if x̃ ⊆ n(X) are pair-wise different and no xi

occurs as a subterm of a dec in X. This construction would still permit to bind the keys of
an encrypted message upon reception, e.g. a(λm, k)enc(m,k) . P would be allowed although
it does not make cryptographic sense. Therefore we further restrict vars(X) to those sets
not containing names that occur in key position in X, thus disallowing the binding of k
above. Below we give the formal definition (recall that ≼ is the subterm preorder).

SYMSPI

Everything as in REWRITE(⇓enc) except:
S = {message, key}
Σ = {enc : message× key → message, dec : message× key → message}
dec(enc(M,K),K) → M
vars(X) = P(n(X) \ {a : a ≼ dec(Y1, Y2) ≼ X ∨ (a ≼ Y2 ∧ enc(Y1, Y2) ≼ X)})

The proof of the conditions of Definition 2.4 and Definition 2.5 for patterns is the same as
for REWRITE(·) in Section 5.1 above.

As an example, the agent

(νa, k)(a enc(enc(M, l), k) | a(λy)enc(y, k) . c dec(y, l))

has a visible transition with label c M , where one of the leaf nodes of the derivation is

a(λy)enc(y, k) . c dec(y, l)
a enc(enc(M,l),k)−−−−−−−−−−−→ c dec(y, l)[y := enc(M, l)]

since enc(M, l) ∈ match(enc(enc(M, l), k), y, enc(y, k)). The resulting process is

c dec(y, l)[y := enc(M, l)] = c dec(y, l){enc(M,l)/y} ⇓ = c dec(enc(M, l), l) ⇓ = c M.

5.3. Asymmetric cryptography. A more advanced version of Section 5.2 is the treatment
of data in the pattern-matching spi-calculus [HJ06], to which we refer for more examples
and motivations of the definitions below. The calculus uses asymmetric encryption, and
includes a non-homomorphic definition of substitution that does not preserve sorts, and a
sophisticated way of computing permitted pattern variables. This example highlights the
flexibility of sorted psi-calculi in that such specialized modelling features can be presented
in a form that is very close to the original.

We start from the term algebra TΣ over the unsorted signature

Σ = {(), (·, ·), eKey(·), dKey(·), enc(·, ·), enc−1(·, ·)}
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DY True

M̃ !

DY Id

M̃,N ! L̃

M̃ ,N ! N, L̃

DY Copy

M̃ ! N, L̃

M̃ ! N,N, L̃

DY Nil

M̃ ! L̃

M̃ ! (), L̃

DY Pair

M̃ ! N,N ′, L̃

M̃ ! (N,N ′), L̃

DY Split

M̃,N,N ′ ! L̃

M̃ , (N,N ′) ! L̃

DY Key

M̃ ! N, L̃ f ∈ {eKey, dKey}
M̃ ! f(N), L̃

DY Encrypt

M̃ ! N,N ′, L̃

M̃ ! enc(N,N ′), L̃

DY Decrypt

M̃ ! N ′ M̃,N ! L̃

M̃ , enc−1(N,N ′) ! L̃

DY Unencrypt

M̃ ! N ′ M̃,N ! L̃

M̃ , enc(N, eKey(N ′)) ! L̃

Table 2: Dolev-Yao derivability [HJ06].

The eKey(M) and dKey(M) constructions represent the encryption and decryption parts
of the key pair M , respectively. The operation enc−1(M,N) is encryption of M with the
inverse of the decryption key N , which is not an implementable operation but only permitted
to occur in patterns. We add a sort system on TΣ with sorts S = {impl, pat,⊥}, where
impl denotes implementable terms not containing enc−1, and pat those that may only be
used in patterns. The sort ⊥ denotes ill-formed terms, which do not occur in well-formed
processes. Names stand for implementable terms, so we let SN = {impl}. Substitution is
defined homomorphically on the term algebra, except to avoid unimplementable subterms
on the form enc−1(M, dKey(N)).

In order to define vars(X), we write M̃ ! Ñ if all Ni ∈ Ñ can be deduced from M̃
in the Dolev-Yao message algebra (i.e., using cryptographic operations such as encryption
and decryption). For the precise definition, see Table 2. The definition of vars(X) below
allows to bind a set S of names only if all names in S can be deduced from the message
term X using the other names occurring in X. This excludes binding an unknown key (cf.
Section 5.2).

PMSPI

T = X = TΣ S = {impl, pat,⊥} SN = {impl}
# = ∝ = {(impl, impl)} ∝ = {(impl, impl), (impl, pat)}
sort(M) = impl if ∀N1, N2. enc

−1(N1, N2) ̸≼ M
sort(M) = ⊥ if ∃N1, N2. enc

−1(N1, dKey(N2)) ≼ M
sort(M) = pat otherwise

match(M, x̃,X) = {L̃ : M = X[x̃ := L̃]}
vars(X) = {S ⊆ n(X) : (n(X) \ S),X ! S}

x[ỹ := L̃] = Li if yi = x

x[ỹ := L̃] = x otherwise.

enc−1(M1,M2)[ỹ := L̃] = enc(M1[ỹ := L̃], eKey(N)) when M2[ỹ := L̃] = dKey(N)

f(M1, . . . ,Mn)[ỹ := L̃] = f(M1[ỹ := L̃], . . . ,Mn[ỹ := L̃]) otherwise.

As an example, consider the following transitions in PMSPI:
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(νa, k, l)( a enc(dKey(l), eKey(k)).a enc(M, eKey(l))
| a(λy)enc(y, eKey(k)) . a(λz)enc−1(z, y) . c z)
τ−→ (νa, k, l)(a enc(M, eKey(l)) | a(λz)enc(z, eKey(l)) . c z)
τ−→ (νa, k, l)c M.

Note that σ = [y := dKey(l)] resulting from the first input changed the sort of the second in-
put pattern: sort(enc−1(z, y)) = pat, but sort(enc−1(z, y)σ) = sort(enc(z, eKey(l))) =
impl. However, this is permitted by Definition 2.4 (Substitution), since impl ≤ pat (imple-
mentable terms can be used as channels or messages whenever patterns can be).

Terms (and patterns) are trivially closed under substitution. All terms in the domain
of a well-sorted substitution have sort impl, so well-sorted substitutions cannot introduce
subterms of the forms enc−1(N1, N2) or enc−1(N1, dKey(N2)) where none existed; thus
sort(Mσ) ≤ sort(M) as required by Definition 2.4.

To show preservation of pattern variables, we first need some technical results about
Dolev-Yao derivability.

Lemma 5.2.

(1) If M̃ ! Ñ , then M̃ ′M̃ ! Ñ .

(2) If M̃ ! Ñ , then M̃σ ! Ñσ.
(3) If sort(N) = impl, then n(N) ! N .

(4) If M̃,N ! L̃ and sort(N) = impl and M̃ ! N , then M̃ ! L̃.

Lemma 5.3 (Preservation of pattern variables).
If x̃#σ and (n(X) \ x̃),X ! x̃ then (n(Xσ) \ x̃),Xσ ! x̃.

Proof. Let M̃ = (n(X)\x̃)σ. By Lemma 5.2(2) we get M̃,Xσ ! x̃, so (n(Xσ)\x̃), M̃ ,Xσ !
x̃ by Lemma 5.2(1). Since n(M̃) = (n(Xσ)\ x̃), Lemma 5.2(3) yields that (n(Xσ)\ x̃) ! M̃ .
Finally, by Lemma 5.2(4) we get (n(Xσ) \ x̃),Xσ ! x̃.

The requisites on matching (Definition 2.5) follow from those on substitution. Lemma
5.3 implies that the set of (well-sorted) processes [HJ06] is closed under (well-sorted) sub-
stitution, a result which appears not to have been published previously.

5.4. Nondeterministic computation. The previous examples considered total determin-
istic notions of computation on the term language. Here we consider a data term language
equipped with partial non-deterministic evaluation: a lambda calculus extended with the
erratic choice operator · & · and the reduction rule M1 & M2 → Mi if i ∈ {1, 2}. Due to
non-determinism and partiality, evaluation cannot be part of the substitution function. In-
stead, we define the match function to collect all evaluations of the received term, which
are non-deterministically selected from by the In rule. This example also highlights the use
of object languages with binders, a common application of nominal logic.

We let substitution on terms be the usual capture-avoiding syntactic replacement, and
define reduction contexts R ::= [ ] | R M | (λx.M) R (we here use the boldface λ rather
than the λ used in input prefixes). Reduction → is the smallest pre-congruence for reduction
contexts that contain the rules for β-reduction (λx.M N → M [x := N ]) and ·&· (see above).
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We use the single-name patterns of Example 2.6, but include evaluation in matching.

NDLAM

S = {s} X = N
M ::= a | M M | λx.M | M & M where x binds into M in λx.M
match(M,x, x) = {N : M →∗ N ̸→}
match(M, ỹ, x) = ∅ otherwise

To avoid confusing the λ of the input prefix and the λ of the term language, we write a(x)

for a(λx)x. As an example, the agent P
def
= (νa)(a(y) . c y .0 | a ((λx.x x) & (λx.x)) .0) has

the following transitions:

P
τ−→ (νa)(c λx.xx .0 | 0)

c λx.xx−−−−→ 0

P
τ−→ (νa)(c λx.x .0 | 0)

c λx.x−−−−→ 0.

6. Conclusions and further work

We have described two features that taken together significantly improve the precision of
applied process calculi: generalised pattern matching and substitution, which allow us to
model computations on an arbitrary data term language, and a sort system which allows
us to remove spurious data terms from consideration and to ensure that channels carry
data of the appropriate sort. The well-formedness of processes is thereby guaranteed to be
preserved by transitions. Using these features we have provided representations of other
process calculi, ranging from the simple polyadic pi-calculus to the spi-calculus and non-
deterministic computations, in the psi-calculi framework. The critera for representation
(rather than encoding) are stronger than standard correspondences e.g. by Gorla, and mean
that the psi-calculus and the process calculus that it represents are for all practical purposes
one and the same.

The meta-theoretic results carry over from the original psi formulations, and have been
machine-checked in Isabelle for the case of a single name sort (e.g. the calculi PPI, LINDA
and PSPI in Section 4, and the calculi PMSPI and NDLAM in Section 5). We have also
added sorts to an existing tool for psi-calculi [BGRV15], the Psi-calculi Workbench (Pwb),
which provides an interactive simulator and automatic bisimulation checker. Users of the
tool need only implement the parameters of their psi-calculus instances, supported by a core
library. In the tool we currently support only tuple patterns, similarly to the PPI calculus
of Section 4.1.

Future work includes developing a symbolic semantics with more elaborate pattern
matching. For this, a reformulation of the operational semantics of Table 1 in the late style,
where input objects are not instantiated until communication takes place, is necessary.

A comparison of expressiveness to calculi with non-binary (e.g., join-calculus [FG96] or
Kell calculus) or bidirectional (e.g., dyadic interaction terms [Hon93] or the concurrent pat-
tern calculus [GWGJ10]) communication primitives would be interesting. We here inherit
positive results from the pi calculus, such as the encoding of the join-calculus.

We aim to extend the use of sorts and generalized pattern matching to other vari-
ants of psi-calculi, including higher-order psi calculi [PBRÅP13] and reliable broadcast psi-
calculi [ÅPBP+13]. Although assertions and conditions are unsorted, we intend to investi-
gate adding sorts and pattern-matching to psi-calculi with non-trivial assertions [BJPV11].
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As discussed in Section 3.2, further work is needed for scalable mechanised reasoning
about theories that are parametric in an arbitrary but fixed name sorting.

Acknowledgments. We thank the anonymous reviewers for their helpful comments.

Appendix A. Full proofs for Section 4

We will assume that the reader is acquainted with the relevant psi-calculi presented in
Section 4, as well as the definitions, notation and terminology of Sangiorgi [San93] for
polyadic pi-calculus, Carbone and Maffeis [CM03] for polyadic synchronisation pi-calculus,
and Milner [Mil89] for CCS and VPCCS. We will use their notation except for bound names,
where we will adopt the notation of nominal sets, e.g., we will write bn(α)#Q instead of
bn(α) ∩ fn(Q) = ∅.

A.1. Polyadic Pi-Calculus. This section contains full proofs of Section 4.1 for the polyadic
pi-calculus example. We use definitions and results of Sangiorgi [San93]. However, we opted
to replace process constants with replication.

For convenience, we repeat definition of the encoding function given in Example 4.1.

Definition A.1 (Polyadic Pi-Calculus to PPi).
Agents:

$P + Q% = case ⊤ : $P % [] ⊤ : $Q%
$[x = y]P % = case x = y : $P %

$x(ỹ).P % = x(λỹ)⟨ỹ⟩.$P %
$x⟨ỹ⟩.P % = x⟨ỹ⟩.$P %

$0% = 0
$P | Q% = $P % | $Q%
$νxP % = (νx)$P %

$!P % = !$P %
Actions:

$(νỹ′)z⟨ỹ⟩% = z (νỹ′) ⟨ỹ⟩
$x⟨z̃⟩% = x ⟨z̃⟩

$τ% = τ

In the output action ỹ′ bind into ỹ and the residual process, but not into z.

Definition A.2 (PPi to Polyadic Pi-Calculus).
Process:

!1" = 0
0 = case = 0

case ϕ1 : P1 [] . . . [] ϕn : Pn = ϕ1 : P1 + · · · + ϕn : Pn

!P = !P

(νx)P = νxP

P | Q = P | Q

x(λỹ)⟨ỹ⟩.P = x(ỹ).P

x⟨ỹ⟩.P = x⟨ỹ⟩.P
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Case clause:
x = y : P = [x = y]P

⊤ : P = P

We prove that the substitution function distributes over the encoding function.

Lemma A.3. $P %[ỹ := z̃] = $P{z̃/ỹ}%
Proof. By induction on P . We consider only the agents where bn(P )#P{z̃/ỹ} [San93,
Definition 2.1.1]. We demonstrate the non-trivial cases of the proof in the following.

• case P = P ′ + Q.

$P ′ + Q%[ỹ := z̃] = case ⊤[ỹ := z̃] : $P ′%[ỹ := z̃] [] ⊤[ỹ := z̃] : $Q%[ỹ := z̃]
= case ⊤ : $P ′%[ỹ := z̃] [] ⊤ : $Q%[ỹ := z̃]
= case ⊤ : $P ′{z̃/ỹ}% [] ⊤ : $Q{z̃/ỹ}% (IH)
= $P ′{z̃/ỹ} + Q{z̃/ỹ}%
= $(P ′ + Q){z̃/ỹ}%

• case P = [x = y]Q.

$[x = y]Q%[ỹ := z̃] = case x[ỹ := z̃] = y[ỹ := z̃] : $Q%[ỹ := z̃]
= case x[ỹ := z̃] = y[ỹ := z̃] : $Q{z̃/ỹ}% (IH)
= [x{z̃/ỹ} = y{z̃/ỹ}]$Q{z̃/ỹ}%
= $([x = y]Q){z̃/ỹ}%

• case P = a(x̃).Q

$a(x̃).Q%[ỹ := z̃] = a[ỹ := z̃](λx̃)⟨x̃⟩.$Q%[ỹ := z̃] (From assumption x̃#[ỹ := z̃])

= a[ỹ := z̃](λx̃)⟨x̃⟩.$Q{z̃/ỹ}% (IH)

= a{z̃/ỹ}(x̃).$Q{z̃/ỹ}%
= $(a(x̃).Q){z̃/ỹ}%

The following is the proof of the strong operational correspondence with respect to the
labeled semantics of polyadic pi-calculus [San93, page 30].

Proof of Theorem 4.4.

(1) We show that if P
β−→ P ′ then for all α ∈ $β% we have $P % α−→ $P ′% by induction on

the derivation of the transition.

ALP:
Trivial, since psi-calculi processes are identified up to alpha equivalence.

OUT:

Assume x⟨ỹ⟩.P x⟨ỹ⟩−−→ P and α ∈ {x ⟨ỹ⟩} = $x⟨ỹ⟩%. Since 1 ⊢ x
.↔ x and

$x ⟨ỹ⟩.P % = x ⟨ỹ⟩.$P % and α = x ⟨ỹ⟩, we can derive x ⟨ỹ⟩.$P % x ⟨ỹ⟩−−−→ $P %.
INP:

Assume x(ỹ).P
x⟨z̃⟩−−→ P{z̃/ỹ}, and z̃ and ỹ are of the same arity (in the trminology

of Sangiorgi, z̃ : ỹ), and also α ∈ $β% = {x ⟨z̃⟩}. Note that $x(ỹ).P % = x(λỹ)⟨ỹ⟩.$P %
and z̃ ∈ match(⟨z̃⟩, ỹ, ⟨ỹ⟩). By using 1 ⊢ x

.↔ x, we can derive x(λỹ)⟨ỹ⟩.$P % x ⟨z̃⟩−−−→
$P %[ỹ := z̃] with the In rule. By applying Lemma A.3, we complete this proof case.
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SUM:

Assume P +Q
β−→ P ′ and α ∈ $β%, and also P

β−→ P ′. The induction hypothesis is

that for every α ∈ $β%, $P % α−→ $P ′%. We can then derive case ⊤ : $P % [] ⊤ : $Q% α−→
$P ′% with the Case rule for every α ∈ $β%.

PAR:

Assume P | Q
β−→ P ′ | Q and α ∈ $β%, and P

β−→ P ′ with bn(β)∩ fn(Q) = ∅. The

induction hypothesis is that for every α ∈ $β%, $P % α−→ $P ′%. From the definition
of $β% we get that bn(α)#$Q% for any α ∈ $β%. By applying the Par rule, we obtain

the required transitions $P % | $Q% α−→ $P ′% | $Q%.
COM:

Assume P | Q
τ−→ νỹ′(P ′ | Q′) with ỹ′ ∩ fn(Q) = ∅. Also assume P

(νỹ′)x⟨ỹ⟩−−−−−→ P ′

and Q
x⟨ỹ⟩−−→ Q′. The induction hypothesis is that for every α′ ∈ $(νỹ′)x⟨ỹ⟩% and

α′′ ∈ $x⟨ỹ⟩%, $P % α′
−→ $P ′% and $Q% α′′

−→ $Q′% Moreover, we note that 1 ⊢ x
.↔ x and

ỹ′#$Q%. We then choose α′ and α′′ and alpha-variants of the frames of $P % and $Q%
that are sufficiently fresh to allow the derivation $P % | $Q% τ−→ (νỹ′)($P ′% | $Q′%)
with the Com rule.

MATCH:

Assume [x = x]P
β−→ P ′ and α ∈ $β%, as well as P

β−→ P ′. The induction

hypothesis is that $P % α−→ $P ′%. Since 1 ⊢ x = x and case x = x : $P % = $[x =

x]P %, we derive case x = x : $P % α−→ $P ′% with the Case rule.

REP:

Assume !P
β−→ P ′ and α ∈ $β%. Moreover, assume P | !P

β−→ P ′ and hence by

the induction hypothesis $P | !P % α−→ $P ′%. We compute $P % | !$P % = $P | !P % and

apply the Rep rule to obtain !$P % α−→ $P ′%.
RES:

Assume νxP
β−→ νxP ′ where x ̸∈ n(β) and α ∈ $β%. Also assume P

β−→ P ′. The

induction hypothesis is $P % α−→ $P ′%. Now by obtaining x#α from assumptions

and computing $νxP % = (νx)$P %, we derive (νx)$P % α−→ (νx)$P ′% with the Scope
rule.

OPEN:

Let β = (νx, ỹ′)z⟨ỹ⟩. Assume νxP
β−→ P ′ and x ̸= z, x ∈ ỹ − ỹ′ and α ∈

$β% = {z (νỹ′′) ⟨ỹ⟩ : ỹ′′ = π · x, ỹ′}. The induction hypothesis is that for every

α′ ∈ $(νỹ′)z⟨ỹ⟩% = {z (νỹ′′) ⟨ỹ⟩ : ỹ′′ = π · ỹ′} we have $P % α′
−→ $P ′%. We choose

α′ = z (νỹ′) ỹ and, by having $νxP % = (νx)$P %, we derive (νx)$P % z (νx,ỹ′) ⟨ỹ⟩−−−−−−−→ $P ′%
with the Open rule. The side conditions of Open (x#ỹ′, z and x ∈ n(ỹ)) follow
from assumptions.
From the assumption α ∈ $β%, it follows that, for any permutation π, α is of the
form z (νπ · x, ỹ′) ⟨ỹ⟩. By applying Lemma 4.3, we get the required α and transition

(νx)$P % α−→ $P ′%. And this concludes this proof case.
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(2) We now show that if $P % α−→ P ′′ then P
β−→ P ′ where α ∈ $β% and $P ′% = P ′′. We

proceed by by induction on the derivation of the transition. We show the interesting
cases:

Case:

Assume $P % α−→ P ′′. By inversion of the Case rule, $P % is of the form case ϕ̃ : P̃ .

Since PC = case ϕ̃ : P̃ is in the range of $·%, either PC = ⊤ : $P % [] ⊤ : $Q%,
PC = ⊤ : $Q% [] ⊤ : $P % or PC = case x = y : $P %. We proceed by case analysis:
(a) When PC = ⊤ : $P % [] ⊤ : $Q%, we note that $P + Q% = PC and imitate the

derivation of P ′′ from PC with the derivation P + Q
β−→ P ′, using the SUM

rule and the fact obtained from induction hypothesis α ∈ $β%.
(b) The case when PC = ⊤ : $Q% [] ⊤ : $P % is symmetric to the previous case.
(c) When PC = case x = y : $P %, since 1 ⊢ x = y by the induction hypothesis,

x = y. We note that $[x = x]P % = PC and imitate the derivation of P ′′ from

PC with the derivation [x = x]P
β−→ P ′, using the MATCH rule and the fact

obtained from induction hypothesis α ∈ $β%.
Open:

Assume $P % z (νỹ∪{x}) ⟨ỹ′⟩−−−−−−−−−→ P ′′. Because P ′′ is derived with the Open rule, $P % is
of the form (νx)R. Since (νx)R is in the range of $·%, P = νxR′, where R = $R′%.
From induction hypothesis, we have that R

z (νỹ) ⟨ỹ′⟩−−−−−−→ P ′′ and z (νỹ) ⟨ỹ′⟩ ∈ $β′%
and R′ β′

−→ P ′ and lastly $P ′% = P ′′. Thus, we use β′ = (νỹ)z⟨ỹ′⟩ as it gives us

z (νỹ) ⟨ỹ′⟩ ∈ $β′% to derive, by using the rule OPEN, νxR′ (νx,ỹ)z⟨ỹ′⟩−−−−−−−→ P ′. Clearly,
z (νỹ ∪ {x}) ⟨ỹ′⟩ ∈ $(νx, ỹ)z⟨ỹ′⟩% for every insertion of x.

From the strong operational correspondence, we obtain full abstraction. We use Sangiorgi’s
definition of bisimulation and congruence for the polyadic pi-calculus [San93, page 42].

Theorem A.4. For polyadic-pi calculus agents P and Q we have P ∼c
e Q iff $P % ∼ $Q%.

Proof. For direction ⇐, assume $P % ∼ $Q%. We claim that the relation R = {(P,Q) : $P % ∼
$Q%} is an early congruence in the polyadic pi-calculus.

Firs let us consider the simulation case. Assume P
β−→ P ′. Then, we need to show

that there exists Q′ such that Q
β−→ Q′ and (P ′, Q′) ∈ R. By Theorem 4.4 (1), we get

$P % α−→ $P ′% for any α ∈ $β%. By Theorem 4.4 (2) and using the assumption α ∈ $β% as

well as the fact $P % ∼ $Q%, we derive $Q% α−→ $Q′%. From the simulation clause and that
$P % and $Q% are congruent we get that $P ′% ∼ $Q′%. Hence, (P ′, Q′) ∈ R. The symmetry
case follows from the symmetry of ∼. Thus, R is an early bisimulation. Since R is closed
under all substitutions by Lemma A.3, it is also an early congruence.

Now let us consider the other direction ⇒. First, assume P ∼c
e Q. We claim the relation

{(1, $P %, $Q%) : P ∼c
e Q} is a congruence in PPI. The static equivalence and extension of

arbitrary assertion cases are trivial since there is unit assertion only. Symmetry follows
from symmetry of ∼c

e, and simulation follows by Theorem 4.4 and the fact that ∼c
e is an

early congruence.

Proof of Theorem 4.7. By structural induction on P . We only consider the case agent since
the other cases are trivial.
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P = case ϕ1 : P1 [] . . . [] ϕn : Pn:
We have one induction hypothesis IHi for every i ∈ {1..n}, namely that Pi ∼ $Pi%.

We proceed by induction on n.

Base case n = 0:
$case% = $0% = 0. By reflexivity of ∼, 0 ∼ 0.

Induction step n + 1:
The IH for this case is

$case ϕ1 : P1 [] . . . [] ϕn : Pn% ∼ case ϕ1 : P1 [] . . . [] ϕn : Pn = P ′

We need to show that Q ∼ $Q% for Q = case ϕ1 : P1 [] . . . [] ϕn : Pn [] ϕn+1 : Pn+1.
We thus compute

$Q% = $ϕ1 : P1 + · · · + ϕn : Pn + ϕn+1 : Pn+1%
= case ⊤ : $ϕ1 : P1% [] . . . [] ⊤ : $ϕn : Pn% [] ⊤ : $ϕn+1 : Pn+1%
∼ (by Lemma 3.3)

case ⊤ : (case ⊤ : $ϕ1 : P1% [] . . . [] ⊤ : $ϕn : Pn%) [] ⊤ : $ϕn+1 : Pn+1%
∼ (by IH)

case ⊤ : (case ϕ1 : P1 [] . . . [] ϕn : Pn) [] ⊤ : $ϕn+1 : Pn+1%
= case ⊤ : P ′ [] ⊤ : $ϕn+1 : Pn+1%
= Q′

We distinguish two cases of ϕn+1:

Case ϕn+1 = ⊤:

Q′ = case ⊤ : P ′ [] ⊤ : $⊤ : Pn+1%
= case ⊤ : P ′ [] ⊤ : $Pn+1%
∼ (by IHn+1)

case ⊤ : P ′ [] ⊤ : Pn+1

∼ (by Lemma 3.3)
case ϕ1 : P1 [] . . . [] ϕn : Pn [] ⊤ : Pn+1 = Q

We conclude this case.

Case ϕn+1 = x = y:

Q′ = case ⊤ : P ′ [] ⊤ : $x = y : Pn+1%
= case ⊤ : P ′ [] ⊤ : (case x = y : $Pn+1%)
∼ (by IHn+1)

case ⊤ : P ′ [] ⊤ : (case x = y : Pn+1)
∼ (by Lemma 3.3)

case ϕ1 : P1 [] . . . [] ϕn : Pn [] ⊤ : (case x = y : Pn+1)
∼ (by Lemma 3.3)

case ϕ1 : P1 [] . . . [] ϕn : Pn [] x = y : Pn+1 = Q

By concluding this case, we conclude the proof.

Lemma A.5. $·% is injective, that is, for all P,Q, if $P % = $Q% then P = Q.

Proof. By induction on P and Q while inspecting all possible cases.
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Lemma A.6. $·% is surjective up to ∼, that is, for every P there is a Q such that $Q% ∼ P .

Proof. By induction on the well-formed agent P .

Case x(λỹ)⟨ỹ⟩.P ′:
By induction there is Q′ such that $Q′% ∼ P ′. Let Q = x(ỹ).Q′. Then $Q% = $x(ỹ).Q′% =
x(λỹ)⟨ỹ⟩.$Q′% ∼ x(λỹ)⟨ỹ⟩.P ′ = P .

Case x⟨ỹ⟩.P ′:
By induction there is Q′ such that $Q′% ∼ P ′. Let Q = x⟨ỹ⟩.Q′. Now $Q% = x⟨ỹ⟩.$Q′% ∼
x⟨ỹ⟩.P ′ = P .

Case P | P ′:
By induction there are Q′, Q′′ such that $Q′% ∼ P and $Q′′% ∼ P ′. Then let Q = Q′ | Q′′,
obtaining $Q% = $Q′% | $Q′′% ∼ P | P ′ = P .

Case (νx)P :
By induction there is Q′ such that $Q′% ∼ P . Let Q = νxQ′. Then $Q% = (νx)$Q′% ∼
(νx)P .

Case !P :
By induction there is Q′ such that $Q′% ∼ P . Let Q = !Q′. Then $Q% = !$Q′% ∼ !P .

Case !1":
Let Q = 0. Then $Q% = 0 ∼ !1".

Case case ϕ̃ : P̃ ′:
The induction hypothesis IHcase is that for every P ′

i there is Q′
i such that $Q′

i% ∼ P ′
i .

The proof proceeds by induction on the length of ϕ̃.

Base case:
Let Q = 0, then $Q% = 0 ∼ case.

Induction step:
At this step, we get the following IH

$Q′′% ∼ case ϕ1 : P1 [] . . . [] ϕn : Pn

We need to find $Q% such that

$Q% ∼ case ϕ1 : P1 [] . . . [] ϕn : Pn [] ϕn+1 : Pn+1

By IHcase for P ′
n+1 we get $Q′

n+1% ∼ Pn+1. We proceed by case analysis on ϕn+1.

Case ϕn+1 = ⊤:
Let Q = Q′′ + Q′

n+1. Then

$Q% = case ⊤ : $Q′′% [] ⊤ : $Q′
n+1%

∼ case ⊤ : (case ϕ1 : P1 [] . . . [] ϕn : Pn)
[] ⊤ : $Q′

n+1%
∼ case ⊤ : (case ϕ1 : P1 [] . . . [] ϕn : Pn)

[] ⊤ : Pn+1

∼ (by Lemma 3.3)
case ϕ1 : P1 [] . . . [] ϕn : Pn

[] ⊤ : Pn+1
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Case ϕn+1 = x = y:
Let Q = Q′′ + [x = y]Q′

n+1. Then

$Q% = case ⊤ : $Q′′% [] ⊤ : $[x = y]Q′
n+1%

∼ case ⊤ : (case ϕ1 : P1 [] . . . [] ϕn : Pn)
[] ⊤ : (case x = y : $Q′

n+1%)
∼ case ⊤ : (case ϕ1 : P1 [] . . . [] ϕn : Pn)

[] ⊤ : (case x = y : Pn+1)
∼ (by Lemma 3.3)

case ϕ1 : P1 [] . . . [] ϕn : Pn

[] ⊤ : (case x = y : Pn+1)
∼ (by permuting and applying Lemma 3.3)

case ϕ1 : P1 [] . . . [] ϕn : Pn [] x = y : Pn+1

This case concludes the proof.

A.2. Polyadic Synchronisation Pi-Calculus. In this section, we include the full proofs
of Section 4.4. We use definitions and results for polyadic synchronisation pi-calculus, eπ,
by Carbone and Maffeis [CM03].

We give an explicit definition of encoding function defined in Example 4.4.

Definition A.7 (Polyadic synchronisation pi-calculus to PSPi).
Agents:

$x̃(y).P % = ⟨x̃⟩(λy)y.$P %
$x̃⟨y⟩.P % = ⟨x̃⟩ y.$P %
$P | Q% = $P % | $Q%

$(νx)P % = (νx)$P %
$!P % = !$P %
$0% = 0

$Σiαi.Pi% = case ⊤i : $αi.Pi%
Actions:

$x̃⟨νc⟩% = ⟨x̃⟩ (νc) c

$x̃⟨c⟩% = ⟨x̃⟩ c
$τ% = τ

$x̃(y)% = undefined

Definition A.8 (PSPi to Polyadic synchronisation pi-calculus).

!1" = 0
0 = 0

!P = !P

(νx)P = (νx)P

P | Q = P | Q

⟨ã⟩y.P = a⟨y⟩.P
x̃(λy)y.P = x(y).P

τ.P = τ.P
case ⊤ : αi.Pi = Σiαi.Pi

Lemma A.9. If P ≡ Q then $P % ∼ $Q%
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Proof. The relation R = {(P,Q) : $P % ∼ $Q%} satisfies the axioms defining ≡ and is also a
process congruence. Since ≡ is the least such congruence, ≡ ⊆ R.

Proof of Lemma 4.15.

(1) By induction on the derivation of P ′, avoiding z.

Prefix:

Here Σix̃i(yi).Pi
x̃i(yi)−−−→ Pi. We have that

$Σix̃i(yi).Pi% = case ⊤ : ⟨x̃⟩(λy1)y1.$P1% []

· · · [] ⊤ : ⟨x̃⟩(λyi)yi.$Pi%
Since match(z, ⟨yi⟩, yi) = {z}, we can use the Case and In rules to derive the
transition

case ⊤ : ⟨x̃1⟩(λy1)y1.$P1% []

· · · [] ⊤ : ⟨x̃i⟩(λyi)yi.$Pi% ⟨x̃⟩ z−−−→ $Pi%[yi := z]

Finally, we have P ′′ = $Pi%[yi := z] and use reflexivity of ∼ to conclude this case.

Bang:

Here P | !P
x̃(y)−−→ P ′ and by induction, $P % | !$P % ⟨x̃⟩ z−−−→ P ′′ with P ′′ ∼ $P ′%[y := z].

By rule Rep, we also have that !$P % ⟨x̃⟩ z−−−→ P ′′.

Par:

Here P
x̃(y)−−→ P ′, y#Q and by induction, $P % ⟨x̃⟩ z−−−→ P ′′ with P ′′ ∼ $P ′%[y := z].

Using the Par rule we derive $P % | $Q% ⟨x̃⟩ z−−−→ P ′ | $Q%. Since ∼ is closed under |,
P ′′ | $Q% ∼ $P ′%[y := z] | $Q%. Finally, since y#Q, $P ′%[y := z] | $Q% = $P ′ | Q%[y :=
z].

Struct:

Here P ≡ Q, Q
x̃(y)−−→ Q′ and Q′ ≡ P ′. By induction we obtain Q′′ such that

$Q% ⟨x̃⟩ z−−−→ Q′′ where Q′′ ∼ $Q′%[y := z]. By Lemma A.9, $P % ∼ $Q% and $Q′% ∼ $P ′%,
and by expanding the definition of ∼, we obtain $Q′%[y := z] ∼ $P ′%[y := z]. Since

$P % ∼ $Q% and $Q% ⟨x̃⟩ z−−−→ Q′′, there exists P ′′ such that $P % ⟨x̃⟩ z−−−→ P ′′ and
Q′′ ∼ P ′′. By using the transitivity of ∼, we conclude P ′′ ∼ $P ′%[y := z].

Res:

Here P
x̃(y)−−→ P ′, a ̸= y, a ̸= z and a#x̃. By induction, $P % ⟨x̃⟩ z−−−→ P ′′ with

P ′′ ∼ $P ′%[y := z]. We can then derive (νa)$P % ⟨x̃⟩ z−−−→ (νa)P ′′. Since ∼ is closed
under restriction, (νa)P ′′ ∼ (νa)($P ′%[y := z]). Finally, a is sufficiently fresh to show
that (νa)($P ′%[y := z]) = ((νa)$P ′%)[y := z]

(2) By induction on the derivation of P ′′, avoiding y.

Par:

Here $P % ⟨x̃⟩ z−−−→ P ′′, y#P,Q, and by induction P
x̃(y)−−→ P ′ where $P ′{z/y}% = P ′′.

By Par using y#Q, we derive P | Q
x̃(y)−−→ P ′ | Q. Finally, we note that since y#Q,

$(P ′ | Q){z/y}% = P ′′ | $Q%.
Case:

Here PC
⟨x̃⟩ z−−−→ P ′′, where PC = case ϕ̃ : Q̃ is in the range of $·%. Hence
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PC must be the encoding of some prefix-guarded sum, i.e., PC = $Σiαi.Pi% =
case ⊤ : $α1%.$P1% [] . . . [] ⊤ : $αi%.$Pi%. By transition inversion, we can deduce that

for some j, αj = x̃(y) and $Pj%[y := z] = P ′′. By the Prefix rule, Σiαi.Pi
x̃(y)−−→ Pj.

Out:
A special case of Case.

Rep:

Here $P % | !$P % ⟨x̃⟩ z−−−→ P ′′. By induction P | !P
x̃(y)−−→ P ′ where $P ′{z/y}% = P ′′.

Using the Bang rule, we derive !P
x̃(y)−−→ P ′.

Scope:

Here $P % x ⟨z̃⟩−−−→ P ′′, y#P,Q and a#x̃, y, z. By induction P
x̃(y)−−→ P ′ with

$P ′{z/y}% = P ′′. Since a#x̃, y, z, we obtain (νa)P
x̃(y)−−→ (νa)P ′ by the Res rule.

Finally, $((νa)P ′){z/y}% = (νa)P ′′.

We give a proof for the strong operational correspondence.

Proof of Theorem 4.16.

(1) By induction on the derivation of P ′. In case of input rule eIn, we apply Lemma 4.15 (1).
The other interesting cases are:

Comm:

Here P
x̃⟨y⟩−−→ P ′ and Q

x̃(z)−−→ Q′. By induction, $P % ⟨x̃⟩ y−−−→ P ′′ where P ′′ ∼ $P ′%
and by Lemma 4.15 (1), $Q% ⟨x̃⟩ y−−−→ Q′′ such that $Q′%[z := y] ∼ Q′′. The Com rule
lets us derive the transition

$P % | $Q% τ−→ P ′′ | Q′′

To complete the induction case, we note that (νy)(P ′′ | Q′′) ∼ $(νy)(P ′ | Q′{y/z})%
Close:

Here P
x̃⟨νy⟩−−−→ P ′ and Q

x̃(y)−−→ Q′. We assume y#Q; if not, y can be α-converted

so that this holds. By induction, $P % ⟨x̃⟩ (νy) y−−−−−−→ P ′′ where P ′′ ∼ $P ′% and by

Lemma 4.15 (1), $Q% ⟨x̃⟩ y−−−→ Q′′ such that $Q′%[y := y] = $Q′% ∼ Q′′. The Com rule
lets us derive the transition

$P % | $Q% τ−→ (νy)(P ′′ | Q′′)

To complete the induction case, we note that (νy)(P ′′ | Q′′) ∼ $(νy)(P ′ | Q′)%
Open:

Here P
x̃⟨y⟩−−→ P ′ with y ̸= x, and by induction, $P % ⟨x̃⟩ y−−−→ P ′′ where P ′′ ∼ $P ′%.

By Open, we derive (νy)$P % ⟨x̃⟩ (νy) y−−−−−−→ P ′′.
(2) By induction on the derivation of P ′′. The cases not shown are similar to Lemma 4.15 (2).

Com:

Here $P % ⟨x̃⟩ (νỹ′) y−−−−−−→ P ′′, $Q% ⟨x̃⟩ y−−−→ Q′′ and y′#Q. Either ỹ′ = ϵ or ỹ′ = y; we
proceed by case analysis.
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(a) If ỹ′ = ϵ, we have P
x̃⟨y⟩−−→ P ′ where $P ′% = P ′′ by induction and, by

Lemma 4.15 (2), Q
x̃(z)−−→ Q′ where $Q′{y/z}% = Q′′. The Comm rule then lets

us derive P | Q
τ−→ P ′ | Q′{y/z}.

(b) If ỹ′ = y, we have P
x̃⟨νy⟩−−−→ P ′ where $P ′% = P ′′ by induction and, by

Lemma 4.15 (2), Q
x̃(y)−−→ Q′ where $Q′{y/y}% = $Q′% = Q′′. The Close rule

then lets us derive P | Q
τ−→ (νy)(P ′ | Q′).

Open:

Here $P % ⟨x̃⟩ y−−−→ P ′′ with y ̸= x. By induction, P
x̃⟨y⟩−−→ P ′ where $P ′% = P ′′. By

rule Open, (νy)P
x̃⟨νy⟩−−−→ P ′.

We give the full abstraction result for this calculus. The definition of congruence for
polyadic synchronisation pi-calculus can be found in [CM03] on page 6.

Theorem A.10. For all eπ processes P and Q, P ∼ Q iff $P % ∼ $Q%
Proof. R = {(P,Q) : $P % ∼ $Q%} is an early congruence in the polyadic synchronisation
pi-calculus; if P R Q then

(1) If P
x̃(y)−−→ P ′ and $P % ∼ $Q%, since R is equivariant, we can assume that y#P,Q

without loss of generality. Fix z. By Lemma 4.15 (1), $P % ⟨x̃⟩ z−−−→ P ′′ where P ′′ ∼
$P ′%[y := z] = $P ′{z/y}%. Hence, since $P % ∼ $Q%, $Q% ⟨x̃⟩ z−−−→ Q′′ where P ′′ ∼ Q′′.

Hence, by Lemma 4.15 (2) using y#Q, Q
x̃(y)−−→ Q′ where $Q′{z/y}% = Q′′. By

transitivity, $P ′{z/y}% ∼ $Q′{z/y}%.
(2) If P

α−→ P ′ and $P % ∼ $Q%, since R is equivariant, we can assume that bn(α)#P,Q

without loss of generality. By Theorem 4.16 (1), we have that $P % !α"−−→ P ′′ with

P ′′ ∼ $P ′%. Hence, since $P % ∼ $Q% and bn(α)#Q, there is a Q′′ such that $Q% !α"−−→ Q′′

and Q′′ ∼ P ′′. By Theorem 4.16 (2), there is Q′ such that Q
α−→ Q′ and $Q′% = Q′′.

By transitivity, $P ′% ∼ $Q′%.
Symmetrically, we show that R = {(1, $P %, $Q%) : P ∼ Q} is a congruence in PSPI:

Static equivalence:
Trivial since there is only a unit assertion.

Symmetry:
By symmetry of ∼

Simulation:

Here $P % α′
−→ P ′′ and P ∼ Q. We proceed by case analysis on α′:

(1) If α′ = ⟨x̃⟩ z, then by Lemma 4.15 (2) and a sufficiently fresh y, P
x̃(y)−−→ P ′

where $P ′{z/y}% = P ′′. Since P ∼ Q, there exists Q′ such that Q
x̃(y)−−→ Q′ and

P ′{z/y} ∼ Q′{z/y}. Hence, by Lemma 4.15 (1), $Q% ⟨x̃⟩ z−−−→ Q′′ where Q′′ ∼
$Q′%[y := z] = $Q′{z/y}%. We have that P ′′ = $P ′{z/y}% R $Q′{z/y}% ∼ Q′′, which
suffices.

(2) If α′ is not an input, since R is equivariant, we can assume that bn(α′)#P,Q without

loss of generality. Since $P % α′
−→ P ′′, by Theorem 4.16 (2) we have that P

α−→ P ′
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where $α% = α′ and $P ′% = P ′′. Since P ∼ Q, there is Q′ such that Q
α−→ Q′

and P ′ ∼ Q′. By Theorem 4.16 (1), $Q% !α"−−→ Q′′, where Q′′ ∼ $Q′%. Hence
P ′′ = $P ′% R $Q′% ∼ Q′′, which suffices.

Extension of arbitrary assertion:
Trivial since there is only a unit assertion.

Lemma A.11. $·% is surjective up to ∼ on the set of case-guarded processes, that is, for
every case-guarded P there is a Q such that $Q% ∼ P .

Proof. By induction on the well-formed agent P .

Case ⟨x̃⟩(λy)y.P ′:
It is valid to consider only this form, since {y} ∈ vars(y). The IH is for some Q′,
$Q′% ∼ P ′. Let Q = x̃(y).Q′. Then $Q% = ⟨x̃⟩(λy)y.$Q′% ∼ ⟨x̃⟩(λy)y.P ′.

Case ⟨x̃⟩ y.P ′:
From IH, we get for some Q′, $Q′% ∼ P ′. Let Q = x̃⟨y⟩.Q′. Then $Q% = ⟨x̃⟩ y.$Q′% ∼
⟨x̃⟩ y.P ′.

Case P ′ | P ′′:
From IH, for some Q′, Q′′, we have $Q′% ∼ P ′ and $Q′′% ∼ P ′′. Let Q = Q′ | Q′′. Then
$Q% = $Q′% | $Q′′% ∼ P ′ | P ′′.

Case (νx)P ′:
Let Q = νxQ′, then by the induction hypothesis $Q% = (νx)$Q′% ∼ (νx)P ′.

Case !P ′:
Let Q =!Q′ (Q′ from IH). $Q% = !$Q′% ∼ !P ′.

Case 0:
Then $0% = 0 ∼ 0.

Case !1":
Then $0% = 0 ∼ !1".

Case case ϕ̃ : P̃ ′:
For induction hypothesis IHcase, we have for every i there is Q′

i such that $Q′
i% ∼ P ′

i .
The proof proceeds by induction on the length of ϕ̃.

Base case:
Let Q = 0, then $Q% = 0 ∼ case.

Induction step:
In this case, we get the following IH

$Q′′% ∼ case ϕ1 : P1 [] . . . [] ϕn : Pn

We need to show that there is some $Q% such that

$Q% ∼ case ϕ1 : P1 [] . . . [] ϕn : Pn [] ϕn+1 : Pn+1 = P

First, we note that IHcase holds for every i and in particular i = n + 1, thus we get
$Q′

n+1% ∼ Pn+1. Second, we note that ϕn+1 has two forms, thus we proceed by case
analysis on ϕn+1.
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Case ϕn+1 = ⊥:
Let Q = Q′′. Then

$Q% = $Q′′%
∼ case ϕ1 : P1 [] . . . [] ϕn : Pn

∼ case ϕ1 : P1 [] . . . [] ϕn : Pn [] ⊥ : Pn+1

We conclude the case.

Case ϕn+1 = ⊤:
From the assumption, we know that Pn+1 is of form α.P ′

n+1 and that $Q′
n+1% ∼

α.P ′
n+1. By investigating the construction of Q′

n+1 we can conclude that Q′
n+1 =

α.Q′′
n+1 where $Q′′

n+1% ∼ P ′
n+1. The agent from IH Q′′ is either 0, or prefixed

agent, or a mixed sum.
In case Q′′ = 0, let Q = Q′

n+1, then $Q% = $Q′
n+1% ∼ P .

In case Q′′ is prefixed agent, let Q = Q′′ +Q′
n+1. Since Q′′ and Q′

n+1 are prefixed,
Q is well formed. Then $Q% = case ⊤ : $Q′′% [] ⊤ : $Q′

n+1% ∼ case ϕ1 : P1 [] . . . []
ϕn : Pn [] ⊤ : Pn+1.
In case Q′′ is a sum, let Q = Q′′ +Q′

n+1. Since Q′
n+1 is guarded, Q is well formed.

Then
$Q% = case ⊤ : $Q′′% [] ⊤ : $Q′

n+1%
∼ case ⊤ : (case ϕ1 : P1 [] . . . [] ϕn : Pn)

[] ⊤ : $Q′
n+1%

∼ (by Lemma 3.3)
case ϕ1 : P1 [] . . . [] ϕn : Pn

[] ⊤ : $Q′
n+1%

∼ case ϕ1 : P1 [] . . . [] ϕn : Pn

[] ⊤ : P ′
n+1

This concludes the proof.

Lemma A.12. $·% is injective, that is, for all P,Q, if $P % = $Q% then P = Q.

Proof. By induction on P and Q while inspecting all the possible cases.

A.3. Value-passing CCS. This section contains the full proofs of the results found in
Section 4.5 for the value-passing CCS.

Lemma A.13. If P is a VPCCS process such that P
M (νx̃) N−−−−−−→ P ′′ then x̃ = ϵ

Proof. By induction on the derivation of P ′. Obvious in all cases except Open, where we
derive a contradiction since only values can be transmitted and yet only channels can be
restricted - hence the name a is both a name and a value.

We prove strong operational correspondence using the implicit translation from value-
passing CCS to CCS of Milner [Mil89, Section 2.6, p. 56]. If L is a set of labels, we write
L#α to mean that for every ℓ ∈ L there is no v such that α = ℓv or α = ℓv.

Proof of Theorem 4.23.

(1) By induction on the derivation of P ′.
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Act:

We have that α.P
α−→ P . Since α.P is a closed value-passing CCS agent, α cannot

be a free input. Thus, α is an output action α = x(v) for some x and v. The Out

rule then admits the derivation $x(v).P % = x v.$P % x v−−→ $P %.
Sum:

There are two cases to consider: either ΣiPi is the encoding of an input, or a
summation.
(a) If it is an encoding of an input ΣiPi = x(y).P = Σvx(v).P{v/y}, then the

action α must be the free input action x(v) for some value v. Thus, for each v,

we can derive $x(y).P % = x(λy)y.$P % x v−−→ $P{v/y}% using the In rule.

(b) Otherwise it is a summation. We assume ΣiPi
α−→ P ′. From induction

hypothesis, we have Pi
α−→ P ′, and

$Pi% !α"−−→ $P ′%
for any i. By using this and the Case rule, we derive

$ΣiPi% = case ⊤ : $P1% [] · · · [] ⊤ : $Pi% α−→ $P ′%
as required.

Com1:

Here P
α−→ P ′, and by induction $P % !α"−−→ $P ′%. The Par rule admits derivation

of the transition $P % | $Q% !α"−−→ $P ′% | $Q%, as, by using Lemma A.13, freshness side
condition is vacuous.

Com2:
Symmetric to Com1.

Com3:

Here P
α−→ P ′ and Q

α−→ Q′. Since α is in the range of ·̂, there are x and v such
that α = x(v) and α = x(v) (or vice versa, in which case read the next sentence

symmetrically). By the induction hypotheses, $P % x v−−→ $P ′% and $Q% x v−−→ $Q′%.
Then $P % | $Q% τ−→ $P ′% | $Q′% by the Com rule.

Res:

Here P \ L
α−→ P ′ \ L with L#α. Hence

−→
L#$α%. By induction $P % !α"−−→ $P ′%.

We use the Res rule |L| times to derive (ν
−→
L )$P % !α"−−→ (ν

−→
L )$P ′%.

Rep:

Here P | !P
α−→ P ′. By induction $P % | !$P % !α"−−→ $P ′%. By the Rep rule

!$P % !α"−−→ $P ′%
(2) By induction on the derivation of P ′.

In:

Here x(λy)y.$P % x v−−→ $P{v/y}%. We match this by deriving x(y).P
x(v)−−→ P{v/y}

using the Act and Sum rules, where $x(y).P % = x(λy)y.$P %.
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Out:

Here x v.$P % x v−−→ $P %. We match this by deriving x(v).P
x(v)−−→ P using the Act

rule.

Com:

Here $P % x (νỹ) v−−−−−→ P ′′, $Q% x v−−→ Q′′. By Lemma A.13, ỹ = ϵ, and by induction,

P
x(v)−−→ P ′ and Q

x(v)−−→ Q′, where $P ′% = P ′′ and $Q′% = Q′′. Using the Com3

rule we derive P | Q
τ−→ P ′ | Q′

Par:
Straightforward.

Case:
Our case statement can either be the encoding of either a summation or an if
statement. We proceed by case analysis:

(a) Here $Pj% α′
−→ P ′′. By induction, Pj

α−→ P ′ where $α% = α′ and P ′′ = $P ′%.
By Sum, ΣiPi

α−→ P ′.

(b) Here $P % α′
−→ P ′′ and 1 ⊢ b. By induction, P

α−→ P ′ where $α% = α′ and

$P ′% = P ′′. Since b evaluates to true, if b then P
α−→ P ′.

Rep:
Straightforward.

Scope:

Here $P % α′
−→ P ′′ with x♯α′ and by induction, P

α−→ P ′ where α′ = $α% and

P ′′ = $P ′%. Hence we can derive P \ {x} α−→ P ′ \ {x} by the Res rule.

Open:
Impossible, by Lemma A.13.
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Pohjola. A sorted semantic framework for applied process calculi (extended abstract). In Mart́ın
Abadi and Alberto Lluch Lafuente, editors, Trustworthy Global Computing, number 8358 in
Lecture Notes in Computer Science, pages 103–118. Springer, 2014.
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Abstract. Session types are formal specifications of communication pro-
tocols, allowing protocol implementations to be verified by typechecking.
Up to now, session type disciplines have assumed that the communication
medium is reliable, with no loss of messages. However, unreliable broad-
cast communication is common in a wide class of distributed systems
such as ad-hoc and wireless sensor networks. Often such systems have
structured communication patterns that should be amenable to analysis
by means of session types. We introduce a process calculus with unreli-
able broadcast communication, and equip it with a session type system
that we show is sound. We capture two common operations, scatter and
gather, inhabiting dual session types. To cope with unreliability in a
session we introduce an autonomous recovery mechanism that does not
require acknowledgements from session participants. Our session type
formalisation is the first to consider unreliable communication.

1 Introduction

Session types [10] are formal specifications of communication protocols, allowing
protocol implementations to be verified by typechecking. They provide a disci-
pline for ensuring good communication properties in concurrent systems. Session
types have been applied to a range of programming language frameworks and
paradigms [2] and several session type technologies have been developed [1].

One of the basic assumptions underlying session types up to now, is the re-
liability of communication. It is always assumed that messages are never lost
and are delivered to the receiver. This is not a realistic assumption to make
when it comes to the communication that takes place in ad-hoc and wireless
sensor networks. Often networks that use a shared and stateless communica-
tion medium use broadcast to deliver messages. Furthermore, messages are lost
due to broadcast collisions in the shared medium, and the stateless nature of
the communication medium. Nevertheless, in the presence of unreliability, these
networks feature structured communication, and we would like to be able to
describe it using session types.

In this paper we are the first to introduce a safe session type system for unre-
liable broadcast communication. The communication semantics that we propose



can capture the broadcast and gather operations in the presence of unreliability.
To cope with message loss we propose a recovery mechanism that is enabled only
when conditions that imply a recovery situation are met. More, specifically in
our setting we assume:

Locality: Processes exist as network components, because we want to model
real conditions in wireless and ad-hoc networks. Although we do not consider
mobility in the current setting, process locality enables the possibility of
adding network component mobility in the future. Without mobility we can
still capture many classes of networks.

Channel connectivity: Communication takes place under conditions of local
connectivity. An interaction between the endpoints of a channel may only
take place if the two endpoints exist in connected locations. The channel
connectivity assumption enables the specification of more realistic wireless
network scenarios such as spatial distribution of processes, and processes
with di↵erent communication ranges.

Synchronous unreliable broadcast semantics: In unreliable broadcast se-
mantics, when a process sends a message, an arbitrary (possibly empty) set
of receiver processes can receive the message. We assume synchronous broad-
casting communication, since we require a stateless communication medium.
A stateless communication medium allows us to model more realistic scenar-
ios such as wireless sensor networks.

Unreliable gather semantics: Another typical communication pattern in wire-
less networks is the gather operation, where a process expects to receive
values from an arbitrary (possibly empty) set of senders.

Message loss: An additional realistic assumption is that sent messages that
are supposed to be involved in a gather operation might be lost. Neverthe-
less, it is also assumed that even if a send message is never received the
sender process continues its computation, thus enabling a form of a recovery
mechanism.

Recovery: When messages are lost it is unavoidable to observe processes that
are not synchronised with the overall protocol. To overcome this problem we
propose a recovery semantics that is enabled in a non-deterministic fashion
only when a process is waiting to receive a message. A non-deterministic
hard recovery allows us to model general recovery situations such as message
receive time-out, or message collision detection.

1.1 Motivation

To further motivate our contribution consider the ⇡-calculus process:

P = s!hvi.P0 | Qi2I s?(x).Pi

where process
Q

i2I s?(x).Pi is a parallel composition of input prefixed processes
that receive a message on channel s. Consider also an unreliable broadcasting
semantics for the above process:

P ! P0 | Qi2J Pj{v/x} | Qk2K s?(x).Pk



where I = J [ K for disjoint J and K; and broadcast value v is only received
by a subset of the receiving processes.

We claim that session types cannot model the above interaction without in-
troducing a complicated and unrealistic level of abstraction. Binary session types
are inadequate for the above scenario, since they only describe two-endpoint
communication.

Modelling unreliable broadcasting communication in multiparty session types
needs to account for message loss in the communication medium; a receiver may
or may not receive depending on whether the message was lost in the communi-
cation medium or not. The only operation that can model a choice in multiparty
session types is the choice operator. For the purposes of demonstration consider
the multiparty syntax presented in [7]; type p ! q : T ; G denotes a type where
role p sends a message with type T to role q and then continues as G, and type
p ! q : {li : Gi}i2I denotes the type where role p makes a choice labelled li on
role q and continues as Gi for i 2 I. A multiparty global protocol that attempts
to describe an unreliable communication medium using the multiparty choice
operation follows:

p ! m : T ; m ! q : {send : m ! q : T ; end, lose : end}.

Consider that role p wants to broadcast a message of type T to role q with role
m representing the communication medium. Role p first sends the message to the
communication medium m and then role m informs role q of its choice whether
to lose or send the message. The above specification has three deficiencies:

(i) role q is informed that a message was broadcast and never received, which
is unrealistic since in real applications a role does not know whether a
message supposed to be received was sent or not;

(ii) there is an unnecessary loss of abstraction by modeling the communication
medium in terms of a role. Often, someone who implements broadcasting
applications does not need to know lower level communication details; and

(iii) extending the above scenario for more than one receiver would lead to a
complicated communication protocol.

Our solution generalises the theory of binary session types to cope with the
semantics of unreliable broadcast and gather. Concretely, a typed session end-
point is dedicated to the process that initiates a session, whereas multiple dually
typed endpoints are used by the set of processes accepting the session. For ex-
ample consider the network:

[a!(s).s̆!h1i.s̆?(y).0]l |
Y

i2I

[a?(s).s?(x).s!hx + ii.0]li

where [P ]l denotes process P in location l. A broadcast interaction on name a
will create a new session with endpoints s and s̆.

[a!(s).s̆!h1i.s̆?(y).0]l |
Y

i2I

[a?(s).s?(x).s!hx + ii.0]i

! (⌫ s)([s̆!h1i.s̆?(y).0]l |
Y

j2J

[s?(x).s!hx + ji.0]j) |
Y

k2K

[a?(s).s?(x).s!hx + ki.0]k



Session endpoint s̆ is expected to be unique used only by the session initiation
process, whereas the session broadcast interaction may create more than one
instances instances of endpoint s. A broadcast action happens from endpoint
s̆ towards endpoints s, where in the above example corresponds to the broad-
casting of value 1 from endpoint s̆ to endpoints s. Dually, a gather operation
synchronises on the sending prefixes of endpoints s and the receive prefix of end-
point s̆, which simultaneously gathers all sent information. In the above example
a gather operation corresponds to the sending of values x + i from endpoints s
to endpoint s̆. Endpoint s̆ will gather all sent values modulo a pre-defined ag-
gregation operator � and substitute the result for the variable y.

The one to many correspondence between endpoints s̆ and s enables the use of
standard session type duality. In the above example the type of s̆ is !int.?int.end
with int being a base type and dually, the type of s is ?int.!int.end.

Outline. In Section 2 we introduce our unreliable broadcast calculus. In Sec-
tion 3, we define a session type system and prove the main results of this paper.
In Section 4, we use our framework to correctly implement a data aggregation
protocol from wireless sensor networks. Lastly, we conclude in Section 5.

2 A Broadcast Calculus

In this section, we introduce a broadcast process calculus, its syntax and se-
mantics. Its main defining features are the unreliability of the communication
medium and the aggregate broadcast communication primitives. The syntax of
the calculus is defined in two levels: processes and networks with locations.

2.1 Syntax

Definition 1 (Process). We need the following set of data. Let C be a countable
set of (shared) channels ranged over by a, b, c, . . .; S be a countable set of session
channels ranged over by s, s0, . . .; X be a countable set of variables ranged over by
x, y, z, . . .; and V be a countable set of process variables ranged over by X, Y, . . .
We assume that these sets are disjoint.

We parameterise syntax with expressions and conditions. Let E be a non-
empty set of expressions ranged over by e, e0, . . .. We require parameters: a binary
operation � on E that we call aggregation operation, and a distinguished element
1 of E called unit. Let F be a non-empty set of conditions ranged over by ',
and a truth predicate � ✓ F , where we write � ' for ' 2 �. Both E and F
may contain variables and the set of free variables is denoted with fn(e) and
fn('). There is also a substitution function e{e0/x} defined on E and F such
that fn(e{e0/x}) ✓ fn(e) [ fn(e0) and similarly for conditions. Then, the syntax



of processes is defined as follows:

 ::= s | s̆
P, Q, R ::= a!(s).P (Request)

| a?(s).P (Accept)
| !hei.P (Send/Scatter)
| ?(x).P (Receive/Gather)
| s̆ � `.P (Selection)
| s & {`1 : P1, . . . , `n : Pn} (Branching)
| if ' then P else Q (Conditional)
| µX.P (Recursion)
| X (Process Variable)
| 0 (Inaction)

(Request) and (Accept) bind s in P ; and (Receive) binds x in P . Also, (Recur-
sion) is a binder and binds X in P . We define fn(P ) to be a set of free channels,
session channels, variables, and process variables of P in the standard way. We
identify processes up to ↵-equivalence.

In (Request), (Accept), (Send), (Receive), (Branching) and (Selection) forms,
a, , and s are called subjects. The forms themselves are called prefixes.

We impose a well-formedness condition on the processes above: all the free
occurrences of s in P of (Request) are under s̆, and free occurrences of s in P
of (Accept) are not under s̆.

The (Request) and (Accept) forms are used to initiate a session s on a shared
channel a. They are not symmetric operations in the sense that (Request) is
a broadcast operation that may initiate a session with multiple partners, while
(Accept) accepts a session from a unique process. We distinguish these endpoints
by annotating the process requesting a session with s̆ (aggregate s), and in the
accepting process we make no annotations for s.

There are two flavours of sending and receiving operations determined by
the session channel endpoint annotation. The operation s̆!hei.P is a broadcast
(Scatter) to all session partners, while s!hei.P is a send operation to one partner.
Analogously, s̆?(x).P is an aggregation of messages received (Gather) from the
partners, binding it to x, while s?(x).P receives a message from the unique
partner. We restrict selection only on s̆ in (Selection) and a choice of branch can
be only made on s (Branching).

It is worth pointing out that processes are not concurrent; we introduce
concurrency in the network level. There is no loss of generality, however, since we
may have several processes running in a network in the same location. We use the
notion of a location of distributed ⇡-calculus [9], although in our formalisation
the locations are fixed and the processes are not mobile, that is, they cannot
migrate from one location to another.

Definition 2 (Network). Let N = C [ S ranged over by n, and let L be a
countable set of locations ranged over by l. Then, the network is defined by the



following grammar:

 ::= " |  | s (Session State)
N, M ::= [P . R | ]l (Node)

| N | M (Parallel)
| (⌫ n)N (Restriction)

We extend the fn function to networks. We may write [P . Q]l for [P . Q | "]l.
We define cnt(s,  ) = c to denote the number of occurrences c of s in  by
structural recursion as cnt(s, ") = 0, and cnt(s,  | s0) = cnt(s,  ) if s 6= s0,
otherwise cnt(s,  | s) = 1 + cnt(s,  ).

The form (Node) consists of a process P that is executing in a location l, a
recovery process R that may take over if P cannot proceed in a session, and a
session state store  that tracks the number of session interactions the process
performed thus far. A process may participate in several sessions and therefore
 is used to track more than one session. Intuitively, a network is a parallel
composition of nodes. (Restriction) binds both session and shared channels.

2.2 Operational Semantics

We define the operational semantics as a reduction relation on networks. In
the standard way, we make use of structural congruence. We also make use of
notation k # P , pronounced as k is fresh for P , to mean that k 62 fn(P ) where
k 2 S [ C [ X [ V, and similarly for networks k # N . We write (⌫ en)N for the
network (⌫ n1) . . . (⌫ nm)N where the sequence en = (n1, . . . , nm) may be empty.

Definition 3 (Structural Congruence). Structural congruence on processes
(resp., session state and networks) is defined to be the smallest congruence rela-
tion satisfying the following rules:

µX.P ⌘ P{µX.P/X}
 ⌘  0 if  is a permutation of  0

N ⌘ [0 . 0 | "]l | N
N | M ⌘ M | N

(M | N) | S ⌘ M | (N | S)
(⌫ n)N | M ⌘ (⌫ n)(N | M) if n # M

[P . R | ]l ⌘ [P 0 . R0 | 0]l if P ⌘ P 0 and R ⌘ R0 and  ⌘  0

Structural congruence on processes includes unrolling of recursion. We identify
session states up to permutation (reordering). The structural congruence on
network is standard: parallel composition is commutative and associative, with
[0 . 0 | "]l as the unit, and the scope of a restricted channel is amenable to
extrusion. The clause for nodes simply bridges the congruences.

Given a finite family of networks {Ni}i2I , we write
Q

i2I Ni for the parallel
composition of N1 | · · · | Nn for non-empty I = {1, . . . , n}, otherwise [0 . 0 | "]l.



Definition 4 (Reduction Relation). We define the reduction relation on net-
works N !G N 0, parameterised over an arbitrary connectivity graph G ✓ L⇥L,
as the smallest relation satisfying the rules given in Fig. 1.

i 2 I s #  , i, R, Ri (l, li) 2 G

[a!(s).P . R | ]l | Q
i2I [a?(s).Qi . Ri | i]li

!G (⌫ s)([P . R | ]l | Q
i2I [Qi . Ri | i]li)

[RInit]

i 2 I (l, li) 2 G cnt(s,  ) = cnt(s,  i)

[s̆!hei.P . R | ]l | Q
i2I [s?(xi).Qi . Ri | i]li

!G [P . R | | s]l | Q
i2I [Qi{e/xi} . Ri | i | s]li

[RScatter]

i 2 I (li, l) 2 G cnt(s,  ) = cnt(s,  i) e = �i2Iei

[s̆?(x).P . R | ]l | Q
i2I [s!heii.Qi . Ri | i]li

!G [P{e/x} . R | | s]l | Q
i2I [Qi . Ri | i | s]li

[RGather]

[s!hei.Q . R | ]l !G [Q . R | | s]l
[RLoss]

i 2 I (` : Qi) 2 Bi (l, li) 2 G cnt(s,  ) = cnt(s,  i)

[s̆ � `.P . R | ]l | Qi2I [s & Bi . Ri | i]li
!G [P . R | | s]l | Qi2I [Qi . Ri | i | s]li

[RSel]

� '

[if ' then P else Q . R | ]l !G [P . R | ]l
[RTrue]

6� '

[if ' then P else Q . R | ]l !G [Q . R | ]l
[RFalse]

[s?(x).P . R | ]l !G [R . R | "]l
[RRecover]

[s & {`i : Qi}i2I . R | ]l !G [R . R | "]l
[RRecoverSel]

N ⌘ N 0 N 0 !G M 0 M 0 ⌘ M

N !G M
[RCong]

N !G N 0

N | M !G N 0 | M [RPar]
N !G N 0

(⌫ n)N !G (⌫ n)N 0 [RRes]

Fig. 1. Reduction rules of the broadcast calculus.

With a connectivity graph we can capture spatial distribution of nodes that
is common in ad-hoc and wireless sensor networks. Note that connectivity graph
is an arbitrary relation and is not required to be neither reflexive nor symmetric.



By not requiring symmetry, allows us to capture the asymmetry of communica-
tion often found in WSNs; where a typical situation is that a special node, base
station, has more powerful antenna that allows it to broadcast to all the nodes in
the network, whereas the more distant nodes with less powerful antennas cannot
broadcast directly to the base station. We do not require reflexivity of a con-
nectivity graph, that is, a node may not be able to communicate with itself, for
generality reasons as we do not need reflexivity for our results to hold. We do
not model mobility of the nodes (nodes are not able to change location), mean-
ing that the connectivity graph G does not evolve during reductions. Without
mobility we can still capture many classes of networks.

We have chosen communication to be synchronous in our system since it
seems that kind of communication is more prevalent in broadcasting systems.
This means that a sender synchronises with a subset of receivers. We believe that
reformulating the system to introduce asynchrony, would require the definition
of a queue process that is able to hold messages in an ordered fashion [11].

The rule [RInit] establishes a session between the requesting process node
and accepting process nodes. It is a broadcast communication pattern (one-to-
many) where there might not be any accepting process nodes (i.e., I = ;). The
session channel is chosen fresh for all session states and recovery processes of
participants. Note that the session channels s in the requesting process P are
annotated as s̆ by the well-formedness condition on processes (Definition 1). Let
us call with respect to the session channel s the process P prefixed with the
subject s̆ parent, and with subject s child.

The rule [RScatter] states that the parent broadcasts e to the children that
continue by substituting e for xi. Both the parent and children advance their
session states by emitting the corresponding session channel in their session state
stores. This is the case for all reduction rules concerning interaction within the
session. There is also a precondition that session partners have advanced the
same number of steps in the session.

The reduction [RGather] is dual to [RScatter] in the sense that the commu-
nication is reversed (many-to-one): the parent receives from children. The rule
is an abstraction of a communication pattern that consists of multiple broad-
casts from each individual child. The iterated result e is collected as the prod-
uct of the aggregation operation �i2Iei that is defined to be e1 � . . . � en for
nonempty I = {1, . . . , n} and 1 in case I = ;. We have not assumed that the
� is commutative, thus di↵erent orderings of parallel components can lead to a
di↵erent product in the reduction. Here again I might be empty. However, here
the advance of parent does not correspond to a message loss, but that the node
prematurely terminated the gathering operation. For example, in a real network
the node could have a time limit for gathering data. When I is empty, we use
the unit 1 as the product. This pattern is common in ad-hoc networks; see, for
example, the RIME communication stack [8] for wireless sensor networks.

The rule [RSel] is similar to [RScatter]; however, here the parent selects the
branch that children should take. [RLoss] models message loss for a child. Note
that it still emits a session channel in its session stores. As noted before, message



loss for the parent is already captured by [RScatter] and [RPar]. There is no
corresponding dual rule to [RSel]: the opposite communication pattern would
require an assumption of a non-trivial underlying protocol where the child nodes
would establish a consensus on the branch to be taken by the parent. This is
unrealistic in the unreliable setting.

The communication rules [RInit], [RScatter], [RGather], and [RSel] ad-
here to the communication graph G, that is, there needs to be a connection
between the parent and children locations. We don’t assume that this relation
is symmetric.

[RCong], [RRes] and [RPar] are standard, but note that [RPar] is essential
for capturing the unreliability of the medium since it can be used to exclude
potential communication partners. [RTrue] and [RFalse] are self-explanatory.

Rules [RRecover] and [RRecoverSel] state that a child node may recover
from a session, by replacing their running process with the recovery process R.
The recovery is hard and drops all the sessions that the node was a participant
of and clears the session state store. The purpose of these rules is to recover
from the situation where the processes cannot continue due to a loss of messages
that result in diverged session states. However, note that the rules do not have a
condition that triggers recovery allowing nodes to act autonomously. This means
that the recovery behaves nondeterministically and the nodes can recover even
though the session state has not diverged. Having recovery nondeterministic
we abstract over other possible sources of failure, e.g., a timeout of a message
reception.

The semantics of [RGather] can be implemented with series of broadcasts to
the parent. Thus, the calculus can be encoded in a calculus with just broadcast
albeit with added level of indirection. In our previous work [13], we have such
an encoding to broadcast psi-calculi [3], and we conjecture that the semantics
weakly corresponds to our previous encoding.

3 Session Types

In this section, we introduce the session type system for the broadcast calculus of
Section 2 and the main results of the paper: type soundness and safety. Remark-
ably, the types that we use are the standard binary session types as introduced
by Honda et al. [10]. However, we have no session delegation.

Definition 5 (Session Type). Let B be a set of base types ranged over by �.
Then, the session types are inductively defined by the following grammar:

T ::= !�.T | ?�.T | � {`i : Ti}i2I | &{`i : Ti}i2I | end | t | µ t.T

µ t.T is a binder and binds free occurrences of t in T . We define a capture
avoiding substitution on types {T/t} in the usual way. As usual, we identify
recursive types with their expansion: µ t.T = T{µ t.T/t}.

We define the duality operation on types T recursively as follows:

end = end !�.T = ?�.T

?�.T = !�.T

�{`i : Ti}i2I = &{`i : T i}i2I

&{`i : Ti}i2I = �{`i : T i}i2I

t = t
µ t.T = µ t.T



We say that two types T1 and T2 are dual if T 1 = T2. Note T = T for any T .

We define a transition relation on types that we will use in the typing rules
to obtain the session type consistent with the session state of a node.

Definition 6 (Type Advancement). The relation T � T 0 is defined induc-
tively as follows:

?�.T � T !�.T � T

i 2 I

�{`i : Ti}i2I � Ti

i 2 I

&{`i : Ti}i2I � Ti

We also define a type n-advancement relation T �n T 0 that says T 0 is reached
in n advancements from T , by induction, as follows:

T �0 T

T �n T 00 T 00 � T 0

T �n+1 T 0

Type advancement for recursive types is obtained by expansion. We will
typically use n-advancement relation to advance with regard to a session store  
as T �cnt(s, ) T 0.

Definition 7 (Typing Context). We define shared � and linear � typing
contexts by mutual induction as follows:

� ::= x : � | a : T | X : �
� ::= s : T | s̆ : T

,
� ::= " | �, �
� ::= " | �, �

.

We denote with �,�0 the concatenation of contexts � and �0, and similarly for
shared contexts �, � 0. We make use of the function subj defined on � that extracts
the subject as follows subj(x : �) = x, subj(a : T ) = a, and subj(X : �) = X.

We also define a typing context for the expressions and conditions:

�E ::= " | �E , x : �.

By abuse of notation, we denote the restriction of shared typing context � to
expression context by �E. A domain of a context � , and � are defined as follows:

dom(�, �) = {subj(�)} [ dom(� ) ,
dom(�, s : T ) = {s} [ dom(�)
dom(�, s̆ : T ) = {s} [ dom(�)

.

where dom(") = ; in both cases.
In turn, we define the notion of freshness as follows:  # � is defined as

s 62 dom(�) where  = s or  = s̆, and pronounced as  is fresh for �. Similarly,
we define x # � , a # � , and X # � as x 62 dom(� ), a 62 dom(� ), and
X 62 dom(� ), respectively.

In the linear context, we distinguish the endpoints as we do in the process
syntax. The choice of representing typing contexts as lists and not as sets, as
is perhaps more common, has technical convenience. It is important to have
multiple copies of a session channel and its type for child nodes. This as we
shall see trivialises the parallel typing rule to a simple concatenation of parallel
contexts. We extend the notion of type advancement of Definition 6 to linear
context advancement based on a session state assertion of Definition 2.



Definition 8 (Linear Context Advancement). Let  be an arbitrary session
state assertion of Definition 2. Then, we define linear context type advancement
� � �0 inductively as follows:

" � "

� � �0 T �cnt(s, ) T 0

�, s : T � �0, s : T 0
� � �0 T �cnt(s, ) T 0

�, s̆ : T � �0, s̆ : T 0

To take an example of linear context advancement, let  = s1 | s1 | s2 be
session state and � = ", s1 : !�1.?�1.!�2.end, s2 : !�2.end, s3 : ?�2.end a linear
context. Then, � � s1 : !�2.end, s2 : end, s3 : ?�2.end.

Definition 9 (Typing Judgement). We parameterise our type system on the
typing judgements of expressions and conditions in the following way: let us
assume the following to be a typing judgement on expressions, and typing judge-
ment on conditions:

�E � e : � and �E � ' : bool.

The above judgements are arbitrary but required to satisfy the following condi-
tions: type is preserved by substitutions (i) if �E , x : �0 � e : � and �E � e0 : �0,
then �E � e{e0/x} : �; (ii) if �E , x : � � ' : bool and �E � e : �, then
�E � '{e/x} : bool; and that the aggregation operation does not change the type
of resulting expression (iii) if �E � e : � and �E � e0 : �, then �E � e � e0 : �.

Our typing judgement is of the following form

� ;� ` N.

It is defined as the smallest relation satisfying the rules given in Fig. 2. We call
the network N or process P well-typed if for some contexts � and � it holds that
� ;� ` N or � ;� ` P , respectively.

Since our contexts are lists and not sets, we employ structural rules to manage
contexts. The rules of note are [TNode] and [TSRes]. Other rules are fairly
standard and generalise to multiple partners quite straightforwardly (cf. [10]).
[TSRes] rule asserts that under a shared context and a linear context with exactly
one parent session type s̆ : T for session channel s, and a, possibly empty,
sequence of session types for the children s : T , . . . , s : T , the network N is typed,
then the network is typed by closing of the session. The parent session type is
dual to all of the children session types, and furthermore N has to be an alpha-
variant such that the session channel s is fresh for �,� . The number of copies
of children types s : T are determined by the number of parallel components
that participate in the session in N . This is ensured by the inductive invariant
that rules preserve: whenever � ;� ` P for a process P , then all the channels
are distinct in �.

Note that [TSRes] uses the same type T ; however, the nodes may have di-
verged to a di↵erent session state. The [TNode] accounts for the divergence. It
states that for an (initial) context � that can be advanced by the session state



� ;� ` N

� 0;�0 ` N
[TExch]

� ;� ` N subj(�) # N,�

�, �;� ` N
[TShWeak]

� ;� ` P  # P,�

� ;�, : end ` P
[TWeak]

� ; " ` 0
[TInact]

� ;�, s̆ : T ` P s # �,�

�, a : T ;� ` a!(s).P
[TReq]

� ;�, s : T ` P s # �,�

�, a : T ;� ` a?(s).P
[TAcc]

�, x : �;�, : T ` P x # �

� ;�, : ?�.T ` ?(x).P
[TRcv]

� ;�, : T ` P �E � e : �

� ;�, : !�.T ` !hei.P
[TSnd]

� ;�, s̆ : Tj ` P j 2 I

� ;�, s̆ : �{`i : Ti}i2I ` s̆ � `j .P
[TSel]

� ;�, s : T1 ` P1 · · · � ;�, s : Tn ` Pn

� ;�, s : &{`1 : T1, . . . , `n : Tn} ` s & {`1 : P1, . . . , `n : Pn} [TBr]

�, X : �;� ` P X # �

� ;� ` µX.P
[TRec]

�, X : �;� ` X
[TVar]

� ;� ` P � ;� ` Q �E � ' : bool

� ;� ` if ' then P else Q
[TCond]

�, a : T ;� ` N a # �

� ;� ` (⌫ a)N
[TCRes]

� ;� ` M � ;�0 ` N

� ;�,�0 ` M | N [TPar]
� � �0 � ;�0 ` P � ; " ` R

� ;� ` [P . R | ]l
[TNode]

� ;�, s̆ : T, s : T , . . . , s : T ` N s # �,�

� ;� ` (⌫ s)N
[TSRes]

Fig. 2. Typing rules. In [TExch], �0 and � 0 are permutations of � and � , respectively.
We also assume analogous rules to [TExch] and [TShWeak] for processes.

 to �0 such that P is typed under �0, then the node [P . R | ]l is typed
under �. The recovery process R types if it does not contain sessions.

In order to state the subject reduction theorem, we need a notion of context
inclusion. In the presence of exchange rule [TExch], the following definition that
compares members element-wise is su�cient.

Definition 10 (Linear Context Inclusion). Linear context inclusion � ✓ �0

relation is defined inductively as follows

� ✓ �0

�, : T ✓ �0,  : T

�,  : T ✓ �0  6= 0

�, : T ✓ �0, 0 : T " ✓ �

Lemma 1 (Congruence Invariance). If N ⌘ N 0, then � ;� ` N if, and only
if, � ;� ` N 0.

Proof. By induction on the derivation of N ⌘ N 0. The full proof is given in
Appendix A.1.



Lemma 2 (Substitution). Whenever � � e : � and �, x : �;� ` P , then
� ;� ` P{e/x}.
Proof. By induction on the depth of derivation of �, x : �;� ` P . Since substi-
tutions only a↵ect variables and expressions, the result easily follows from the
requirements on expression substitution of Definition 9.

Theorem 1 (Subject Reduction). If � ;� ` N and N !G N 0, then there
exist �0 ✓ � such that � ;�0 ` N 0.

Proof. By induction on the depth of derivation of N !G N 0. The full proof is
given in Appendix A.2.

Note that a linear context does not change in terms of types that it describes,
but only that it may reduce in size. The reason is twofold. First, because [TNode]

advances the type in accordance with the sessions state of a node, the same
type from � may be chosen as the initial type in �0 for each session channel.
Second, a node may recover during the reduction (due to rules [RRecover] and
[RRecoverSel]) and hence dropping all the sessions it participated in and in turn
these sessions are discarded from the initial context �. Also note that subject
reduction property is una↵ected by the structure of the connectivity graph G.

The subject reduction theorem still holds if we allow recovery for any process
not just input prefix, but we need to modify [TSRes] rule to possibly exclude s̆
from the context.

Definition 11 (Error Network). Let s-prefix be a network of the following
form

sct = [s̆!hei.P1 . R1 | 1]l1
gth = [s̆?(x).P2 . R2 | 2]l2
sel = [s̆ � `.P3 . R3 | 3]l3
rcv = [s?(x

0).P4 . R4 | 4]l4
snd = [s!he0i.P5 . R5 | 5]l5
br = [s & {`1 : Q1, . . . , `n : Qn} . R6 | 6]l6

such that all above session stores are in the same state with regard to s, that is,
for some m and for k = 1, . . . , 6, we have cnt(s,  k) = m.

An invalid s-redex is one of the following parallel compositions of s-prefixes:

sct | sct gth | gth sel | sel
sct | gth sct | sel sct | snd sct | br
gth | sel gth | rcv gth | br
sel | rcv sel | snd
rcv | snd rcv | br
snd | br.

A network N is called an error network whenever there exists an invalid
s-redex M such that for some network N 0 the following holds

N ⌘ (⌫ en, s)(N 0 | M).



Equivalently, a valid network is a parallel composition of nodes of which all
s-prefixes that are in the same session state, consists of at most one scatter prefix
(resp. gather, selection) and many receive prefixes (resp. send, branch).

Theorem 2 (Type Safety). Let � ;� ` N and N !⇤
G N 0 then N 0 is not an

error network.

Proof. The proof follows easily from Theorem 1 and the fact that an error net-
work is not well-typed.

Type safety states that a well-typed network has always a possibility of com-
munication. A well-typed network never reduces to a state where the session
stores are in the same state but there is a prefix mismatch.

4 Data Aggregation in a Wireless Sensor Network

We express an aggregation protocol in a wireless sensor network using our frame-
work. A wireless sensor network consists of spatially distributed nodes that sense
environment data. In this example, we use the aggregation function max that
computes the maximum of two integers, e.g., temperature of the environment.

The node called sink initiates a data collection algorithm in the network by
requesting the aggregated values of its neighbouring nodes. It then disseminates
the maximum of these values to the network by sending the aggregate again
to its neighbours. A node that receives a request then: (1) proceeds in turn to
initiate the same process as the sink by requesting aggregated values from its
neighbourhood; (2) aggregates the received values with its own value and sending
it to the request node; (3) receives the maximum value originating from the sink;
and (4) forwards the maximum value to its neighbours.

The above interaction can be described abstractly from the initiator node
perspective by the session type

T = ?int.!int.end.

That is, first it requests and receives an aggregate value set from its neighbours,
and then proceeds by sending the maximum value to its neighbours. Nodes then
participate in two sessions: a session that they accept from the initiator, and
a session that they initiate themselves to start the aggregation. The former is
described by the dual type T and the latter by T .

Let a set of expressions E be defined by the following:

e, e0 ::= x | max(e, e0) | n (n 2 N, x 2 X ).

Let the set of base types B be {int}. Then, define the expected typing judgements
for expressions �, x : int � x : int, � � n : int for any n 2 N, and if � � e : int
and � � e0 : int, then � � max(e, e0) : int. The set of conditions F is empty. We
define the aggregation opertion e � e0 as max(e, e0), and the unit 1 as 0 2 N.



We implement sink and nodes as the following processes according to the
above description:

Sink = a!(s).s̆?(x).s̆!hxi.0
Nodei = a?(s).a!(sc).s̆c?(x).s!hmax(x, vi)i.s?(y).s̆c!hyi.0

where vi 2 N for i = 2, 3. For simplicity, let us model a three node network.
Let the set of locations be L = {1, 2, 3}, and the connectivity graph G be
{(1, 2), (1, 3), (2, 1), (2, 3), (3, 1), (3, 2)} that we visually depict as

1::
zz

ee
%%

2 oo // 3.

The network N implementing the aggregation protocol is then the following

[Sink . Sink | "]1 | [Node2 . Node2 | "]2 | [Node3 . Node3 | "]3
where the recovery is simply a restart of the process. The network is well-typed:

a : T ; " ` N.

It is fairly easy to see that Sink is well-typed after applying [TPar] with [TReq]

a : T ; s̆ : ?int.!int.end ` s̆?(x).s̆!hxi.0

and then type of the session channel s̆ matches the process. Each node can be
typed similarly, however, we have two sessions by applying [TAcc] and [TReq]

a : T ; s : !int.?int.end, s̆c : ?int.!int.end ` s̆c?(x).s!hmax(x, vi)i.s?(y).s̆c!hyi.0

note that the type for s is dual to that of s̆ of sink above and that the interactions
on two sessions match both of the types. This holds by easy applications of
[TSnd] and [TRcv].

Thus, the operation of the network N is safe. Let us take an example of a
run of the protocol from N over G where N first reduces to the following by
establishing a shared session between the sink and the nodes 2 and 3

(⌫ s)([s̆?(x).s̆!hxi.0 . Sink | "]1 | N2 | N3)

where, for k 2 2, 3, Nk = [a!(sc).s̆c?(x).s!hmax(x, vk)i.s?(y).s̆c!hyi.0 . Nodek | "]k
Then, the nodes 2 and 3 in turn request a session of their own [RInit], but since
there are no other process accepting a session (neither the sink, nor the nodes
themselves) they establish a session with just themselves:

N 0
k = (⌫ sk)[s̆k?(x).s!hmax(x, vk)i.s?(y).s̆k!hyi.0 . Nodek | "]k

for k = 1, 2. The nodes then again in turn proceed to gather [RGather]. However,
as there are no partners they simply use the unit 0 as the result and emit sk to
their session state:

N 0
k = (⌫ sk)[s!hmax(0, vk)i.s?(y).s̆k!hyi.0 . Nodek | sk]k



for k = 1, 2. The sink may then proceed the gather process and we obtain the
network N 0 where the sink is ready to disseminate the maximum value

(⌫ s, s2, s3)([s̆!hmax(max(0, v2), max(0, v3))i.0 . Sink | s]1 |
[s?(y).s̆2!hyi.0 . Node2 | s2 | s]2 | [s?(y).s̆3!hyi.0 . Node3 | s3 | s]3)

At this point the network is still well-typed a : T ; " ` N 0. After applications
of [TSRes] we can type with the context � = s̆ : T, s : T , s : T , s̆2 : T, s̆3 : T .
And for example the sink types with [TNode], after splitting the context �
with [TPar], by advancing the context with the session state  = s as s̆ :

?int.!int.end �s s̆ : !int.end.
Now, suppose only node 2 receives the scatter from the sink.

(⌫ s, s2, s3)([0 .Sink |s|s]1 | [s̆2!hmax(max(0, v2), max(0, v3))i.0 .Node2 | s2|s|s]2
| [s?(y).s̆3!hyi.0 . Node3 | s3 | s]3)

The node 2 can proceed by broadcasting its received result to ether, and after
that node 3 recovers giving us one of the final states of the protocol:

(⌫ s, s2, s3)([0 .Sink |s|s]1 | [0 .Node2 | s2|s|s |s2]2) | [Node3 . Node3 | "]3.

The configuration of the network is well-typed; the session stores are consistent
with the initial type T . Even with failure to receive a message the run of the
protocol is successful, there are no communication errors and the communication
is best e↵ort as intended.

This simple example has a terminal state. In order to implement continuous
aggregation we can simply redefine the network with recursion as usual and is
typed by the same context a : T ; ". For example, we can redefine Sink to be
SinkRec = µX.a!(s).s̆?(x).s̆!hxi.X.

Suppose that the sink is defined instead with session prefixes swapped as
Sink0 = a!(s).s̆!hv0i.s̆?(x).0. That is, it is not well-typed a : T ; " 6` Sink0.
Then, the network still reduces, but no communication takes place; further-
more, communication is not even possible between nodes and the sink. Let
us take a minimal but su�cient example to illustrate. The network [Sink0 .
Sink0 | "]1 | [Node . Node | "]2 reduces to the following, by first establishing a
session between the sink and node, and node requests a session and vacuously
gathers:

(⌫ s, s0)([s̆!hv0i.s̆?(x).0 . Sink0 | "]1 | [s!hmax(0, vi)i.s?(y).s̆0!hyi.0 . Node | s0]2)

Even though the two nodes are in the same session state with regard to ses-
sion s, there is communication mismatch; this is an error network in the sense of
Definition 11. The sink will scatter its value without any possibility of the node
receiving it, the node will then lose its message by [RLoss]

(⌫ s, s0)([s̆?(x).0 . Sink0 | "]1 | [s?(y).s̆0!hyi.0 . Node | s0]2)

and then will need to recover as both nodes are expecting a receive:

(⌫ s, s0)([s̆?(x).0 . Sink0 | "]1 | [Node . Node | "]2).



Thus, sink proceeds successfully while node recovered and no communication
occurs:

(⌫ s, s0)([0 . Sink0 | "]1 | [Node . Node | "]2).

This illustrates the point that our type system does not only guarantee progress,
which can always be achieved by assuming that messages are lost and using the
recovery processes. It guarantees that progress occurs through communication.

5 Conclusions

We have introduced a process calculus with unreliable broadcast communica-
tion and a session type system that guarranties safe communication. We have
captured two common operation in broadcasting system with unreliable commu-
nication: scatter and gather. Our calculus can tolerate message loss and has the
ability to recover. We believe that this su�ciently captures the requirements of
systems that are based on unreliable broadcast communication, such as wireless
sensor networks.

Reliable broadcasting semantics were proposed in the form of multi-casting
in [7]. Types for reliable gather semantics were proposed in [6] but an imple-
mentation was never proposed. This is the first time broadcasting and gather
are presented in the context of unreliability and message loss. A form of recov-
ery as exception handling was introduced in binary [5] and multipary [4] session
types, that defines a complicated procedure for informing and coordinating a set
of session endpoints about an exception. The recovery procedure in the above
work assumes strong global synchronisation requirements, among the session
endpoints. In contrast, our semantics allows for each process to autonomously
recover from failure of communication. We believe that our recovery semantics
are more natural and general because they can account for local session failures
as well. Hüttel and Pratas [12] investigate expressiveness of a similar process
calculus with scatter and gather operations.

We are the first to consider a session type system for unreliable communica-
tion. Furthermore, we are the first to introduce notions of locality and channel
connectivity in session types, putting forward the requirements for developing a
session type system in the presence of node distribution.

The system presented here is based on a form of binary session types. As seen
in Section 4, in order to implement wireless network algorithms we need to in-
terleave session channels. A future research direction is to develop a more robust
multiparty session type system where network roles can interact with multiple
roles inside a session. Furthermore, we would like to investigate more elaborate
autonomous recovery mechanisms that would allow a node to continue in a ses-
sion instead of restarting. We also plan to extend the system with node mobility
that is important in wireless sensor networks. Node mobility would allow nodes
to migrate between locations, introduce and disable nodes in a network. Because
of autonomous recovery mechanism, we believe that adding node mobility to our
system should not pose di�culties.
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Parrow, J.: Broadcast psi-calculi with an application to wireless protocols. In:
Barthe, G., Pardo, A., Schneider, G. (eds.) SEFM 2011. vol. 7041, pp. 74–89.
Springer (2011)

4. Capecchi, S., Giachino, E., Yoshida, N.: Global escape in multiparty sessions. Math-
ematical Structures in Computer Science 26, 156–205 (2016)

5. Carbone, M., Honda, K., Yoshida, N.: Structured interactional exceptions in session
types. In: CONCUR. LNCS, vol. 5201, pp. 402–417. Springer (2008)

6. Castagna, G., Dezani-Ciancaglini, M., Padovani, L.: On global types and multi-
party session. Logical Methods in Computer Science 8(1) (2012)

7. Coppo, M., Dezani-Ciancaglini, M., Yoshida, N., Padovani, L.: Global progress for
dynamically interleaved multiparty sessions. Mathematical Structures in Computer
Science 26(2), 238–302 (2016)
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A Proofs

A.1 Congruence invariance proof

Proof (of Lemma 1). We proceed by induction on the derivation of N ⌘ N 0:

case N | M ⌘ M | N . Let us first show the ) direction. Assume � ;� ` N | M .

� ;�1 ` N � ;�2 ` M

� ;�1, �2 ` N | M [TPar]

where �1, �2 is a permutation of � obtained by the exchange rule. We use
� ;�1 ` N and � ;�2 ` M to construct

� ;�2 ` M � ;�1 ` N

� ;�2, �1 ` M | N [TPar]

Obviously, �2, �1 is a permutation of �. We are done with this case. The
other direction is analogous.

case (M | N) | S ⌘ M | (N | S). Assume � ;� ` (M | N) | S. Then the derivation
tree of the assumption is

� ;�1 ` M � ;�2 ` N

� ;�1, �2 ` M | N [TPar] � ;�3 ` S

� ;�1, �2, �3 ` (M | N) | S [TPar]

where �1, �2, � is a permutation of �. Then, using the leafs of the above
tree we obtain

� ;�1 ` M
� ;�2 ` N � ;�3 ` S

� ;�2, �3 ` M | N [TPar]

� ;�1, �2, �3 ` M | (N | S)
[TPar]

We are done with this case. The opposite direction is analogous.
case (⌫a)N | M ⌘ (⌫a)(N | M). Assume � ;� ` (⌫a)N | M . From assumption

we obtain the following tree

�, a : T ;�1 ` N a # �

� ;�1 ` (⌫a)N
[TCRes] � ;�2 ` M

� ;�1, �2 ` (⌫a)N | M [TPar]

We then derive the tree where we apply the weaking rule [TShWeak] since
by assumption a # M :

�, a : T ;�1 ` N
� ;�2 ` M

�, a : T ;�2 ` M
[TShWeak]

�, a : T ;�1, �2 ` N | M [TPar] a # �

� ;�1, �2 ` (⌫a)(N | M)
[TCRes]

The other direction is similar because again by assumption we may use the
weaking rule to obtain the right premise for the [TCRes] rule.



case (⌫s)N | M ⌘ (⌫s)(N | M). Assume � ;� ` (⌫s)N | M . From the assump-
tion we obtain the following tree

� ;�1, s̆ : T, s : T , . . . , s : T ` N s # �,�1

� ;�1 ` (⌫s)N
[TSRes] � ;�2 ` M

� ;�1, �2 ` (⌫s)N | M [TPar]

We construct the following by noting that s # �,�1, �2 implies s # �,�1.
Note that in the tree before applying [TPar] we use the exchange rule.

� ;�1, s̆ : T, s : T , . . . , s : T ` N � ;�2 ` M

� ;�1, s̆ : T, s : T , . . . , s : T ,�2 ` N | M [TPar]

� ;�1, �2, s̆ : T, s : T , . . . , s : T ` N | M [TExch] s # �,�1, �2

� ;�1, �2 ` (⌫s)(N | M)
[TSRes]

The opposite direction is similar: as s # M there is nothing to consume s
on M and we can only split the context as above when applying the [TPar]

rule.
case N ⌘ [0 . 0 | "]l | N . Assume � ;� ` N . Then, the following is a derivation

tree

� ; " ` 0
[TInact]

� ; " ` 0
[TInact]

� ; " ` [0 . 0 | "]l
[TNode] � ;� ` N

� ;� ` [0 . 0 | "]l | N
[TPar]

The other direction is analogous.
case [P . Q | ]l ⌘ [P 0 . Q0 | 0]l. This follows from the fact that the struc-

tural congruence preserves the free names.
case µX.P ⌘ P{µX.P/X}. Assume � ;� ` µX.P . From assumption we obtain

the folllowing tree

�, X : �;� ` X
[TVar]

D
�, X : �;� ` P X # �

� ;� ` µX.P
[TRec]

We replace the leafs of the form [TVar] with the above tree and also substi-
tute in the derivation tree X for µX.P as follows

� ;� ` µX.P

�, X : �;� ` µX.P
[TShWeak]

D{µX.P/X}

�, X : �;� ` P{µX.P/X}
� ;� ` P{µX.P/X}

In the last derivation step, we use a straightforward lemma: �, X : �;� ` P
and X # P , then � ;� ` P . It is easy to see that the above tree satisfies the
rules of Fig. 2 as needed. We also used the fact that X # � to add X : �
to the context. The opposite direction is similar where we collapse the tree.



A.2 Subject reduction proof

Definition 12. Define the distinct predicate inductively as follows on linear
contexts:

#(�)  # �

#(�, : T ) #(")

We make use of the following lemma that says whenever a process (NB: not
a network) is well-typed, then all the channels are distinct in the linear context.

Lemma 3. If � ;� ` P , then #(�).

Proof. By induction on the derivation of � ;� ` P .

Now we are ready to prove the subject reduction property of our system.

Proof (of Theorem 1). By induction on the depth of derivation of N !G N 0.

case [RLoss]. Assume [s!hei.Q . R | ]l !G [Q . R | | s]l and � ;� `
[s!hei.Q . R | ]l. From the assumption we derive the following tree:

� � �0, s : !�.T
� ;�0, s : T ` Q �E � e : �

� ;�0, s : !�.T ` s!hei.Q
[TSnd] � ; " ` R

� ;� ` [s!hei.Q . R | ]l
[TNode]

By Lemma 3, we know that s # �0, thus � � | s �0, s : T . Then, we can
type the reduct as follows:

� � | s �0, s : T � ;�0, s : T ` Q � ; " ` R

� ;� ` [Q . R | | s]l
[TNode]

case [RScatter]. Assume [s̆!hei.P . R | ]l |
Q

i2I [s?(xi).Qi . Ri | i]li !G [P .
R | | s]l |

Q
i2I [Qi{e/xi} . Ri | i | s]li and (l, li) 2 G, cnt(s,  ) = cnt(s,  i)

for all i 2 I. Also, assume � ;� ` [s̆!hei.P . R | ]l |
Q

i2I [s?(xi).Qi .
Ri | i]li . Without loss of generality, for convenience, suppose I = {1, . . . , n}.
We obtain the following derivation tree:

�0 � �0
0, s̆ : !�.T

� ;�0
0, s̆ : T ` P �E � e : �

� ;�0
0, s̆ : !�.T ` s̆!hei.P

� ; " ` R

� ;�0 ` [s̆!hei.P . R | ]l
[TNode] D

� ;�0, �1, . . . , �n ` [s̆!hei.P . R | ]l |
Q

i2I [s?(xi).Qi . Ri | i]li
[TPar]

where �0, �1, . . . , �n is a permutation of �, and �0
0, s̆ : T is �0, and D is

as follows where we use [TPar] to split the linear contexts

�1� �0
1,s:?�.T 0 �,x1:�;�0

1,s:T 0`Q1

� ;�0
1,s:?�.T 0`s?(x1).Q1

[TRcv] � ;"`R1

� ;�1`[s?(x1).Q1 . R1 | 1]l1
[TN] D00

� ;�1,...,�n`Qi2I [s?(xi).Qi . Ri | i]li
[TPar]



where D00 is the following

D0

� ;�2, . . . , �n ` Q
i2I\{1}[s?(xi).Qi . Ri | i]li

We iterate [TPar] and [TNode] rules on D0 to obtain the premises: �, xi :
�;�0

i, s : T ` Qi for i 2 I.
Observe that s̆ # �0

0 by Lemma 3. Thus, type advancement only a↵ects s,
i.e., �0 � | s �0

0, s̆ : T .
Then, the following is a typing derivation

�� | s�0
0,s̆:T � ;�0

0,s̆:T`P � ;"`R
� ;�0`[P . R | | s]l0

D00

� ;�1,...,�n`Qi2I [Qi{e/xi} . Ri | i | s]li
� ;�`[P . R | | s]l0 | Q

i2I [Qi{e/xi} . Ri | i | s]li
[TPar]

The cases for D00 are similar but we use the substitution Lemma 2 where
appropriate.

case [RGather]. For convenience let I = {1, . . . , n}. From an assumption we
obtain the following tree:

�0 � �0
0, s̆ : ?�.T

�, x : �;�0
0, s̆ : T ` P

� ;�0
0, s̆ : ?�.T ` s̆?(x).P

[TRcv] � ; " ` R

� ;�0 ` [s̆?(x).P . R | ]l
[TNode] D

� ;�0, �1, . . . , �n ` [s̆?(x).P . R | ]l |
Q

i2I [s!heii.Qi . Ri | i]li

where D is the following

�1 � 1 �0
1, s : !�.T 0 � ;�0

1, s : T 0 ` Q1 �E � e1 : �

� ;�0
1, s : !�.T 0 ` s!he1i.Q1

[TSnd] � ; " ` R1

� ;�1 ` [s!he1i.Q1 . R1 | 1]l1
D0

� ;�1, . . . , �n ` Q
i2I [s!heii.Qi . Ri | i]li

By Lemma 3, from � ;�0
0, s̆ : T we get that s̆ # �0

0, thus � � | s �0
0, s̆ : T

since the advancement has no a↵ect on �0
0. From above we have that �E �

ei : �, by the type preservation under aggregation operation (Definition 9
(iii)) we get that �E � e : � where e = �i2Iei. By Lemma 2, from �, x :
�;�0

0, s̆ : T ` P and previous fact, we get � ;�0, s̆ : T ` P{e/x}. By iterating
[TPar] and [TNode] rules on D0, we get assumptions: �i � i �0

i, s : !�.T 0,
and � ;�0

i, s : T 0 ` Qi, and �E � ei : �, and � ; " ` Ri for i 2 I \ {1}.
Hence, we can derive the first half:

�0 � | s �0
0, s̆ : T � ;�0, s̆ : T ` P{e/x} � ; " ` R

� ;�0 ` [P{e/x} . R | | s]l
[TNode] D00

� ;�0, �1, . . . , �n ` [P{e/x} . R | | s]l |
Q

i2I [Qi . Ri | i | s]li
[TPar]

where D00 is

�1 � | s �0
1, s : T 0 � ;�0

1, s : T 0 ` Q1 � ; " ` R1

� ;�1 ` [Q1 . R1 | 1 | s]l1
D000

� ;�1, . . . , �n ` Q
i2I [Qi . Ri | i | s]li

[TPar]



and D000 is simply an iteration of the above. We obtain �1 � | s �0
1, s :

T 0 by a similar consideration as above with Lemma 3. Other premises are
straightforward.

case [RRes] We first consider the case when the restricted name is a session
channel. Thus, we have

� ;�, s̆ : T, s : T , . . . , s : T ` N s # �,�

� ;� ` (⌫ s)N
[TSRes]

By induction hypothesis, we have that for any �00 there is �000 ✓ �00 such
that � ;�000 ` N 0. In particular, �00 = �, s̆ : T, s : T , . . . , s : T . Thus,

� ;�000 ` N 0

� ;� ` (⌫s)N 0 [TSRes]

The case when the restricted name is a shared channel, follows immediately
from the induction hypothesis by using the [TCRes] rule.

case [RPar] We have the tree

� ;�1 ` N1 � ;�2 ` N2

� ;�1, �2 ` N1 | N2
[TPar]

By induction hypothesis, for any � , we have � ;�1 ` N1 and N1 !G N 0
1,

and, for some �0
1, s.t. �0

1 ✓ �1 and � ;�0
1 ` N 0

1. Hence, we derive, as
required, the following:

� ;�0
1 ` N 0

1 � ;�2 ` N2

� ;�0
1, �2 ` N 0

1 | N2
[TPar]

since �0
1, �2 ✓ �1, �2.

case [RRecover] We have

� � �0 � ;�0 ` s?(x).P � ; " ` R

� ;� ` [s?(x).P . R | ]l
[TNode]

Note " ✓ �, thus

" � " � ; " ` R � ; " ` R

� ; " ` [R . R | "]l
[TNode]

case [RRecoverSel] We have

� � �0 � ;�0 ` s & {`i : Qi}i2I � ; " ` R

[s & {`i : Qi}i2I . R | ]l
[TNode]

Note " ✓ �, thus

" � " � ; " ` R � ; " ` R

� ; " ` [R . R | "]l
[TNode]



case [RTrue] and [RFalse]. Straightforward.
case [RCong] Follows from Lemma 1.
case [RInit]

�0 � �0 �, a : T ;�0, s̆ : T ` P

�, a : T ;�0 ` a!(s).P
[TReq] �, a : T ; " ` R

�, a : T ;�0 ` [a!(s).P . R | ]l
[TNode] D

�, a : T ;�0, �1, . . . , �n ` [a!(s).P . R | ]l |
Q

i2I [a?(s).Qi . Ri | i]li
[TPar]

where D is as follows

�1 � 1 �0
1

�, a : T ;�0
1, s : T ` Q1

�, a : T ;�0
1 ` a?(s).Q1

[TAcc] �, a : T ; " ` R1

�, a : T ;�1 ` [a?(s).Q1 . R1 | 1]l1
D0

�, a : T ;�1, . . . , �n ` Q
i2I [a?(s).Qi . Ri | i]li

[TPar]

Note that s # �0, �1, . . . , �n and s #  , i. In the above we chose s
accordingly. Thus, we can derive:

�0, s̆ : T � �0, s̆ : T �, a : T ;�0, s̆ : T ` P �, a : T ; " ` R

�, a : T ;�0, s̆ : T ` [P . R | ]l
[TNode]

�, a : T ;�0, s̆ : T,�1, s : T , . . . ,�n, s : T ` [P . R | ]l |
Q

i2I [Qi . Ri | i]li
D00

�, a : T ;�0, �1, . . . , �n ` (⌫s)([P . R | ]l |
Q

i2I [Qi . Ri | i]li)

The rest of the tree D00 is derived analogously.
case [RSel] We have the following tree, for j 2 J :

�0 � �0
0, s̆ : �{`j : Tj}j2J

� ;�0
0, s̆ : Tj ` P

� ;�0
0, s̆ : �{`j : Tj}j2J ` s̆ � `.P

[TSel] � ; " ` R

� ;�0 ` [s̆ � `.P . R | ]l
D

� ;�0, �1, . . . , �n ` [s̆ � `.P . R | ]l |
Q

i2I [s & Bi . Ri | i]li

where D is as follows where J1 = {1, . . . , n} for some n.

D00 � ;�0
1, s : T1 ` Q1 · · · � ;�0

1, s : Tn ` Qn

� ;�0
1, s : &{`j : Tj}j2J1

` s & {`j : Qj}j2J1

[TBr] � ; " ` R1

� ;�1 ` [s & B1 . R1 | 1]l1
D0

� ;�1, . . . , �n ` Q
i2I [s & Bi . Ri | i]li

where D00 is the following

�1 � 1 �0
1, s : &{`j : Tj}j2J1

We iterate [TPar], [TNode] and [TBr] to obtain the rest of assumptions
in D0, namely, for all i 2 I, that �i � i �0

i, s : &{`j : Tj}j2Ji
, and � ;�0

j , s :
Tj ` Qj , for all j 2 Ji, and � ; " ` Ri.



By Lemma 3, we have s # �0
0, thus

�0 � | s �0
0, s̆ : Tj �0

0, s̆ : Tj ` P � ; " ` R

� ;�0 ` [P . R | | s]l
D00

� ;�0, �1, . . . , �n ` [P . R | | s]l |
Q

i2I [Qi . Ri | i | s]li
[TPar]

where (` : Qi) 2 Bi; we use the same idea to build the rest of the tree D00.
Let us demonstrate this for the second parallel compotnent Q1:

�1 � 1 | s �0
1, s : Tk � ;�0

1, s : Tk ` Q1 � ; " ` R1

� ;�1 ` [Q1 . R1 | 1 | s]l1
[TNode]

where (` : Tk) 2 {`j : Tj}j2J1 and (` : Q1) 2 {`j : Qj}j2J1 . The other cases
are similar.





Paper IV





9
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Psi-calculi is a parametric framework for extensions of the pi-calculus with arbitrary data and logic. All
instances of the framework inherit machine-checked proofs of the metatheory such as compositionality and
bisimulation congruence. We present a generic analysis tool for psi-calculus instances, enabling symbolic
execution and (bi)simulation checking for both unicast and broadcast communication. The tool also provides
a library for implementing new psi-calculus instances. We provide examples from traditional communication
protocols and wireless sensor networks. We also describe the theoretical foundations of the tool, including
an improved symbolic operational semantics, with additional support for scoped broadcast communication.
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1. INTRODUCTION
The development of concurrent systems is greatly helped by the use of precise and for-
mal models of the system. There are many different formalisms for concurrent systems,
often in specialized versions for particular application areas. For each formalism, tool
support is necessary for constructing and reasoning about models of nontrivial sys-
tems. This article describes such tool support for a generic semantic framework for
process calculi with mobility. Thus, instead of developing a separate tool for each sep-
arate process calculus, we develop one single generic tool for a whole family of process
calculi.

Psi-calculi [Bengtson et al. 2011] is a parametric semantic framework based on the
pi-calculus [Milner et al. 1992a], adding the possibility to tailor the data language
and logic for each application. The framework provides a variety of features, such
as lexically scoped local names for resources, communication channels as data, both
unicast and broadcast communication [Borgström et al. 2011], and both first- and
higher-order communication [Parrow et al. 2013].
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Many of the different extensions of the pi-calculus, including the spi-calculus [Abadi
and Gordon 1997], the fusion calculus [Wischik and Gardner 2005], the concurrent
constraint pi-calculus [Buscemi and Montanari 2007], and the polyadic synchroniza-
tion pi-calculus [Carbone and Maffeis 2003], can be directly represented as instances
of the psi-calculi framework. A major advantage is that all meta-theoretical results,
including algebraic laws and congruence properties of bisimilarity, apply to any valid
instantiation of the framework. Additionally, most of these results have been proved
with certainty, using the Nominal Isabelle theorem prover [Urban and Tasson 2005].
These features of psi-calculi save a lot of effort for anyone using it—psi-calculi is a
reusable framework.

This article describes the Psi-Calculi Workbench (PWB), a generic tool for implement-
ing psi-calculus instances and for analyzing processes in the resulting instances. While
there are several other tools, specialized for particular process calculi and particular
application areas, our tool is generic and reusable. It has a wider scope than previous
works and also allows experimentation with new process calculi with a relatively low
effort. Like psi-calculi, our tool is parametric: it provides functionality for bisimulation
equivalence checking and symbolic simulation (or execution) of processes in any psi
instance and a base library for implementing new psi-calculi instances. PWB thus has
two types of users: the user analyzing systems in an existing instance of the framework
and the instance implementor.

We illustrate both uses of the tool in three steps: in Section 2, we introduce the
framework of psi-calculi semiformally, relating an instance corresponding to the pi-
calculus and showing symbolic simulation of agents. After describing the design of
PWB and how to implement an instance in Section 3, we show how to add data and
computation in Section 4 by modeling the traditional alternating bit protocol for reliable
communication. In Section 5, we model a data aggregation protocol for wireless sensor
networks, incorporating specialized data structures and logics and both unicast and
broadcast communication. Section 6 extends the previous example with a dynamic
topology.

In Section 7, we describe the symbolic semantics implemented in PWB. The symbolic
operational semantics of Section 7.1 simplifies previous symbolic semantics for psi-
calculi [Johansson et al. 2012] and adds rules for wireless (synchronous and unreliable)
broadcast [Borgström et al. 2011]. To our knowledge, this is the first symbolic semantics
for lexically scoped broadcast communication.

In Section 8, we discuss related work. An abridged version of this article was pub-
lished as Borgström et al. [2013].

2. INTRODUCING PSI-CALCULI
In this section, we introduce the psi-calculi parametric semantic framework semi-
formally and defer some precise definitions and the operational semantics to Section 7.
For a more extensive treatment of psi-calculi, including motivations of the requisites
and examples of other instances, see Bengtson et al. [2011], Borgström et al. [2011], and
Johansson et al. [2010, 2012]. We show more complex examples in Sections 4,
5, and 6.

A psi-calculus instance is specified by three data types: the (data) terms T, ranged
over by M, N; the conditions C, ranged over by ϕ; and the assertions A, ranged over
by ". The terms, conditions, and assertions can be any sets where the elements may
contain names (from the set N of names) and name permutations are admitted (so-
called nominal sets [Pitts 2003]). In particular, every element X has a finite set of free
names n(X) ⊆ N , and we write a#X for a ̸∈ n(X).
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Terms are used both as communication channels and for the data sent and received
in communication. They can be structured, and so permit standard constructs as lists
and sets, numbers, and Booleans, as well as more advanced structures. Assertions
are used to model “facts” about terms and relations between them, for instance, by
giving values to variables or by constraining their values. The minimal assertion is the
unit, written 1, and assertions are composed by the ⊗ operator. Conditions are used to
perform tests on terms. Their outcome depends on the current assertion environment,
through an entailment relation (" entails ϕ, written " ⊢ ϕ), which is also part of the
psi instance specification.

In the Pi instance, corresponding to the polyadic pi-calculus, terms are simply names
a, b, c . . . and the conditions are equality tests on names. (Name equality is used in the
match construct [a = b]P, which behaves as P if a = b holds.) In the pi-calculus,
there are no assertions, but the psi-calculi framework requires at least the trivial
unit assertion. Later examples will show how assertions can be exploited for modeling
advanced features.

Given the psi-calculus parameters T, C, A, the agents, ranged over by P, Q, . . . , are
of the following forms:

M Ñ . P Output prefix
M(x̃) . P Input prefix
M!Ñ . P Broadcast output prefix
M? (x̃) . P Broadcast input prefix
case ϕ1 : P1 [] · · · [] ϕn : Pn Case
(νa)P Restriction
P | Q Parallel
!P Replication
(|"|) Assertion
A⟨M̃⟩ Invocation

We write M̃ for the tuple M1, . . . Mn. The output and input prefixes denote polyadic
(unicast) output and input, while the broadcast prefixes denote (synchronous) broad-
cast output and input, which is unreliable (as in wireless systems) in the sense that
transmissions might not be received. The case construct can act as any Pi such that
the corresponding condition ϕi is true; the other cases are discarded. Restriction binds
a in P and input prefixes bind x̃ in the suffix; we identify alpha-equivalent agents. The
Invocation form invokes a process A, defined by the form A(ỹ)⇐P; the behavior is that
of P{M̃/ỹ}.

In the Pi instance, the output and input prefixes are the usual a x̃ . P and a(x̃) . P; the
match construct [a = b]P corresponds to case a = b : P. If we have a condition true
that is always true, we can model nondeterministic choice (traditionally written P + Q)
as case true : P [] true : Q.

The semantics for psi-calculi is defined by a labeled transition relation written " ◃
P α→ P ′, meaning that in environment " agent P can do an action α to become P ′. In
the pi-calculus instance, the environment " is always the trivial 1, but in general, it
represents the assertions of the environment, including parallel agents.

The semantics is defined only for well-formed agents. An occurrence of a subterm in
an agent is guarded if it is a proper subterm of a prefix form. An agent is well formed
if in M(̃x).P and M? (̃x).P it holds that x̃ is a sequence without duplicates, that in
case ϕ1 : P1 [] · · · [] ϕn : Pn the agents Pi have no unguarded assertions, and that in a
replication !P the agent P has no unguarded assertions or broadcast input prefixes.
For process definitions, a similar requirement as for replication applies.
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The actions are input M (x̃), denoting the reception of data bound to x̃ over the
channel denoted by M, and output M (ν x̃)Ñ, denoting the sending of Ñ over M and
additionally opening the scopes of the names x̃, the corresponding broadcast actions
M?(x̃) and M! (ν x̃)Ñ, and the silent action τ, which is the result of communication
between an input and an output. When x̃ is empty, we often omit (ν x̃) and (̃x).

The connectivity predicates used for communication are also defined by the instanti-
ation. The conditions include the channel equivalence predicate M .↔ N, which is used
to define which terms denote the same unicast channel, and the broadcast connectivity
predicates M

.≺ K and K
.≻ M for sending and receiving on broadcast channels: a term

M can be used to send a broadcast message on the channel K only if M
.≺ K in the

current assertion environment, and similarly for broadcast reception (see Section 5 for
an example).

As an example, the Pi agent

bc.Q | b(a).case a = b : a(z).R

has transitions labeled bc and b (x) for all names x and τ . The input prefix can generate
infinitely many input actions (here one for each x). To avoid this infinite branching,
we use a symbolic semantics in the tool (see Section 7.1), where the actual values
are abstracted by variables. Instead, each transition has a transition constraint, which
must be satisfied for the corresponding nonsymbolic transitions to be possible. Formally,
these transitions are written P α−→

C
P ′, where C is a transition constraint.

The input transitions of the previous agent can be represented by a single transition
in the symbolic semantics. For simplicity, we show the first two transitions of the input
prefix subagent:

P = b(a) . case a = b : a(z).R
w (a)−−−−−→

{|1⊢b .↔w|}
case a = b : a(z).R

v (z)−−−−−−−−−−−→
{|1⊢a .↔v|}∧{|1⊢a=b|}

R,

where w and v are fresh (see Section 7 for the formal semantics). The constraint of the
first transition intuitively says that the channel w is equivalent to b (there may not
always be such a w!); for the second transition, a similar constraint appears in addition
to the condition of the case construct.

We can use the PWB to simulate the transitions of P. The tool uses an ASCII repre-
sentation of agents, where nonalphanumeric terms and conditions must be in double
quotes, ν is written new, output objects are written between angular brackets, and the
overline in outputs is written by a preceding single quote. For example, b f (a, c) . (νx)Q
is written ’b< ”f(a,c)”>.(new x)Q.

The first transition of agent P is as follows:
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When printing the constraint, the trivial 1 ⊢ is elided. The “gna” here represents a
fresh name, corresponding to w: the subject of the symbolic input action.

The derivative case ”a = b” : a(x).R does not have a nonsymbolic transition since a is
not the same name as b, but the symbolic semantics does have a transition under the
constraint that a = b:

The constraint {|”a = b”|} can be solved by substituting a for b, as stated by the
Solution line. The solution is generated by a constraint solver module in the PWB,
which for the pi-calculus instance performs name unification (see Section 2), similar to
earlier tools for pi-related calculi (e.g., MWB). After applying the solution to the agent,
there is a corresponding nonsymbolic transition.

In addition to symbolic execution, the PWB also includes a symbolic checker that
computes a minimal sufficient constraint for one agent to be (bi)similar to another,
plus a witnessing relation. The two agents are nonsymbolically related after applying
a solution to the constraint (if there is one).

3. IMPLEMENTATION
The Psi-Calculi Workbench (PWB) is implemented in the Standard ML programming
language and compiles under the Poly/ML compiler [PolyML 2013] version 5.4. PWB is
open source and freely available online from Gutkovas and Borgström [2013].

PWB is a modular implementation of psi-calculi and can be viewed both as a modeling
tool and as a library for building tools for particular instances of psi-calculi. Used as
a modeling tool, the user interacts with a command interpreter that provides com-
mands for process definitions (manually or from files), manipulation of the process
environment, stepping through symbolic (strong and weak) transitions of a process,
and symbolic bisimilarity checking (strong and weak). Examples of such use are given
in Sections 4 and 5. Next we describe the implementation of PWB and the modules that
need to be provided when creating an instance of psi-calculi.

3.1. Psi-Calculus Instantiation
PWB implements a number of helper libraries for the instance implementor. We show
the architecture of PWB in Figure 1. In this figure, dependencies between components
go from right to left: each component may depend only on components that are above
it or to its left. All components build on the supporting library that provides the basic
data structures and core algorithms for psi-calculi. The instance implementor pro-
vides definitions for the parameters of an instance, constraint solvers, and parsing
and pretty-printing code. These user-implemented components are then called by the
different algorithms implemented by the tool and by the command interpreter. Not all
components are required to be implemented: for instance, the bisimulation constraint
solver is only needed for bisimilarity checking.

The parameters of an instance consist of the types name, term, condition, and asser-
tion, and three classes of functions: those defining the logics, the substitutions, and the
connectivity. As an example of the types, here are the declarations for the pi-calculus
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Fig. 1. Psi-Calculi Workbench architecture.

instance mentioned in Section 2. All SML code presented is written by the instance
implementor.

We need three functions to define the logic of the instance: entailment (entails, or ⊢),
which describes which conditions are true given an assertion; a composition operator
(compose, or ⊗), which composes two assertions; and a unit assertion (unit, or 1). We
require that assertion composition form a commutative monoid (modulo entailment)
and that all functions are equivariant, meaning that they treat all names equally. The
bisimulation algorithm and the weak symbolic semantics also require weakening to
hold, meaning that " ⊢ ϕ implies " ⊗ " ′ ⊢ ϕ for all " ′.

We also need equivariant substitution functions, substituting terms for names in
each of term, condition, and assertion.

Finally, we have three equivariant functions that describe the connectivity of the cal-
culus: chaneq (for unicast connectivity), brTransmit, and brReceive (for broadcast).
Typically, these functions are simple injections into the condition’s type (e.g., fun
chaneq (M,N) = ChanEq (M,N), where ChanEq is a data constructor of condition),
leaving the definition of connectivity to either the entailment relation or the constraint
solver.

Channel equivalence chaneq is required to be commutative and transitive (for every
"). brTransmit is broadcast output connectivity

.≺ and brReceive is broadcast input
connectivity

.≻; these functions are exemplified in Section 5. If " entails M
.≺ K or "

entails K
.≻ M, then we require all names that occur in K to also occur in M.
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All of the previous functions are further required to commute with substitution, in
the sense that f (Xσ ) = f (X)σ .

The user also needs to implement parsers for each of the data types that are called
by the parser for process terms.

3.2. Symbolic Execution
PWB provides symbolic execution of processes by the sstep command. This is a useful
tool to explore the properties of a process, or indeed the model itself. Here values input
by the process are represented by variables, and constraints are collected along the
derivation of a transition. The constraints show under which conditions transitions are
possible, deferring instantiation of variables as long as possible. Both strong and weak
(ignoring τ -transitions) symbolic semantics are available (presented in Section 7).

In psi-calculi, parallel contexts that contain an assertion, such as (|x = 3|), can
enable additional transitions. Therefore, a solution (σ,") to a constraint consists of
a substitution σ (representing earlier inputs) and an assertion " (representing the
parallel context). Intuitively, every solution (σ,") solves true, there is no solution to
false, every solution to both C and C ′ is a solution to C ∧ C ′, and the solutions to
(νã){|" ′ ⊢ ϕ|} are the pairs (σ,") where " ⊗ " ′σ ⊢ ϕσ and the names in ã do not occur
in ", σ .

The instance implementor may provide a constraint solver for the transition con-
straints. The solver should return either a string describing the unsatisfiability of a
constraint or a solution consisting of a substitution and an assertion. Since transition
constraints are simply a conjunction of atomic constraints, a simple unification-based
solver often suffices. The type of the solver is the following:

As an example, the solver for the pi-calculus instance of Section 2 performs unifica-
tion, implemented by the transition relation next. The nodes in the transition system
are either a pair (C, σ ) or the failed state ∅:

(νã){|1 ⊢ T|} ∧ C, σ → C, σ
(νã){|1 ⊢ a = a|} ∧ C, σ → C, σ
(νã){|1 ⊢ a = b|} ∧ C, σ → ∅ if a ̸= b ∧ (a ∈ ã ∨ b ∈ ã)
(νã){|1 ⊢ a = b|} ∧ C, σ → C[b := a], σ [b := a] otherwise.

3.3. Symbolic (Bi)simulation
PWB can also be used to check simulation relations on processes. As an example, the
command P˜ Q attempts to construct a bisimulation relation relating agents P and Q.
To this end, we implement a symbolic bisimulation algorithm based on Johansson et al.
[2012] (with some corrections and optimizations). This algorithm takes two processes
and yields a constraint in an extended constraint language; the two processes are
bisimilar under all solutions to the constraint. A simple variation of the algorithm is
used for simulation checking.

The language for bisimulation constraints additionally includes conjunction, dis-
junction, and implication, as well as constraints for term equality {|M = N|}, freshness
{|a#X|} (with the intuition “a is not free in X”), and static implication. In order to sim-
plify the development of a constraint solver for this richer language, PWB contains an
SMT solver library with suitable helper functions. Unless the assertion language is
trivial (only the unit assertion), most of the additional effort in extending a solver for
transition constraints to one for bisimulation constraints lies in properly treating static
implication constraints.

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 1, Article 9, Publication date: January 2015.



9:8 J. Borgström et al.

Fig. 2. Alternating Bit Protocol scheme.

4. THE ALTERNATING BIT PROTOCOL
In this section, we describe the modeling in PWB of the classical Alternating Bit Pro-
tocol. This demonstrates the use of PWB to define a tailor-made process calculus for
a particular problem or problem domain. We also give an example of symbolic weak
transition generation in PWB.

4.1. Introduction to the Alternating Bit Protocol
The Alternating Bit Protocol (ABP) [Bartlett et al. 1969] is a simple network protocol
for reliable data transmission through lossy channels. Reliable here means that all
data fragments are received exactly once and in the right order at the receiver. Con-
sider a sender Sender, a receiver Receiver, and two communication channels between
them: DataChan, over which data fragments are sent, and ResponseChan, over which
acknowledgments are sent. We show this situation in Figure 2: the arrows denote the
direction of the data being transmitted. ABP assumes reliable error detection, but no
error correction.

To ensure that Receiver receives every fragment despite lossy communication chan-
nels, Sender repeatedly sends the same fragment until it receives a corresponding
acknowledgment, at which point the sender starts transmitting the next fragment.
Since the receiver should not accept the same fragment twice, a protocol is needed for
distinguishing between packets. In ABP, each data packet has a one-bit flag attached
to it. The flag 0 is attached to the first packet sent; the acknowledgment of the receiver
for this packet will also have flag bit 0. When Sender receives an acknowledgment with
flag 0, it knows that Receiver has correctly received the fragment, and Sender will
then start sending the next packet with flag bit 1, and so on. Thus, sequences of sent
or received packages and respective acknowledgments with the same flag bit all refer
to the same data fragment.

4.2. A Psi-Calculus Instance For ABP
To define a psi-calculus instance where ABP can be expressed, we start with the data
terms. Since the behavior of the protocol does not depend on the data being transmitted,
we simply represent each fragment as a name. However, the protocol itself needs some
data values and structures.

In the set of terms, we include the channels DataChan and ResponseChan and the
value ERR to signify that an error has been detected. We also have 0 and 1 bits and a
negation operation ∼· on them with the expected equalities ∼0 = 1 and ∼1 = 0.

Our account of ABP is untyped, so these term constructors yield terms that are not
intended to be part of the model, such as ∼ERR. Such spurious terms yield the invalid
value ⊥. In summary, we define the data terms T as follows:
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Here and in subsequent displays, the column Notation is the mathematical notation,
SML is the code written by the instance implementor, and PWB is the ASCII syntax
used in the tool by the user of the instance.

Next we define the conditions. In the protocol, we need to compare the sender’s
or receiver’s bit with a transmitted bit and to see whether an error occurred while
transmitting data. To do this, we use equality = on values.

We add a condition True that always holds and a False condition that never holds.
Lastly, we include a channel equivalence condition for unicast communication (ABP
does not use broadcast, so we let the broadcast connectivity predicates yield False):

We do not need assertions to model the ABP, so we let A = {Unit} as in Section 2.
As the last step, we define the substitution functions on terms and conditions. They

are standard capture avoiding substitutions, followed by normalization with respect
to a term rewriting system given later. We use rewriting after substitutions in order
to accurately detect loops of τ -transitions when computing weak transitions. This also
significantly simplifies the constraint solver, since the normal forms are simpler to
handle than arbitrary terms.

To follow, we give the rewrite system for terms for reduction context R ::= []|∼R. It
evaluates the ∼· operator, cancels out double negation of variables, and identifies the
spurious terms. In particular, the term ∼∼ERR is spurious and is rewritten to ⊥:

∼ERR → ⊥
∼⊥ → ⊥

∼0 → 1
∼1 → 0 ∼∼x → x if x ∈ N .

The following is the term-rewriting system for the conditions. Equalities involving
spurious terms ⊥ are rewritten to False. Note that we only consider equality conditions
where the constituent terms are already in normal form; this suffices since the substi-
tution function on conditions is defined in terms of substitution function on terms:

∼x = ∼y → x = y
∼x = x → False
x = ∼x → False

M = N → True if M = N and {M, N} ⊆ Val ∪ N
M = N → False if M ̸= N and {M, N} ⊆ Val
M = N → False if ⊥ ∈ {M, N}.

Finally, we need to define entailment. For conditions in normal form, we define

Unit ⊢ a .↔ b iff a = b Unit ⊢ M = N iff M = N Unit ⊢ True,

and otherwise we let Unit ⊢ ϕ iff ϕ →+ ϕ′ ̸→ and Unit ⊢ ϕ′

4.3. Constraint Solver for ABP Transition Constraints
The ABP constraint solver is a standard unification algorithm defined as a transition
system. The design is greatly simplified by the fact that the conditions in the constraints
are in normal form.

The following is the unification transition system. The first two rules are trivial. The
rules concerning the channel equivalence .↔ condition are the classic unification on
names as seen in the pi-calculus solver. The last rules concern the equality condition =.
Because the terms are in the normal form, we know that one of the sides is a name,
and thus we do elimination, or swapping in order to allow elimination. To follow, ã#X
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denotes that names ã don’t occur freely in X; we omit 1 ⊢ in front of every condition:

(νã){|True|} ∧ C, σ → C, σ
(νã){|False|} ∧ C, σ → ∅
(νã){|a .↔ b|} ∧ C, σ → C, σ if a = b and a, b ∈ N
(νã){|a .↔ b|} ∧ C, σ → C[b := a], σ [b := a] if ã#a, b and a ̸= b
(νã){|a .↔ b|} ∧ C, σ → ∅ otherwise
(νã){|a = M|} ∧ C, σ → C[a := M], σ [a := M] if ã#a, M and a ∈ N

(νã){|M = N|} ∧ C, σ → (νã){|N = M|} ∧ C, σ otherwise.

4.4. The ABP as a Process
Here we present the process modeling the ABP in the ABP psi-calculus instance defined
earlier. We give the definition in PWB syntax, which is used by the user of the psi
instance.

We model the components Sender and Receiver of ABP shown in Figure 2 as psi-
calculus processes. The behavior of components DataChan and ResponseChan are
captured implicitly in our model. For composing the system, components have input
and output channels inp and out, respectively. The Receiver and Sender each have one
additional channel for output o, respectively, input i to the application that uses the
protocol.

The sender is modeled as follows: first it inputs data on input channel i and then
recursively outputs the data together with the current bit b on the channel out. Then
the sender receives the acknowledgment bit on input channel inp: if it matches b, the
sender flips b and returns to waiting for data; otherwise (if the bit did not match or
an error occurred), the sender attempts to send the data and b until it receives an
acknowledgment with flag b:

The receiver works in a dual fashion:

An error might occur at any time on each of the channels. This kind of unreliable
process is modeled implicitly by treating names (representing bits) as variables. Since
transmitted names are variables, the constraint solver may enable any case clause in
either Sender or Receiver by finding a suitable term to substitute them for.

Hiding the internal channels, the ABP system can be described as follows:

4.5. A Sample Weak Transition
When studying the ABP, it is interesting to see when the protocol communicates with
the outside system, ignoring τ -transitions. We here show such a “weak” transition,
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where the sender receives data and transmits it to the receiver via the data channel.
We use the wsstep command on ABP<i,o,sb,rb> to obtain the following transition,
among others:

After the transition, the sender (lines 13–16) is in a state where it has received an
acknowledgment bit that does not match its own bit (constraint on line 8), reducing the
condition ”b = ˜ackBit” (at this state it is ”sb = ˜rb”) of SenderSend to true (on line 15).

This transition is among the seven transitions produced by PWB. Since there is always
a possibility that both sender and receiver will detect an error ERR, there are infinitely
many weak transitions following a cycle between them. The occurrence of such cycles
are detected (modulo alpha-equivalence) by the wsstep command. Since the terms
occurring in agents are in normal form, wsstep terminates on ABP.

We have shown the development of a tailor-made psi-calculus instance in PWB. (The
full code listing is available online [Gutkovas and Borgström 2013].) Doing so, we have
expressed bits and bit operations directly, and we have shown that it is possible and
useful to use computation in the substitution functions, which departs from traditional
calculi. We have also shown the symbolic simulation of a weak transition, which is
useful for applications.

5. DATA COLLECTION IN A WIRELESS SENSOR NETWORK
In this example, we study a data collection protocol for wireless sensor networks (WSNs)
by modeling it in a custom psi-calculus that we implement in PWB.

A wireless sensor network consists of numerous sensor nodes that sense environ-
mental data. A special node, called the sink, is used to collect data from the network.
Collection often uses multihop communication, building a routing tree rooted at the
sink [Madden et al. 2002]. As wireless communication is unreliable, different trees may
be built in each protocol run.

We present a simple algorithm to build a routing tree: the sink starts the tree building
by broadcasting a special init message containing its identifier Sink. When a node n
first receives an init message, it sets its parent parentn to the sender of the message
and broadcasts a new init message containing its own identifier to continue building
the next level of the tree. After the building of a tree is complete, each node sends a
data message containing its data to its parent. Moreover, each node forwards received
data messages to its parent, ensuring that it eventually reaches the sink.
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Fig. 3. A simple topology with a sink and two sensor nodes where (a) shows the connectivity and (b) and (c)
show some possible routing trees.

5.1. Psi-Calculus Instance for WSN Data Collection
We first define and implement a custom Psi-calculus instance suitable for modeling
the tree building and data collection protocol described earlier. We use structured
channels of two kinds: broadcast channels init(M) and unicast channels data(M). The
broadcast connectivity between nodes is given by an undirected topology graph. We
first assume a static topology top; the topology in Figure 3(a) would be represented
by top = {(0, 1), (0, 2), (1, 2)}, where the sink has id 0. The corresponding psi-calculi
parameters are defined as follows:

Since we consider a static topology, we implement assertions as a unit type. A broad-
cast output prefix with subject init(i) can broadcast on the broadcast channel init(i),
while an input prefix with the same subject can receive from any connected broadcast
channel as given by the topology. Two unicast prefixes may communicate if and only if
their subjects are the same name. Thus, we define ⊢ as follows:

" ⊢ init(M)
.≺ init(N) iff M = N ∈ N

" ⊢ init(M)
.≻ init(N) iff M, N ∈ N and either (M, N) ∈ " or (N, M) ∈ "

" ⊢ data(a) .↔ data(b) iff a = b ∈ N .

5.2. Constraint Solver for Symbolic Transitions
We describe the implementation of the transition constraint solver. We write ∅ for
no solution. Transition constraints are conjunctions of conditions. The constraints are
solved in two phases, corresponding to the unicast connectivity constraints and the
broadcast connectivity constraints, respectively. To simplify the solver, we treat all free
names in the processes as distinct (cf. distinctions [Milner et al. 1992b]). For unicast
constraints, the solver thus fails (returning ∅) if the constraint is not satisfied:

(νã){|data(a) .↔ data(b)|} ∧ C → C if a = b
(νã){|data(a) .↔ data(b)|} ∧ C → ∅ otherwise.

The constraint solver then checks for broadcast connectivity in the given topology.
Let O be the output constraints {|init(n)

.≺ a|} and I the input constraints {|a .≻ init(n)|}.
We distinguish four different cases:
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(1) If I = ∅ and O = {{|init(n)
.≺ a|}}, then the solution is [a := init(n)].

(2) If I ̸= ∅ and O = {{|init(n)
.≺ a|}}, and we have (n, m) ∈ top for every constraint

{|a .≻ init(m)|} in I, then the solution is [a := init(n)]. Otherwise, the constraint is
unsatisfiable, that is, ∅.

(3) If I ̸= ∅ and O = ∅, then the constraint solver finds n such that for every
{|a .≻ init(m)|} ∈ I, we have (n, m) ∈ top. For each such n, [a := init(n)] is a possi-
ble solution.

(4) If I = ∅ and O = ∅, then the broadcast part of the constraint is trivially true.

5.3. Tree Building Model
Once the instance is implemented, we can define processes modeling the tree building
algorithm in PWB syntax. The sink broadcasts its own channel and then goes into data
collection mode; that is, it listens on its unicast channel repeatedly:

A node listens on its broadcast channel for a channel of a parent to which it will
send data. Then, similarly to the sink, it broadcasts its own unicast channel on which
it expects data to receive in order to forward it to the parent. After completing the
broadcast, it sends its data to the parent and goes into mode of forwarding data:

5.4. Example Strong Transitions
We here study the (symbolic) transition system generated by a small WSN with a sink
and two sensor nodes. Each node has a unique channel for response messages:

We will show a possible transition sequence in PWB, using the topology shown in Fig-
ure 3(a). To follow, we only consider transitions labeled with broadcast output and
unicast communication actions.

The following initial transition is obtained by executing the symbolic simulator of
PWB on System3<d1,d2>. The resulting system is in a configuration where both sensor
nodes have obtained the parent’s channel, in this case the sink’s. The nodes would
then be able to communicate their data to the sink. The unicast channel connectivity
corresponds to the routing tree shown in Figure 3(b). It is one of seven possible initial
transitions produced by PWB, of which three represent broadcast reception from the
environment and the other three situations where not all nodes receive the broadcast
message. The transition label gna!(new bsChan)bsChan represents the channel with a
fresh name gna. The generated constraint requires {|init(0)

.≺ gna|} ∧ {|gna
.≻ init(1)|} ∧

{|gna
.≻ init(2)|}, meaning node 0 is output connected to some channel gna that is input
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connected to nodes 1 and 2. The constraint solver finds a solution to the constraint,
which substitutes init(0) for gna:

In the derivative, the Sink successfully communicated its unicast channel chanS to
both nodes.

From this point, the system can evolve in two symmetrical ways: either of the nodes
broadcasts an init message, but since no node in the (closed) system is listening on a
broadcast channel, the message is not received. The following transition is for node 1:

The system is now in the state where node 1 can send data to the sink. By following
the analogous transition for node 2, we get the system where both nodes are ready to
communicate the data:
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We have demonstrated the use of advanced features in PWB such as the use of struc-
tured channels with different modes of communication (point to point vs. broadcast).
The broadcast connectivity graph (topology) was formalized as an assertion; this allows
us to potentially extend the model, for instance, to dynamic or localized connectivity.
We used the symbolic execution to simulate strong symbolic transitions of the system.
All of this shows the versatility and utility of PWB for use in modeling and studying
WSN algorithms.

6. DYNAMIC TOPOLOGY IN WIRELESS SENSOR NETWORK
We here extend the example of Section 5 with dynamic topology. We first allow adding
edges to the connectivity graph and then add the dual operation of removing edges.

Let the parameters be as in the example in Section 5 except for the assertions, which
are now a finite set of tuples representing edges in a topology:

The entailment relation is left unchanged, and the constraint solver for the unicast
constraints is the same. To enable broadcast connectivity, if the necessary edge is not
present, the solver simply attempts to add it to the solution (as is common in process
calculi models for WSNs [Ghassemi et al. 2008; Godskesen 2010]). For example, the
solution of the constraint of the first transition in Section 5.4 with an empty topology
is ([gna := ”init(0)”], ”(0,2),(0,1)”).

In the following, we add the ability for agents to also remove edges from the environ-
ment. In the assertions, we model edges as binary toggles, so if the same edge occurs
twice, this is equivalent to it not appearing at all (i.e., {(M, N)} ⊗ {(M, N)} ≃ 1). The
parameters are extended by adding conditions corresponding to whether an edge is
present or not, and the assertions are finite multisets:

An odd number of edge tuples in the environment denotes that the edge is present;
an even number denotes absence. Thus, adding a tuple to the environment might add
or remove an edge. We capture this with the following entailment definition:

" ⊢ conn(M, N) iff M, N ∈ N and |"(M, N)| + |"(N, M)| is odd
" ⊢ disconn(M, N) iff M, N ∈ N and " ̸⊢ conn(M, N)
" ⊢ init(M)

.≻ init(N) iff conn(M, N).

For the protocol in Section 5, we may reuse the same constraint solver, keeping in
mind that it does not handle the case where a disconn condition guards a broadcast
input. We can also express the alteration of the topology with the following two agents:
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The agent Disconnect<1, 2> |(|”(1,2)”|) has two transitions: first (|”(1,2)”|)| (|”(1,2)”|)
with trivially solvable constraint {|”(1,2)” |− ”conn(1,2)”|}, and second 0|(|”(1,2)”|) with
the solution ([ ], ”(1,2)”). In both transitions, the environment was extended with an
extra tuple (1, 2), effectively removing an edge from the topology. Intuitively, the agents
Connect and Disconnect can be used to set and unset bits in a global table.

7. SYMBOLIC SEMANTICS
In this section, we describe a symbolic operational semantics for broadcast psi-calculi
that is sound (Theorem 7.11) and complete (Theorem 7.12) with respect to the concrete
broadcast semantics [Borgström et al. 2011, 2013]. This semantics is the one that is
implemented in the PWB, and it extends, simplifies, and corrects the original symbolic
semantics [Johansson et al. 2012].

7.1. Symbolic Operational Semantics
As we have seen, transitions in the symbolic operational semantics are of the form
P α−→

C
Q, where C is a constraint that needs to be satisfied for the transition to be

enabled. Each PWB instance implements a solver, which computes solutions for the
transition constraints of that instance.

Definition 7.1 (Constraints and Solutions). A solution is a pair (σ,") where σ is
a substitution sequence of terms for names, and " is an assertion. The transition
constraints, ranged over by C, Ct, and their corresponding solutions sol(C) are defined
by:

Constraint Solutions
C, C ′ ::= true {(σ,") : σ is a subst. sequence ∧ " ∈ A}

| false ∅
| (νa)C {(σ,") : b#σ,", C ∧ (σ,") ∈ sol((a b) · C)}
| {|" ′ ⊢ ϕ|} {(σ,") : " ′σ ⊗ " ⊢ ϕσ }
| ∃x.C {(σ,") : y#σ,", C ∧ ([y := M]σ,") ∈ sol((x y) · C)}
| a ∈ n(M) {(σ,") : a ∈ n(Mσ )}
| C ∧ C ′ sol(C) ∩ sol(C ′)

(a b) ·C stands for the simultaneous replacement of a for b and b for a in C (“swapping”).
In (νa)C, a is binding into C; and in ∃x.C, x is binding into C. We write ∃bx.C for
(νb)∃x.(b ∈ n(x) ∧ C); the only uses of ∃ and · ∈ n(·) will be in this restricted form (which
is itself only used in Rule SBRCLOSE in Table I). We adopt the notation (σ,") |= C to say
that (σ,") ∈ sol(C), and write C ↔ D to say that sol(C) = sol(D).

A transition constraint C defines a set of solutions sol(C), namely, those where the for-
mula becomes true by applying the substitution and adding the assertion. For example,
the transition constraint {|1 ⊢ x = 3|} has solutions ([x := 3], 1) and ([ ], x = 3), where
[ ] is the identity substitution.

Restriction distributes over logical conjunction, and logical conjunction has true as
unit and is associative. We thus consider constraints modulo the equations to follow.

LEMMA 7.2. (νa)(C1 ∧ C2) ↔ (νa)C1 ∧ (νa)C2 and C1 ∧ (C2 ∧ C3) ↔ (C1 ∧ C2) ∧ C3 and
C ∧ true ↔ C.
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Table I. Symbolic Transition Rules for Broadcast Communication. A symmetric version of SBRCOM is elided. In
SBROPEN, the expression νã ∪ {b} means the sequence ã with b inserted anywhere.

The concept of frame of an agent F(P) is used in the semantics: intuitively, it is
the top-level assertions of an agent, including the top-level binders. Frames are of the
form F ::= " | (ν a)", where a is bound in (ν a)". The frame of a process denotes its
contribution to parallel agents. For example, the frame F((νa)((|"1|) | M Ñ . (|"3|) | (|"2|)))
is (νa)("1 ⊗ "2). Note that "3 is not included in the frame, since it occurs under a prefix.
In order to define the symbolic operational semantics, we need a way to add the frame
of a parallel process to the current transition constraint.

Definition 7.3 (Adding Frames to Constraints). We define F ⊗ C as follows:

F ⊗ (νa)C = (νa)(F ⊗ C) where a#F
(νã)" ⊗ {|" ′ ⊢ ϕ|} = (νã){|" ⊗ " ′ ⊢ ϕ|} where ã#" ′,ϕ

(νã)" ⊗ ∃x.C = (νã)∃x.(" ⊗ C) where ã#C and x#̃a,"
F ⊗ (C ∧ D) = (F ⊗ C) ∧ (F ⊗ D)

F ⊗ C = C otherwise.

For the symbolic semantics to be able to pick out the original channel to be used
to send a message, we require partial injectivity of channel connectivity in its left
argument: we require that for all names a, the function x 8→ (x .↔ a) is injective.

A process P is said to be assertion guarded if every occurrence of a (|"|) in P is a
subterm of an input or an output. We require that processes are well formed: P is well
formed if in every subterm of P of the form case ϕ̃ : Q̃ every Qi is assertion guarded,
and in every subterm of P of the form !Q we have that Q is assertion guarded.

We let the subject (or channel) of an action α be subj(x?(̃y)) = subj(x(̃y)) =
subj(x! (νã)Ñ) = subj(x (νã)Ñ) = x and subj(τ ) = ∅. We also define the bound names
(i.e., the private names) of a label as bn(x?(̃y)) = bn(x(̃y)) = ỹ and bn(x! (νã)Ñ) =
bn(x (νã)Ñ) = ã and bn(τ ) = ∅.

The structured symbolic operational semantics preserves well formedness and is
defined in Tables I, II, and III. We first describe the broadcast rules in Table I. First

consider the SBROUT rule: M Ñ.P
y! Ñ−−−−−→

{|1⊢M
.≺y|}

P. The solutions to its transition constraint

are those that enable the subject M of the output prefix to broadcast on the fresh
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Table II. Revised Symbolic Transition Rules for Binary Communication. The symmetric version of SCOM
is elided. In SCOM, we assume that c̃1#y, c̃2, "2, M2 and c̃2#z, "1, M1 and let

Ccom = ((νc̃1c̃2){|"1 ⊗ "2 ⊢ M1
.↔ M2|}) ∧ (((νc̃2)"2) ⊗ C1) ∧ (((νc̃1)"1) ⊗ C2). In SOPEN,

the expression νã ∪ {b} means the sequence ã with b inserted anywhere.

Table III. Revised Symbolic Transition Rules Common to Broadcast and Binary Communication.
A symmetric version of SPAR is elided.

channel variable y. Similarly, in SBRIN, we can receive a broadcast from any channel
x that the subject M of the input prefix can listen to. In SBRMERGE, two inputs with
the same labels are merged into one. In SBRCOM, a broadcast of P is received by Q,
substituting the message Ñ for the input variables ỹ. The names ã are restricted in P,
so they must be fresh for Q. In both SBRMERGE and SBRCOM, each transition constraint
is extended with the frame of the other process. In SBROPEN, the scope of the new name
b that occurs in the message Ñ is opened; we remember in the transition constraint
that b is fresh. In SBRCLOSE, a broadcast that has reached its lexical scope turns into
an internal τ action. The scoping of the new names ã is re-established.

The other symbolic rules in Tables II and III are similar to the broadcast rules,
with two exceptions. In Rule SCASE in Table III, we add the constraint that ϕi must
hold to the transition constraint. In Rule SCOM in Table II, we partially deconstruct
the transition constraints of the input and the output transition, picking out the first
conjunct. We then recombine the remainder of the transition constraints, adding the
constraint that their channels are equivalent (i.e., "1 ⊗ "2 ⊢ M1

.↔ M2), yielding Ccom.
Here the partial injectivity of .↔ is used to guarantee that M1 is the channel that
originated the transition.

7.2. Comparison with the Original Symbolic Operational Semantics
The symbolic semantics used in this article differs from the original semantics
[Johansson et al. 2012] in four significant ways:

(1) support for broadcast communication (Table I);
(2) support for polyadic communication (sending of multiple message terms at once);
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(3) no dependence on an external assertion environment (" ✄ later); and
(4) a new SCOM rule, for reasons explained later.

The original version of the communication rule was as follows (omitting its freshness
side conditions). To follow, the assertion environment “. . . " ✄” collects the assertions
of the context of the current process and can be ignored:

In order to derive a transition with OLD-SCOM, we need to compute the frames of
P and Q, equate the bound names in the frames with the ones appearing in the
transition constraints such that F(P) = (νb̃P)"P and F(Q) = (νb̃Q)"Q, and then check
that "1 = "2 = " ⊗ "P ⊗ "Q. However, these equalities fail in certain situations where
we would expect them to hold.

Example 7.4. This example shows issues related to restrictions under process con-
structors case and replication (!). We use replication as an example; the issue when
using case is analogous. Consider the process P = !(ν b) c b.Q in the pi-calculus in-
stance. In the original semantics, the symbolic output transition of P has the constraint
(ν b){|1 ⊢ c .↔ x|} since the frame of (ν b)c b.Q (which is (ν b)1) is used in the derivation.
When attempting to derive a communication between P and the process c(x).R, the
side condition F(P) = (νb̃P)"P of OLD-SCOM is impossible to satisfy: F(P) = (νε)1 while
the transition constraint of P is (ν b){|1 ⊢ c .↔ x|}, and the number of bound names thus
differs.

A similar issue, related to the ordering of restrictions in the frame, applies when an
inactive parallel process has top-level restrictions.

Example 7.5. Let P = (ν b)c b.Q | (ν a)c(x).R. In the original semantics, the symbolic
output transition of P has the constraint (ν a)(ν b){|1 ⊢ c .↔ x|} but F(P) = (ν b)(ν a)1
where the order of the bound names is different.

Both these issues could be avoided if the binders of frames were so-called set+ binders
[Huffman and Urban 2010] where order does not matter and redundant binders are
ignored. However, such a notion of binders is not available in the version of Nomi-
nal Isabelle [Urban and Tasson 2005] that is used for the formalization of psi-calculi
[Bengtson and Parrow 2009].

Example 7.6. This example show issues related to situations where assertion com-
position is noncommutative. Let the assertions be tuples ã of names, composed using
concatenation ã; b̃. Consider the premises of OLD-SCOM: in the original semantics, "1
will have a prefix "Q; " and "2 will have a prefix "P ; ". Since concatenation is noncom-
mutative, the side condition "1 = "2 = " ⊗ "P ⊗ "Q of OLD-COM cannot hold if "P and
"Q are nonempty and n("P) ̸= n("Q). This makes it impossible for the two processes
(|a|) | c and (|b|) | c to communicate using OLD-SCOM.

These examples show that Rule OLD-SCOM makes too strong assumptions on the syn-
tactic form of the constraints of the transitions in its premise. The original symbolic
semantics still corresponds to the concrete semantics [Bengtson et al. 2011] in cer-
tain instances, such as when communicating processes do not contain restrictions and
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Table IV. General Requirements on Substitution

X[x := x] = X
x[x := M] = M
X[x := M] = X if x#X

X[x := L][y := M] = X[y := M][x := L] if x#y, M and y#L
X[x̃ := T̃ ] = ((ỹ x̃) · X)[ỹ := T̃ ] if ỹ#X, x̃

Table V. Requirements for Specific Data Types

n(Mσ ) ⊇ n(M) \ n(σ )
n(M[ã := L̃]) ⊇ n(L̃) when n(M) ⊇ ã

(M
.≺ N)σ = Mσ

.≺ Nσ

(N
.≻ M)σ = Nσ

.≻ Mσ

(M .↔ N)σ = Mσ
.↔ Nσ

1σ = 1

" ⊗ 1 ≃N "

" ⊗ " ′ ≃N " ′ ⊗ "

"1 ⊗ ("2 ⊗ "3) ≃N ("1 ⊗ "2) ⊗ "3
(" ⊗ " ′)σ ≃N "σ ⊗ " ′σ

" ⊗ "1 ≃N " ⊗ "2 when "1 ≃N "2

assertion composition satisfies the commutative monoid laws (not only modulo asser-
tion equivalence). In contrast to OLD-SCOM, Rule SCOM in Table II does not make any
assumptions about the number of bound names or on the structure of the assertion,
and the corresponding broadcast rules SBRCOM and SBRMERGE in Table I do not make
any assumptions at all about the form of their constraints.

7.3. Correctness of the Symbolic Operational Semantics
The proofs for the soundness and completeness of the symbolic semantics with respect
to the concrete broadcast semantics [Borgström et al. 2011] mainly follow [Johansson
et al. 2012]. The main exception is that their counterpart of Lemma 7.10, which de-
scribes the shape of transition constraints, does not hold in all cases, as seen in Exam-
ples 7.4, 7.5, and 7.6. We here instead prove a weaker result by considering assertions
and frames modulo redundant restrictions (cf. Example 7.4), restriction ordering (cf. Ex-
ample 7.5), and commutative monoid laws for assertion composition (cf. Example 7.6).

As for technical preliminaries, we assume the general properties of substitution
in Table IV, and the homomorphism and name preservation laws in Table V. As an
example, the standard notion of substitution in (nominal) term algebras satisfies all of
these properties. We write " ≃N " ′ iff n(") = n(" ′), and for all ϕ, it holds that " ⊢ ϕ iff
" ′ ⊢ ϕ. We then assume the equivalences in Table V. As an example, they are satisfied
when assertions are finite sets of equations on terms, with standard substitution.

The main difference to the original proofs is the introduction of an auxiliary relation
on frames (Definition 7.7) in order to accurately describe the shape of transition con-
straints (Lemma 7.10) such that they can always be decomposed in Rule SCOM, unlike
the case for OLD-SCOM.

Definition 7.7 (AC-equivalence). Associative/commutative equivalence (AC equiva-
lence) of assertions is the smallest equivalence relation such that

(1) 1 ⊗ " ≡AC "; and
(2) "1 ⊗ "2 ≡AC "2 ⊗ "1; and
(3) "1 ⊗ ("2 ⊗ "3) ≡AC ("1 ⊗ "2) ⊗ "3; and
(4) "1 ≡AC "2 ⇒ " ⊗ "1 ≡AC " ⊗ "2.

Frames (νã)"1 and (νc̃)"2 are AC equivalent, written (νã)"1 ≡AC (νc̃)"2, if "1 ≡AC "2
and {̃a} ∩ n("1) = {̃c} ∩ n("2).

LEMMA 7.8. AC equivalence is an equivalence relation on frames, and whenever
F1 ≡AC F2, we also have n(F1) = n(F2) and (νa)F1 ≡AC (νa)F2 and G ⊗ F1 ≡AC G ⊗ F2.

PROOF. Straightforward from the definitions, using the laws in Table V.
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As an example, guarded processes have frames that are AC equivalent to the unit
frame 1.

LEMMA 7.9. If P is assertion guarded, then F(P) ≡AC 1.

PROOF. By induction on P.

The following lemma characterizes the shape of the constraints of point-to-point
input and output transitions. The first conjunct in the constraint is always a channel
equivalence constraint (between the object M of the original prefix and the transition
object variable y) that must hold under a frame (νc̃)" that is AC equivalent to that of
the original process P. The lemma is used in the proof of Theorem 7.12 to show that
the precondition on the shape of the transitions in Rule SCOM always holds.

LEMMA 7.10 (FORM OF CONSTRAINT). Let α = y (νã)Ñ or α = y(̃x). If P α−→
C

P ′ and

y#P, then there exist c̃,", M, and D such that F(P) ≡AC (νc̃)" and y#̃c,", M, D and
C = (νc̃){|" ⊢ M .↔ y|} ∧ D.

PROOF. By induction on the derivation of P α−→
C

P ′. A base case is as follows.

SOUT. In this case, the transition is derived by

SOUT

KÑ . P
yÑ−−−−−→

{|1⊢K .↔y|}
P.

y#K, Ñ, P

Here c̃ = ϵ, " = 1, M = K, and D = true, where F(K Ñ . P) = 1.

The cases that require the use of AC equivalence are the following.

SCASE. In this case, the transition is derived by

SCASE

Pi
α−→
C

P ′

case ϕ̃ : P̃ α−−−−−→
C∧{|1⊢ϕi |}

P ′.
bn(α)#ϕi

By induction, we get M, D′,", c̃ such that C = (νc̃){|" ⊢ M .↔ y|} ∧ D′ with y#D′ and
F(Pi) ≡AC (νc̃)". Let D = D′ ∧ {|1 ⊢ ϕi|}; since y#case ϕ̃ : P̃, we also have that y#D.
By well formedness, Pi is guarded, so by Lemma 7.9, F(Pi) ≡AC 1. By transitivity,
F(P) = 1 ≡AC (νc̃)".
SPAR. In this case, the transition is derived by

SPAR

P α−→
C

P ′

P | Q α−−−−→
F(Q)⊗C

P ′ | Q
bn(α)#Q

α = τ ∨ subj(α)#Q.

By induction, there are M, D′,", c̃ such that C = (νc̃){|" ⊢ M .↔ y|} ∧ D′ with y#D′

and F(P) ≡AC (νc̃)". Let D = F(Q) ⊗ D′; since y#P|Q, we also have that y#D. By
Lemma 7.8, F(P | Q) ≡AC ((νc̃)") ⊗ F(Q) ≡AC F(Q) ⊗ (νc̃)".
SSCOPE. In this case, the transition is derived by

SSCOPE

P α−→
C

P ′

(νb)P α−−−→
(νb)C

(νb)P ′
b#α.
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Table VI. Concrete Semantics. Symmetric versions of CBRCOM, CCOM, and CPAR are elided. In Rules CBRCOM
and CBRMERGE and CCOM, we assume that F(P) = (ν̃bP)"P and F(Q) = (ν̃bQ)"Q, where b̃P is fresh for

P, b̃Q , Q, and ", and that b̃Q is fresh for Q, b̃P, P, and ". In Rule CPAR, we assume that F(Q) = (ν̃bQ)"Q , where
b̃Q is fresh for ", P, and α. In Rules COPEN and CBROPEN, the expression ã ∪ {b} means the sequence ã with b

inserted anywhere.

CBROUT
" ⊢ M

.≺ K

" ✄ M!Ñ . P K! Ñ−−−→ P
CBRIN

" ⊢ K
.≻ M |̃x| = |Ñ|

" ✄ M? (̃x) . P
K? Ñ−−−→ P [̃x := Ñ]

CBRMERGE
"Q ⊗ " ✄ P

K? Ñ−−−→ P ′ "P ⊗ " ✄ Q
K? Ñ−−−→ Q′

" ✄ P | Q
K? Ñ−−−→ P ′ | Q′

CBRCOM
"Q ⊗ " ✄ P K! (νã)Ñ−−−−−→ P ′ "P ⊗ " ✄ Q

K? Ñ−−−→ Q′

" ✄ P | Q K! (νã)Ñ−−−−−→ P ′ | Q′

b̃P b̃Q#K
ã#Q

CBROPEN
" ✄ P K! (νã)Ñ−−−−−→ P ′

" ✄ (νb)P
K! (νã∪{b})Ñ−−−−−−−−→ P ′

b#̃a, ", K
b ∈ n(N) CBRCLOSE

" ✄ P K! (νã)Ñ−−−−−→ P ′

" ✄ (νb)P τ−→ (νb)(νã)P ′
b ∈ n(K)

b#"

COUT
" ⊢ M .↔ K

" ✄ M Ñ . P KÑ−−→ P
CIN

" ⊢ M .↔ K |̃x| = |Ñ|

" ✄ M(̃x) . P
K Ñ−−→ P [̃x := Ñ]

CCOM
" ⊗ "P ⊗ "Q ⊢ M .↔ K "Q ⊗ " ✄ P M (νã)Ñ−−−−−→ P ′ "P ⊗ " ✄ Q

K Ñ−−→ Q′x

" ✄ P | Q τ−→ (νã)(P ′ | Q′)

b̃P#M
b̃Q#K
ã#Q

COPEN
" ✄ P M (νã)N−−−−−→ P ′

" ✄ (νb)P
M (νã∪{b})N−−−−−−−→ P ′

b#̃a,", M
b ∈ n(N) CCASE

" ✄ Pi
α−→ P ′ " ⊢ ϕi

" ✄ caseϕ̃ : P̃ α−→ P ′

CREP
" ✄ P | !P α−→ P ′

" ✄ !P α−→ P ′
CPAR

"Q ⊗ " ✄ P α−→ P ′

" ✄ P | Q α−→ P ′ | Q
bn(α) #Q

CSCOPE
" ✄ P α−→ P ′

" ✄ (νb)P α−→ (νb)P ′
b#α," CINV

" ✄ P [̃x := M̃] α−→ P ′

" ✄ A⟨M̃⟩ α−→ P ′
A⟨x̃⟩ ⇐ P
|̃x| = |M̃|

By induction, there exist c̃,", M, and D′ such that C = (νc̃)(" ⊢ M .↔ y) ∧ D′ with
y#M, D and F(P) ≡AC (νc̃)". Let D = (νb)D′; a fortiori y#(νb)D. By Lemma 7.8,
F((νb)P) ≡AC (νb)(νc̃)".
SOPEN. As SSCOPE.
SREP. In this case, the transition is derived by

SREP

P | !P α−→
C

P ′

!P α−→
C

P ′
.

By induction, there exist c̃,", M, and D such that C = (νc̃)(" ⊢ M .↔ y) ∧ D with
y#M, D and F(P|!P) ≡AC (νc̃)". By well formedness, P is guarded, so by Lemma 7.9,
F(P|!P) ≡AC 1. By transitivity, F(!P) = 1 ≡AC (νc̃)".

We prove soundness and completeness of the symbolic semantics of this article
with respect to a polyadic version of the concrete semantics of broadcast psi-calculi
[Borgström et al. 2011], which we show in Table VI.

The soundness theorem and its proof follow [Johansson et al. 2012], apart from the
weaker preconditions of Rule SCOM (compared to OLD-SCOM) and the new cases for
broadcast actions.
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THEOREM 7.11 (SOUNDNESS OF SYMBOLIC TRANSITIONS). If P α−→
C

P ′ and (σ,") |= C and

bn(α)#σ, then " ✄ Pσ
ασ−→ P ′σ .

PROOF. By induction on the inference of P α−→
C

P ′.

The proof of the completeness theorem follows [Johansson et al. 2012], apart from
new cases for the broadcast rules. In the CCOM case of the proof, Lemma 7.10 is used to
show that the symbolic transitions obtained from the induction hypothesis are of the
right form to apply Rule SCOM.

THEOREM 7.12 (COMPLETENESS OF SYMBOLIC TRANSITIONS).

—If " ✄ Pσ
τ−→ P ′, then ∃C, Q . P τ−→

C
Q, Qσ = P ′, and (σ,") |= C.

—If " ✄ Pσ
α−→ P ′, α ̸= τ , y#P, bn(α), σ , and bn(α)#σ, P, then ∃C,α′, Q. P α′

−→
C

Q,

Qσ = P ′, subj(α′) = y, α′σ ′ = α, and (σ ′,") |= C where σ ′ = σ [y := subj(α)].

PROOF. By induction on the inference of " ✄ Pσ
α−→ P ′σ .

8. RELATED WORK
Our previous work [Borgström et al. 2011] presented the broadcast extension of psi-
calculi and a model of a routing protocol for ad hoc networks. In the present article, we
have given a corresponding symbolic semantics and several new example models.

The precursors of the PWB are the Concurrency Workbench [Cleaveland et al. 1993]
for CCS and the Mobility Workbench [Victor and Moller 1994] for pi-calculus. The tool
mCRL2 [Cranen et al. 2013] for ACP admits higher-order sorted free algebras and
equational logics. PAT3 [Liu et al. 2011] includes a CSP♯ [Sun et al. 2009] module
where actions are built over types like Booleans and integers are extended with C♯
like programs. ProVerif [Blanchet 2011] is a verification tool for the applied pi-calculus
[Abadi and Fournet 2001], an extension of the pi-calculus that is specialized for se-
curity protocol verification. The tool is parametric in a term language equipped with
equations and unidirectional rewrite rules but works in a fixed logic (predicate logic
with equality). ProVerif does not include a symbolic simulator or a general bisimulation
checker.

Our symbolic semantics and bisimulation generation algorithm (slight variations of
our previous work [Johansson et al. 2012]) are to a large extent based on the pioneering
work by Hennessy and Lin [1995] for value-passing CCS, later specialized for the pi-
calculus by Boreale and De Nicola [1996] and independently by Lin [1996, 2000].

9. FUTURE WORK
It would be interesting to investigate other notions of bisimulation for wireless com-
munication [Merro 2007], including machine-checked proofs of their meta-theoretical
properties. We have performed initial work [Åman Pohjola et al. 2013] on modeling
discrete time and are considering extensions to other quantitative aspects of wireless
networks, including probabilities, distance, and energy.

ELECTRONIC APPENDIX
The electronic appendix for this article can be accessed in the ACM Digital Library.
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