
Modal Logics for Nominal Transition Systems
Joachim Parrow, Johannes Borgström, Lars-Henrik Eriksson,
Ramūnas Gutkovas, and Tjark Weber

Uppsala University
Sweden

Abstract
We define a uniform semantic substrate for a wide variety of process calculi where states and
action labels can be from arbitrary nominal sets. A Hennessy-Milner logic for these systems
is introduced, and proved adequate for bisimulation equivalence. A main novelty is the use of
finitely supported infinite conjunctions. We show how to treat different bisimulation variants
such as early, late and open in a systematic way, and make substantial comparisons with related
work. The main definitions and theorems have been formalized in Nominal Isabelle.

1998 ACM Subject Classification F.1.1 Models of Computation, F.1.2 Modes of Computation,
F.3.1 Specifying and Verifying and Reasoning about Programs, F.3.2 Semantics of Programming
Languages, F.4.1 Mathematical Logic

Keywords and phrases Process algebra, nominal sets, bisimulation, modal logic

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2015.198

1 Introduction

Transition systems. Transition systems are ubiquitous in models of computing, and spe-
cifications to say what may and must happen during executions are often formulated in a
modal logic. There is a plethora of different versions of both transition systems and logics,
including a variety of higher-level constructs such as updatable data structures, new name
generation, alias generation, dynamic topologies for parallel components etc. In this paper
we formulate a general framework where such aspects can be treated uniformly, and define
accompanying modal logics which are adequate for bisimulation. This is related to, but
independent of, our earlier work on psi-calculi [4], which proposes a particular syntax for
defining behaviours. The present paper does not depend on any such language, and provides
general results for a large class of transition systems.

In any transition system there is a set of states P,Q, . . . representing the configurations a
system can reach, and a relation telling how a computation can move between them. Many
formalisms, for example all process algebras, define languages for expressing states, but in
the present paper we shall make no assumptions about any such syntax.

In systems describing communicating parallel processes the transitions are labelled with
actions α, β, representing the externally observable effect of the transition. A transition
P

α−→ P ′ thus says that in state P the execution can progress to P ′ while conducting the
action α, which is visible to the rest of the world. For example, in CCS these actions are
atomic and partitioned into output and input communications. In value-passing calculi the
actions can be more complicated, consisting of a channel designation and a value from some
data structure to be sent along that channel.

Scope openings. With the advent of the pi-calculus [19] an important aspect of transitions
was introduced: that of name generation and scope opening. The main idea is that names (i.e.,

© Joachim. Parrow, Johannes Borgström, Lars-Henrik Eriksson, Ramūnas Gutkovas, and Tjark Weber;
licensed under Creative Commons License CC-BY

26th International Conference on Concurrency Theory (CONCUR 2015).
Editors: Luca Aceto and David de Frutos Escrig; pp. 198–211

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CONCUR.2015.198
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

J. Parrow, J. Borgström, L-H. Eriksson, R. Gutkovas, and T. Weber 199

atomic identifiers) can be scoped to represent local resources. They can also be transmitted
in actions, to give a parallel entity access to this resource. In the monadic pi-calculus such
an action is written a(νb), to mean that the local name b is exported along the channel a.
These names can be subjected to alpha-conversion: if P a(νb)−−−→ P ′ and c is a fresh name
then also P a(νc)−−−→ P ′{c/b}, where P ′{c/b} is P ′ with all bs replaced by cs. Making this idea
fully formal is not entirely trivial and many papers gloss over it. In the polyadic pi-calculus
several names can be exported in one action, and in psi-calculi arbitrary data structures may
contain local names. In this paper we make no assumptions about how actions are expressed,
and just assume that for any action α there is a finite set of names bn(α), the binding names,
representing exported names. In our formalization we use nominal sets, an attractive theory
to reason about objects depending on names on a high level and in a fully rigorous way.

State predicates. The final general components of our transition systems are the state
predicates ranged over by ϕ, representing what can be concluded in a given state. For example
state predicates can be equality tests of expressions, or connectivity between communication
channels. We write P ` ϕ to mean that in state P the state predicate ϕ holds.

A structure with states, transitions, and state predicates as discussed above we call a
nominal transition system.

Hennessy-Milner Logic. Modal logic has been used since the 1970s to describe how facts
evolve through computation. We use the popular and general branching time logic known as
Hennessy-Milner Logic [15] (HML). Here the idea is that an action modality 〈α〉 expresses a
possibility to perform an action α. If A is a formula then 〈α〉A says that it is possible to
perform α and reach a state where A holds. With conjunction and negation this gives a
powerful logic shown to be adequate for bisimulation equivalence: two processes satisfy the
same formulas exactly if they are bisimilar. In the general case, conjunction must take an
infinite number of operands when the transition systems have states with an infinite number
of outgoing transitions. The fully formal treatment of this requires care in ensuring that such
infinite conjunctions do not exhaust all names, leaving none available for alpha-conversion.
All previous works that have considered this issue properly have used uniformly bounded
conjunction, i.e., the set of all names in all conjuncts is finite.

Contributions. Our definition of nominal transition systems is very general since we leave
open what the states, transitions and predicates are. The only requirement is that transitions
satisfy alpha-conversion. A technically important point is that we do not assume the usual
name preservation principle, that if P α−→ P ′ then the names occurring in P ′ must be a subset
of those occurring in P and α. This means that the results are applicable to a wide range of
calculi. For example, the pi-calculus represents a trivial instance where there are no state
predicates. CCS represent an even more trivial instance where bn always returns the empty
set. In the fusion calculus and the applied pi-calculus the state contains an environmental
part which tells what expressions are equal to what. In the general framework of psi-calculi
the states are processes with assertions describing their environments.

We define a modal logic with the 〈α〉 operator that binds the names in bn(α), and
contains operators for state predicates. In this way we get a logic for an arbitrary nominal
transition system such that logical equivalence coincides with bisimilarity. We also show
how variants of the logic correspond to late, open and hyperbisimilarity in a uniform way.
The main technical difficulty is to ensure that formulas and their alpha-equivalence classes
throughout are finitely supported, i.e., only depend on a finite set of names, even in the

CONCUR’15

200 Modal Logics for Nominal Transition Systems

presence of infinite conjunction. Instead of uniformly bounded conjunction we use the notion
of finite support from nominal sets. This results in greater generality and expressiveness. For
example, we can now define quantifiers and the next step modalities as derived operators.

Formalization. Our main definitions and theorems have been formalized in Nominal Isa-
belle [27]. This has required significant new ideas to represent data types with infinitary
constructors like infinite conjunction and their alpha-equivalence classes. As a result we
corrected several details in our formulations and proofs, and now have very high confidence
in their correctness. The formalization effort has been substantial, but certainly less than
half of the total effort, and we consider it a very worthwhile investment.

Exposition. In the following section we provide the necessary background on nominal sets.
In Section 3 we present our main definitions and results on nominal transition systems and
modal logics. In Section 4 we derive useful operators such as quantifiers and fixpoints, and
indicate some practical uses. Section 5 shows how to treat variants of bisimilarity such as late
and open in a uniform way, and in Section 6 we compare with related work and demonstrate
how our framework can be applied to recover earlier results uniformly. Finally Section 7
concludes with some remarks on the formalization in Nominal Isabelle. All full proofs are
contained in the appendix of the technical report [22].

2 Background on nominal sets

Nominal sets [25] is a general theory of objects which depend on names, and in particular
formulates the notion of alpha-equivalence when names can be bound. The reader need not
know nominal set theory to follow this paper, but some key definitions will make it easier to
appreciate our work and we recapitulate them here.

We assume an infinitely countable multi-sorted set of atomic identifiers or names N
ranged over by a, b, A permutation is a bijection on names that leaves all but finitely
many names invariant. The singleton permutation which swaps names a and b and has no
other effect is written (a b), and the identity permutation that swaps nothing is written id.
Permutations are ranged over by π, π′. The effect of applying a permutation π to an object
X is written π ·X. Formally, the permutation action · can be any operation that satisfies
id ·X = X and π · (π′ ·X) = (π ◦ π′) ·X, but a reader may comfortably think of π ·X as the
object obtained by permuting all names in X according to π.

A set of names N supports an object X if for all π that leave all members of N invariant
it holds π ·X = X. In other words, if N supports X then names outside N do not matter
to X. If a finite set supports X then there is a unique minimal set supporting X, called
the support of X, written supp(X), intuitively consisting of exactly the names that matter
to X. As an example the set of names textually occurring in a datatype element is the
support of that element, and the set of free names is the support of the alpha-equivalence
class of the element. Note that in general, the support of a set is not the same as the union
of the support of its members. An example is the set of all names; each element has itself as
support, but the whole set has empty support since π · N = N for any π.

We write a#X, pronounced “a is fresh for X”, for a 6∈ supp(X). The intuition is that if
a#X then X does not depend on a in the sense that a can be replaced with any fresh name
without affecting X. If A is a set of names we write A#X for ∀a ∈ A . a#X.

A nominal set S is a set with a permutation action such that X ∈ S ⇒ π ·X ∈ S, and
where each member X ∈ S has finite support. A main point is that then each member

J. Parrow, J. Borgström, L-H. Eriksson, R. Gutkovas, and T. Weber 201

has infinitely many fresh names available for alpha-conversion. Similarly, a set of names
N supports a function f on a nominal set if for all π that leave N invariant it holds
π · f(X) = f(π ·X), and similarly for relations and functions of higher arity. Thus we extend
the notion of support to finitely supported functions and relations as the minimal finite
support, and can derive general theorems such as supp(f(X)) ⊆ supp(f) ∪ supp(X).

An object that has empty support we call equivariant. For example, a unary function f
is equivariant if π · f(X) = f(π ·X) for all π,X. The intuition is that an equivariant object
does not treat any name special.

3 Nominal transition systems and Hennessy-Milner logic

I Definition 1. A nominal transition system is characterized by the following
states: A nominal set of states ranged over by P,Q.
pred: A nominal set of state predicates ranged over by ϕ.
An equivariant binary relation ` on states and pred. We write P ` ϕ to mean that in
state P the state predicate ϕ holds.
act: A nominal set of actions ranged over by α.
An equivariant function bn from act to finite sets of names, which for each α returns a
subset of supp(α), called the binding names.
An equivariant transition relation → on states and residuals. A residual is a pair of
action and state. For → (P, (α, P ′)) we write P α−→ P ′. The transition relation must
satisfy alpha-conversion of residuals: If a ∈ bn(α), b#α, P ′ and P

α−→ P ′ then also
P

(a b)·α−−−−→ (a b) · P ′.

I Definition 2. A bisimulation R is a symmetric binary relation on states in a nominal
transition system satisfying the following two criteria: R(P,Q) implies
1. Static implication: P ` ϕ implies Q ` ϕ.
2. Simulation: For all α, P ′ such that bn(α)#Q there exist Q′ such that if P α−→ P ′ then

Q
α−→ Q′ and R(P ′, Q′)

We write P ·∼ Q to mean that there exists a bisimulation R such that R(P,Q).

Static implication means that bisimilar states must satisfy the same state predicates; this
is reasonable since these can be tested by an observer. The simulation requirement is familiar
from the pi-calculus.

I Proposition 1. ·∼ is an equivariant equivalence relation.

The minimal HML for nominal transition systems is the following.

I Definition 3. The nominal set of formulas A ranged over by A is defined by induction as
follows:

A ::=
∧
i∈I

Ai | ¬A | ϕ | 〈α〉A

Support and name permutation are defined as usual (permutation distributes over all formula
constructors). In

∧
i∈I Ai it is assumed that the indexing set I has bounded cardinality,

by which we mean that |I| ≤ κ for some fixed infinite cardinal κ at least as large as the
cardinality of states, act and pred. It is also required that the set of conjuncts {Ai | i ∈ I}
has finite support; this is then the support of the conjunction. Alpha-equivalent formulas are
identified; the only binding construct is in 〈α〉A where bn(α) binds into A.

CONCUR’15

202 Modal Logics for Nominal Transition Systems

Compared to previous work there are two main novelties in Definition 3. The first is that
we use conjunction of a possibly infinite and finitely supported set of conjuncts. In comparison,
the earliest HML for CCS, Hennessy and Milner (1985) [15], uses finite conjunction, meaning
that the logic is adequate only for finite branching transition systems. In his subsequent book
(1989) [18] Milner admits arbitrary infinite conjunction, disregarding the danger of running
into paradoxes. Abramsky (1991) [3] employs a kind of uniformly bounded conjunction, with
a finite set of names that supports all conjuncts, an idea that is also used in the first HML for
the pi-calculus (1993) [20]. All subsequent developments follow one of these three approaches.
Our main point is that both finite and uniformly bounded conjunction are expressively weak,
in that the logic is not adequate for the full range of nominal transition systems, and in that
quantifiers over infinite structures are not definable. In contrast, our use of finitely supported
sets of conjuncts is adequate for all nominal transition systems (cf. Theorems 6 and 9 below)
and admits quantifiers as derived operators (cf. Section 4 below). As a simple example,
universal quantification over names ∀x ∈ N .A(x) is usually defined to mean that A(n) must
hold for all n ∈ N . We can define this as the (infinite) conjunction of all these A(n). This
set of conjuncts is not uniformly bounded if n ∈ supp(A(n)). But it is supported by supp(A)
since, for any permutation π not affecting supp(A) we have π ·A(n) = A(π(n)) which is also
a conjunct; thus the set of conjuncts is unaffected by π.

The second novelty is the use of a nominal set of actions α with binders, and the formal
definition of alpha-equivalence. We define it by structural recursion over formulas. Two
conjunctions

∧
i∈I Ai and

∧
i∈I Bi are alpha-equivalent if for every conjunct Ai there is an

alpha-equivalent conjunct Bj , and vice versa. The other cases are standard; two formulas
〈α〉A and 〈β〉B are alpha-equivalent if there exists a permutation π, renaming the binding
names of α to those of β, such that π ·A and B are alpha-equivalent, and π ·α = β. Moreover,
π must leave names that are free in A invariant. The free names in a formula are also defined
by structural recursion. Most cases are standard again; a name is free in 〈α〉A if it is in
supp(α) or free in A, and not contained in bn(α). However, the free names in a conjunction
are given by the support of its alpha-equivalence class (rather than by the union of free
names in all conjuncts). This is analogous to the situation for nominal sets in general, whose
support is not necessarily the same as the union of the support of its members. Fortunately,
our formalization proves that we need not keep the details of this construction in mind, but
can simply identify alpha-equivalent formulas. The notions of free names and support then
coincide.

The validity of a formula A for a state P is written P |= A and is defined by recursion
over A as follows.

I Definition 4.

P |=
∧
i∈I Ai if for all i ∈ I it holds that P |= Ai

P |= ¬A if not P |= A

P |= ϕ if P ` ϕ
P |= 〈α〉A if there exists P ′ such that P α−→ P ′ and P ′ |= A

In the last clause we assume that 〈α〉A is a representative of its alpha-equivalence class such
that bn(α)#P . It is easy to show that |= is an equivariant relation.

I Definition 5. Two states P and Q are logically equivalent, written P ·= Q, if for all A it
holds that P |= A iff Q |= A

I Theorem 6. P ·∼ Q =⇒ P
·= Q

J. Parrow, J. Borgström, L-H. Eriksson, R. Gutkovas, and T. Weber 203

The proof is by induction over formulas. The converse result uses the idea of distinguishing
formulas.

I Definition 7. A distinguishing formula for P and Q is a formula A such that P |= A and
not Q |= A.

The following lemma says that we can find such a formula where, a bit surprisingly, the
support does not depend on Q.

I Lemma 8. If P 6 ·= Q then there exists a distinguishing formula B for P and Q such that
supp(B) ⊆ supp(P).

The proof is by direct construction. If P 6 ·= Q then there exists a distinguishing formula
A for P and Q. Let ΠP be the group of finite permutations that leave names in supp(P)
invariant, i.e., ΠP = {π | ∀n ∈ supp(P). π(n) = n}. Then {π ·A | π ∈ ΠP } is supported by
supp(P). Since |= is equivariant we have that for all π ∈ ΠP it holds P = π · P |= π ·A. Let
B =

∧
π∈ΠP

π ·A, thus P |= B but Q 6|= B since the identity is in ΠP and Q 6|= A. Note that
B here uses a conjunction which is not uniformly bounded.

I Theorem 9. P ·= Q =⇒ P
·∼ Q

The main idea of the proof is to establish that ·= is a bisimulation. The simulation
requirement is by contradiction: Assume that ·= does not satisfy the simulation requirement.
Then there exist P,Q, P ′, α such that P ·= Q and P α−→ P ′ and, letting Q = {Q′ |Q α−→ Q′},
for all Q′ ∈ Q it holds P ′ 6 ·= Q′. By Lemma 8 we can find a distinguishing formula BQ′ for P ′
and Q′ with supp(BQ′) ⊆ supp(P ′). Therefore the formula B =

∧
Q′∈QBQ′ is well-formed

with support included in supp(P ′). We thus get that P |= 〈α〉B but not Q |= 〈α〉B,
contradicting P ·= Q.

This proof of the simulation property is different from other such proofs in the literature.
For finite branching transition systems, Q is finite so finite conjunction is enough to define
B. For transition systems with the name preservation property, i.e., that if P α−→ P ′ then
supp(P ′) ⊆ supp(P)∪supp(α), uniformly bounded conjunction suffices with common support
supp(P) ∪ supp(Q) ∪ supp(α). Without the name preservation property, we here use a not
uniformly bounded conjunction in Lemma 8.

4 Derived formulas

Dual connectives. We define logical disjunction
∨
i∈I Ai in the usual way as ¬

∧
i∈I ¬Ai,

when the indexing set I has bounded cardinality and {Ai | i ∈ I} has finite support. A
special case is I = {1, 2}: we then write A1 ∧A2 instead of

∧
i∈I Ai, and dually for A1 ∨A2.

We write > for the empty conjunction
∧
i∈∅, and ⊥ for ¬>. The must modality [α]A is

defined as ¬〈α〉¬A, and requires A to hold after every possible α-labelled transition from the
current state. For example, [α](A ∧B) is equivalent to [α]A ∧ [α]B, and dually 〈α〉(A ∨B)
is equivalent to 〈α〉A ∨ 〈α〉B.

Quantifiers. Let S be any finitely supported set of bounded cardinality and use v to range
over members of S. Write A{v/x} for the substitution of v for x in A, and assume this
substitution function is equivariant. Then we define ∀x ∈ S .A as

∧
v∈S A{v/x}. There

is not necessarily a common finite support for the formulas A{v/x}, for example if S is
some term algebra over names, but the set {A{v/x} | v ∈ S} has finite support bounded by
{x} ∪ supp(S) ∪ supp(A). In our examples in Section 6, substitution is defined inductively

CONCUR’15

204 Modal Logics for Nominal Transition Systems

on the structure of formulas, based on primitive substitution functions for actions and state
predicates, avoiding capture and preserving the binding names of actions.

Existential quantification ∃x ∈ S .A is defined as the dual ¬∀x ∈ S .¬A. When X is a
metavariable used to range over a nominal set X , we simply write X for “X ∈ X ”. As an
example, ∀a .A means that the formula A{n/a} holds for all names n ∈ N .

New name quantifier. The new name quantifier Nx.A intuitively states that P |= A{n/x}
holds where n is a fresh name for P . For example, suppose we have actions of the form a b

for input, and a b for output where a and b are free names, then the formula Nx.[a x]〈b x〉>
expresses that whenever a process inputs a fresh name x on channel a, it has to be able to
output that name on channel b. If the name received is not fresh (i.e., already present in P)
then P is not required to do anything. Therefore this formula is weaker than ∀x . [a x]〈b x〉>.

To define this formally we use name permutation rather than substitution. Since A and
P have finite support, if P |= (xn) ·A holds for some n fresh for P , by equivariance it also
holds for almost all n, i.e., all but finitely many n. Conversely, if it holds for almost all n, it
must hold for some n# supp(P). Therefore Nx is often pronounced “for almost all x”. In
other words, P |= Nx.A holds if {x | P |= A(x)} is a cofinite set of names [25, Definition 3.8].
Letting cof = {S ⊆ N |N \ S is finite} we thus encode Nx.A as

∨
S∈cof

∧
n∈S(xn)·A. This

formula states there is a cofinite set of names such that for all of them A holds. The support
of

∧
n∈S(xn)·A is bounded by (N \ S) ∪ supp(A) where S ∈ cof, and the support of the

encoding
∨
S∈cof

∧
n∈S(xn)·A is bounded by supp(A).

Next step. We generalise the action modality to sets of actions in the following way. If T
is a finitely supported set of actions such that bn(α)#A for all α ∈ T , we write 〈T 〉A for∨
α∈T 〈α〉A. The support of the set {〈α〉A | α ∈ T} is bounded by supp(T) ∪ supp(A) and

thus finite. Dually, we write [T]A for ¬〈T 〉¬A, denoting that A holds after all transitions
with actions in T .

To encode the next-step modality, let actA = {α | bn(α)#A}. Note that supp(actA) ⊆
supp(A) is finite. We write 〈 〉A for 〈actA〉A, meaning that we can make some (non-capturing)
transition to a state where A holds. As an example, 〈 〉> means that the current state is
not deadlocked. The dual modality []A = ¬〈 〉¬A means that A holds after every transition
from the current state. Larsen [17] uses the same approach to define next-step operators
in HML, though his version is less expressive since he uses a finite action set to define the
next-step modality.

Fixpoints. Fixpoint operators are a way to introduce recursion into a logic. For example,
they can be used to concisely express safety and liveness properties of a transition system,
where by safety we mean that some invariant holds for all reachable states, and by liveness
that some property will eventually hold. Kozen (1983) [16] introduced the least (µX.A) and
the greatest (νX.A) fixpoints in modal logic. Intuitively, the least fixpoint states a property
that holds for states of a finite path, while the greatest holds for states of an infinite path.

I Theorem 10. The least and greatest fixpoint operators are expressible in our HML.

For the full proofs and definitions, see the appendix of [22]. The idea is to start with an
extended language with the forms µX.A and X, where X ranges over a countable set of
variables and all occurrences of X in A are in the scope of an even number of negations.
Write A(B) for the capture-avoiding substitution of B for X in A, and let A0(B) = B and
Ai+1(B) = A(Ai(B)). Then the encoding of a least fixpoint µX.A is

∨
i∈NA

i(⊥), given that

J. Parrow, J. Borgström, L-H. Eriksson, R. Gutkovas, and T. Weber 205

fixpoints have been recursively expanded in A. The disjunction has finite support supp(A),
since substitution is equivariant. When interpreting formulas as elements of the power-set
lattice of states, this encoding yields a fixpoint of A(·): the sequence of formulas Ai(⊥)
yields an approximation from below. We define the greatest fixpoint operator νX.A in terms
of the least as ¬µX.¬A(¬X).

Using the greatest fixpoint operator we can state global invariants: νX.[α]X∧A expresses
that A holds along all paths labelled with α. Temporal operators such as eventually can also
be encoded using the least fixpoint operator: the formula µX.〈α〉X ∨A states that eventually
A holds along some path labelled with α. We can freely mix the fixpoint operators to obtain
formulas like νX.[α]X ∧ (µY.〈β〉Y ∨ A) which means that for each state along any path
labelled with α, a state where A holds is reachable along a path labelled with β. Formulas
with mixed fixpoint combinators are very expressive, and with the next operator they can
encode the branching-time logic CTL∗ [11].

5 Logics for variants of bisimilarity

The bisimilarity of Section 3 is of the early kind: any substitutive effect of an input (typically
replacing a variable with the value received) must have manifested already in the action
corresponding to the input, since we apply no substitution to the target state. Alternative
treatments of substitutions include late-, open- and hyperbisimilarity, where the input action
instead contains the variable to be replaced, and there are different ways to make sure that
bisimulations are preserved by relevant substitutions.

In our definition of nominal transition systems there are no particular input variables
in the states or in the actions, and thus no a priori concept of “substitution”. We therefore
choose to formulate the alternatives using so called effect functions. An effect is simply a
finitely supported function from states to states. For example, in the monadic pi-calculus the
effects would be the functions replacing one name by another. In a value-passing calculus the
effects would be substitutions of values for variables. In the psi-calculi framework the effects
would be sequences of parallel substitutions. Our definitions and results are applicable to
any of these; our only requirement is that the effects form a nominal set which we designate
by F . Variants of bisimilarity then correspond to requiring continuation after various effects.
For example, if the action contains an input variable x then the effects appropriate for late
bisimilarity would be substitutions for x.

We will formulate these variants as F/L-bisimilarity, where F (for first) represents the set
of effects that must be observed before following a transition, and L (for later) is a function
that represents how this set F changes depending on the action of a transition, i.e., L(α, F)
is the set of effects that must follow the action α if the previous effect set was F . In the
following let Pfs(F) ranged over by F be the finitely supported subsets of F , and L range
over equivariant functions from actions and Pfs(F) to Pfs(F).

I Definition 11. An L-bisimulation where L : act× Pfs(F)→ Pfs(F) is a Pfs(F)-indexed
family of symmetric binary relations on states satisfying the following:

If RF (P,Q) then:
1. Static implication: for all f ∈ F it holds that f(P) ` ϕ implies f(Q) ` ϕ.
2. Simulation: For all f ∈ F and α, P ′ such that bn(α)#f(Q) there exist Q′ such that

if f(P) α−→ P ′ then f(Q) α−→ Q′ and RL(α,F)(P ′, Q′)

We write P F/L∼ Q, called F/L-bisimilarity, to mean that there exists an L-bisimulation
R such that RF (P,Q).

CONCUR’15

206 Modal Logics for Nominal Transition Systems

Most strong bisimulation varieties can be formulated as F/L-bismilarity. Write idstates
for the identity function on states, ID for the singleton set {idstates} and allID for the
constant function λ(α, F).ID.

Early bisimilarity, precisely as defined in Definition 2, is ID / allID-bisimilarity.
Early equivalence, i.e., early bisimilarity for all possible effects, is F / allID-bisimilarity.
Late bisimilarity is ID /L-bisimilarity, where L(α, F) yields the effects that represent
substitutions for variables in input actions α (and ID for other actions).
Late equivalence is similarly F /L-bisimilarity.
Open bisimilarity is F /L-bisimilarity where L(α, F) is the set F minus all effects that
change bound output names in α.
Hyperbisimilarity is F / λ(α, F).F-bisimilarity.

All of the above are generalizations of known and well-studied definitions. The original
value-passing variant of CCS [18] uses early bisimilarity. The original bisimilarity for the
pi-calculus is of the late kind [19], where it also was noted that late equivalence is the
corresponding congruence. Early bisimilarity and equivalence and open bisimilarity for the
pi-calculus were introduced in 1993 [20, 26], and hyperbisimilarity for the fusion calculus in
1998 [23].

In view of this we only need to provide a modal logic adequate for F/L-bisimilarity; it
can then immediately be specialized to all of the above variants. For this we introduce a new
kind of logical operator as follows.

I Definition 12. For each f ∈ F the logical unary effect consequence operator 〈f〉 has the
definition

P |= 〈f〉A if f(P) |= A

Thus the formula 〈f〉A means that A holds if the effect f is applied to the state. Note that
by definition this distributes over conjunction and negation, e.g. P |= ¬〈f〉A iff P |= 〈f〉¬A
iff not f(P) |= A etc. The effect consequence operator is similar in spirit to the action
modalities: both 〈f〉A and 〈α〉A assert that something (an effect or action) must be possible
and that A holds afterwards. Indeed, effects can be viewed as a special case of transitions (as
formalised in Definition 16 below) which is why we give the operators a common syntactic
appearance.

Now define the formulas that can directly use effects from F and after actions use effects
according to L, ranged over by AF/L, in the following way:

I Definition 13. Given L as in Definition 11, for all F ∈ Pfs(F) define AF/L as the set of
formulas given by the mutually recursive definitions:

AF/L ::=
∧
i∈I

A
F/L
i | ¬AF/L | 〈f〉ϕ | 〈f〉〈α〉AL(α,F)/L

where we require f ∈ F and that the conjunction has bounded cardinality and finite support.

Let P F/L= Q mean that P and Q satisfy the same formulas in AF/L.

I Theorem 14. P F/L∼ Q ⇔ P
F/L= Q

Proof: The direction ⇒ is a generalization of Theorem 6. The other direction is a gener-
alization of Theorem 9: we prove that F/L= is an F/L-bisimulation. It needs a variant of
Lemma 8:

J. Parrow, J. Borgström, L-H. Eriksson, R. Gutkovas, and T. Weber 207

I Lemma 15. If A ∈ AF/L is a distinguishing formula for P and Q, then there exists a
distinguishing formula B ∈ AF/L for P and Q such that supp(B) ⊆ supp(P, F).

The proof is an easy generalisation of Lemma 8.
An alternative to the effect consequence operators is to transform the transition system

such that standard (early) bisimulation on the transforms coincides with F/L-bisimilarity.
The idea is to let the effect function be part of the transition relation, thus f(P) = P ′

becomes P f−→ P ′.

I Definition 16. Assume F and L as above. The L-transform of a nominal transition system
T is a nominal transition system where:

The states are of the form ac(F, f(P)) and ef(F, P), for f ∈ F ∈ Pfs(F) and states P
of T. The intuition is that states of kind ac can perform ordinary actions, and states of
kind ef can commit effects.
The state predicates are those of T.
ac(F, P) ` ϕ if in T it holds P ` ϕ, and ef(F, P) ` ϕ never holds.
The actions are the actions of T and the effects in F .
bn is as in T, and additionally bn(f) = ∅ for f ∈ F .
The transitions are of two kinds. If in T it holds P α−→ P ′, then there is a transition
ac(F, P) α−→ ef(L(α, F), P ′). And for each f ∈ F it holds ef(F, P) f−→ ac(F, f(P)).

I Theorem 17. P F/L∼ Q in T if and only if ef(F, P) ·∼ ef(F,Q) in the L-transform of T.

The proof idea is that from an F/L-bisimulation in T it is easy to construct an (ordinary)
bisimulation in the L-transform of T, and vice versa. A direct consequence is that P F/L∼ Q

iff ef(F, P) ·= ef(F,Q) in the L-transform of T. Here the actions in the logic would include
effects f ∈ F .

6 Related work and examples

In this first part of this section we discuss other modal logics for process calculi, with a focus
on how their constructors can be captured by finitely supported conjunction in our HML.
This comparison is by necessity somewhat informal; a fully formal correspondence would
fail to hold in many cases due to differences in the conjunction operator of the logic (finite,
uniformly bounded or unbounded vs. bounded support). In the later part of this section, we
obtain novel, adequate HMLs for more recent process calculi.

HML for CCS. The first published HML is Hennessy and Milner (1985) [15]. They use
finite (binary) conjunction with the assumption of image-finiteness for ordinary CCS. The
same goes for the value-passing calculus and logic by Hennessy and Liu (1995) [14], where
image-finiteness is due to a late semantics and the logic contains quantification over data
values. A similar idea and argument is in a logic for LOTOS by Calder et al. (2002) [8],
though that only considers stratified bisimilarity up to ω.

Hennessy and Liu’s value-passing calculus is based on abstractions (x)P and concretions
(v, P) where v is drawn from a set of values. To encode the modalities of their logic in
ours, we add effects idstates and ?v, with ?v((x)P) = P{v/x}, and transitions (v, P) !v−→ P .
Letting L(a?,_) = {?v | v ∈ values} and L(α,_) = {idstates} otherwise, late bisimilarity
is {idstates}/L-bisimilarity as defined in Section 5. We can then encode their universal

CONCUR’15

208 Modal Logics for Nominal Transition Systems

quantifier ∀x.A as
∧
v〈?v〉A{v/x}, which has support supp(A)\{x}, and their output modality

〈c!x〉A as 〈c!〉
∨
v〈!v〉A{v/x}, with support {c} ∪ (supp(A) \ {x}).

An infinitary HML for CCS is discussed in Milner’s book (1989) [18], where also the
process syntax contains infinite summation. There are no restrictions on the indexing sets
and no discussion about how this can exhaust all names. The adequacy theorem is proved by
stratifying bisimilarity and using transfinite induction over all ordinals, where the successor
step basically is the contraposition of the argument in Theorem 9, though without any
consideration of finite support. A more rigorous treatment of the same ideas is by Abramsky
(1991) [3] where uniformly bounded conjunction is used throughout.

Pi-calculus. The first HML for the pi-calculus is by Milner et al. (1993) [20], where infinite
conjunction is used in the early semantics and conjunctions are restricted to use a finite set of
free names. The adequacy proof is of the same structure as in this paper. The logic defined
in this paper, applied to the pi-calculus transition system omitting bound input actions x(y),
contains the logic F of Milner et al., or the equipotent logic FM if we take the set of name
matchings [a = b] as state predicates.

Spi Calculus. Frendrup et al. (2002) [12] provide three Hennessy-Milner logics for the spi
calculus [2]. The action modalities in Frendrup’s logic only use parts of the labels: on process
output, the modality 〈a〉 tests only the channel used. On process input, the modality 〈aξ〉
describes how the observer σ computed the received message M = e(ξσ), where ξ is an
expression that may contain decryptions and projections, and supp(ξ) \ dom(σ) is fresh for
P and σ. Simplifying the labels of the transition system to τ and the aforementioned a and
aξ labels, our minimal HML applied to the particular nominal transition system of the spi
calculus has the same modalities as the logic F of Frendrup et al., although the latter uses
infinite conjunction without any mechanism to prevent formulas from exhausting all names,
leaving none available for alpha-conversion. Thus their notion of substitution is not formally
well defined.

Their logic EM replaces the simple input modality by an early input modality 〈a(x)〉EA,
which (after a minor manipulation of the input labels) can be encoded as the conjunction∧
ξ〈aξ〉A{ξ/x}, which has support supp(A) \ {x}. We do not consider their logic LM that

uses a late input modality, since its application relies on sets that do not have finite support
[12, Theorem 6.12], which are not meaningful in nominal logic.

Applied Pi-calculus. A more recent work is a logic by Pedersen (2006) [24] for the applied
pi-calculus [1], where the adequacy theorem uses image-finiteness of the semantics in the
contradiction argument. The logic contains atomic formulae for equality in the frame of a
process, corresponding to our state predicates. The main difference to our logic is an early
input modality and a quantifier ∃x.

Their early input modality 〈a(x)〉A can be straightforwardly encoded as the conjunc-
tion

∧
M 〈aM〉A{M/x}, with support {a} ∪ (supp(A) \ {x}). For the existential quantifier,

there is a requirement that the received term M can be computed from the current know-
ledge available to an observer of the process, which we here write M ∈ S(P). We add
actions M/x with bn(M/x) = x and transitions P M/x−−−→ P | {M/x} if M ∈ S(P) and x#P .
We can then encode ∃x.A as

∨
M 〈M/x〉A, which has support supp(A) \ {x}.

Fusion calculus. In an HML for the fusion calculus by Haugstad et al. (2006) [13] the
fusions (i.e., equality relations on names) are action labels ϕ. The corresponding modal

J. Parrow, J. Borgström, L-H. Eriksson, R. Gutkovas, and T. Weber 209

operator 〈ϕ〉A has the semantics that the formula A must be satisfied for all substitutive
effects of ϕ (intuitively, substitutions that map each name to a fixed representative for its
equivalence class). By making the substitutive effects of fusion actions visible in the transition
system, we can encode this modal operator. Their adequacy theorem uses the contradiction
argument with infinite conjunction, with no argument about finiteness of names for the
distinguishing formula.

Nominal transition systems. De Nicola and Loreti (2008) [10] define a general format for
nominal transition systems and an associated modal logic, that is adequate for image-finite
transition systems only and uses several different modalities for name revelation and resource
consumption. In contrast, we seek a small and expressive HML for general nominal transition
systems. Indeed, the logic of De Nicola and Loreto can be seen as a special case of ours:
their different transition systems can be merged into a single one, and we can encode their
quantifiers and fixpoint operator as described in Section 4. Nominal SOS of Cimini et
al. (2012) [9] is also a special case of nominal transition systems.

In each of the final two examples below, no HML has to our knowledge yet been proposed,
and we immediately obtain one by instantiating the logic in the present paper.

Concurrent constraint pi calculus. The concurrent constraint pi calculus (CC-pi) by Bus-
cemi and Montanari (2007) [6] extends the explicit fusion calculus [28] with a more general
notion of constraint stores c. The reference equivalence for CC-pi is open bisimulation [7]
(closely corresponding to hyperbisimulation in the fusion calculus [23]), which differs from
labelled bisimulation in two ways: First, two equivalent processes must be equivalent under
all store extensions. To encode this, we let the effects F be the set of constraint stores c
different from 0, and let c(P) = c | P . Second, when simulating a labelled transition P α−→ P ′,
the simulating process Q can use any transition Q β−→ Q′ with an equivalent label, as given
by a state predicate α = β. As an example, if α = a〈x〉 is a free output label then P ` α = β

iff β = b〈y〉 where P ` a = b and P ` x = y. To encode this, we transform the labels of the
transition system by replacing them with their equivalence classes, i.e., P α−→ P ′ becomes
P

[α]P−−−→ P ′ where β ∈ [α]P iff P ` β = α. Hyperbisimilarity (Definition 11) on this transition
system then corresponds to open bisimilarity, and the modal logic defined in Section 5 is
adequate.

Psi-calculi. In psi-calculi by Bengtson et al. (2011) [4], the labelled transitions take the
form Ψ . P

α−→ P ′, where the assertion environment Ψ is unchanged after the step. We
model this as a nominal transition system by letting the set of states be pairs (Ψ, P) of
assertion environments and processes, and define the transition relation by (Ψ, P) α−→ (Ψ, P ′)
if Ψ . P

α−→ P ′. The notion of bisimulation used with psi-calculi also uses an assertion
environment and is required to be closed under environment extension, i.e., if Ψ . P ∼ Q,
then Ψ ⊗ Ψ′ . P ∼ Q for all Ψ′. We let the effects F be the set of assertions, and
define Ψ((Ψ′, P)) = (Ψ⊗Ψ′, P). Hyperbisimilarity on this transition system then subsumes
the standard psi-calculi bisimilarity, and the modal logic defined in Section 5 is adequate.

7 Conclusion

We have given a general account of transition systems and Hennessy-Milner Logic using
nominal sets. The advantage of our approach is that it is more expressive than previous
work. We allow infinite conjunctions that are not uniformly bounded, meaning that we can

CONCUR’15

210 Modal Logics for Nominal Transition Systems

encode e.g. quantifiers and the next-step operator. We have given ample examples of how
the definition captures different variants of bisimilarity and how it relates to many different
versions of HML in the literature.

We have formalized the results of Section 3, including Theorems 6 and 9, using Nominal
Isabelle [27].1 Nominal Isabelle is an implementation of nominal logic in Isabelle/HOL [21],
a popular interactive proof assistant for higher-order logic. It adds convenient specification
mechanisms for, and automation to reason about, datatypes with binders.

However, Nominal Isabelle does not directly support infinitely branching datatypes.
Therefore, the mechanization of formulas (Definition 3) was challenging. We construct
formulas from first principles in higher-order logic, by defining an inductive datatype of raw
formulas (where alpha-equivalent raw formulas are not identified). The datatype constructor
for conjunction recurses through sets of raw formulas of bounded cardinality, a feature made
possible only by a recent re-implementation of Isabelle/HOL’s datatype package [5].

We then define alpha-equivalence of raw formulas. For finitely branching datatypes,
alpha-equivalence is based on a notion of free variables. Here, to obtain the correct notion of
free variables of a conjunction, we define alpha-equivalence and free variables via mutual
recursion. This necessitates a fairly involved termination proof. (All recursive functions
in Isabelle/HOL must be terminating.) To obtain formulas, we quotient raw formulas by
alpha-equivalence, and finally carve out the subtype of all terms that can be constructed from
finitely supported ones. We then prove important lemmas; for instance, a strong induction
principle for formulas that allows the bound names in 〈α〉A to be chosen fresh for any finitely
supported context.

Our development, which in total consists of about 2700 lines of Isabelle definitions and
proofs, generalizes the constructions that Nominal Isabelle performs for finitely branching
datatypes to a type with infinite branching. To our knowledge, this is the first mechanization
of an infinitely branching nominal datatype in a proof assistant.

Acknowledgements. We thank Andrew Pitts for enlightening discussions on nominal data-
types with infinitary constructors, and Dmitriy Traytel for providing a formalization of
cardinality-bounded sets.

References

1 Martín Abadi and Cédric Fournet. Mobile values, new names, and secure communication.
In Proceedings of POPL’01, pages 104–115. ACM, January 2001.

2 Martín Abadi and Andrew D. Gordon. A calculus for cryptographic protocols: The Spi
calculus. Journal of Information and Computation, 148(1):1–70, 1999.

3 Samson Abramsky. A domain equation for bisimulation. Journal of Information and
Computation, 92(2):161–218, 1991.

4 Jesper Bengtson, Magnus Johansson, Joachim Parrow, and Björn Victor. Psi-calculi: a
framework for mobile processes with nominal data and logic. Logical Methods in Computer
Science, 7(1), 2011.

5 Jasmin Christian Blanchette, Johannes Hölzl, Andreas Lochbihler, Lorenz Panny, Andrei
Popescu, and Dmitriy Traytel. Truly modular (co)datatypes for Isabelle/HOL. In G. Klein
and R. Gamboa, editors, Proc. of ITP 2014, volume 8558 of LNCS, pages 93–110. Springer,
2014.

1 Our Isabelle theories are available at https://github.com/tjark/ML-for-NTS.

https://github.com/tjark/ML-for-NTS

J. Parrow, J. Borgström, L-H. Eriksson, R. Gutkovas, and T. Weber 211

6 Maria Grazia Buscemi and Ugo Montanari. CC-Pi: A constraint-based language for spe-
cifying service level agreements. In Rocco De Nicola, editor, Proceedings of ESOP 2007,
volume 4421 of LNCS, pages 18–32. Springer, 2007.

7 Maria Grazia Buscemi and Ugo Montanari. Open bisimulation for the concurrent constraint
pi-calculus. In Sophia Drossopoulou, editor, Proceedings of ESOP 2008, volume 4960 of
LNCS, pages 254–268. Springer, 2008.

8 Muffy Calder, Savi Maharaj, and Carron Shankland. A modal logic for full LOTOS based
on symbolic transition systems. The Computer Journal, 45(1):55–61, 2002.

9 Matteo Cimini, Mohammad Reza Mousavi, Michel A. Reniers, and Murdoch J. Gabbay.
Nominal SOS. Electron. Notes Theor. Comput. Sci., 286:103–116, September 2012.

10 Rocco De Nicola and Michele Loreti. Multiple-labelled transition systems for nominal
calculi and their logics. Mathematical Structures in Computer Science, 18(1):107–143, 2008.

11 E. Allen Emerson. Model checking and the mu-calculus. In DIMACS Series in Discrete
Mathematics, pages 185–214. American Mathematical Society, 1997.

12 Ulrik Frendrup, Hans Hüttel, and Jesper Nyholm Jensen. Modal logics for cryptographic
processes. Electr. Notes Theor. Comput. Sci., 68(2):124–141, 2002.

13 Arild Martin Møller Haugstad, Anders Franz Terkelsen, and Thomas Vindum. A modal
logic for the fusion calculus. Unpublished, University of Aalborg, http://vbn.aau.dk/ws/
files/61067487/1149104946.pdf, 2006.

14 Matthew Hennessy and Xinxin Liu. A modal logic for message passing processes. Acta
Informatica, 32(4):375–393, 1995.

15 Matthew Hennessy and Robin Milner. Algebraic laws for nondeterminism and concurrency.
J. ACM, 32(1):137–161, 1985.

16 Dexter Kozen. Results on the propositional mu-calculus. Theoretical Computer Science,
27(3):333–354, 1983. Special Issue Ninth International Colloquium on Automata, Lan-
guages and Programming (ICALP) Aarhus, Summer 1982.

17 Kim G. Larsen. Proof systems for Hennessy-Milner logic with recursion. In M. Dauchet
and M. Nivat, editors, Proc. of CAAP’88, volume 299 of LNCS, pages 215–230. Springer,
1988.

18 Robin Milner. Communication and Concurrency. Prentice Hall, 1989.
19 Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes, I. Inf.

Comput., 100(1):1–40, 1992.
20 Robin Milner, Joachim Parrow, and David Walker. Modal logics for mobile processes.

Theoretical Computer Science, 114(1):149–171, 1993.
21 Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL – A Proof As-

sistant for Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.
22 Joachim Parrow, Johannes Borgström, Lars-Henrik Eriksson, Ramūnas Gutkovas, and

Tjark Weber. Modal logics for nominal transition systems. Technical Report 2015-021,
Department of Information Technology, Uppsala University, June 2015.

23 Joachim Parrow and Björn Victor. The fusion calculus: Expressiveness and symmetry in
mobile processes. In Proc. of LICS 1998, pages 176–185. IEEE CS Press, 1998.

24 Michael Pedersen. Logics for the applied pi calculus. Master’s thesis, Aalborg University,
2006. BRICS RS-06-19.

25 Andrew M. Pitts. Nominal Sets. Cambridge University Press, 2013.
26 Davide Sangiorgi. A theory of bisimulation for the π-calculus. In Eike Best, editor, Pro-

ceedings of CONCUR’93, volume 715 of LNCS, pages 127–142. Springer, 1993.
27 Christian Urban and Cezary Kaliszyk. General bindings and alpha-equivalence in Nominal

Isabelle. Logical Methods in Computer Science, 8(2), 2012.
28 Lucian Wischik and Philippa Gardner. Explicit fusions. Theoretical Computer Science,

304(3):606–630, 2005.

CONCUR’15

http://vbn.aau.dk/ws/files/61067487/1149104946.pdf
http://vbn.aau.dk/ws/files/61067487/1149104946.pdf

	Introduction
	Background on nominal sets
	Nominal transition systems and Hennessy-Milner logic
	Derived formulas
	Logics for variants of bisimilarity
	Related work and examples
	Conclusion

