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Abstract. Applied process calculi include advanced programming constructs such as
type systems, communication with pattern matching, encryption primitives, concurrent
constraints, nondeterminism, process creation, and dynamic connection topologies. Several
such formalisms, e.g. the applied pi calculus, are extensions of the the pi-calculus; a growing
number is geared towards particular applications or computational paradigms.

Our goal is a unified framework to represent different process calculi and notions of
computation. To this end, we extend our previous work on psi-calculi with novel abstract
patterns and pattern matching, and add sorts to the data term language, giving sufficient
criteria for subject reduction to hold. Our framework can accommodate several existing
process calculi; the resulting transition systems are isomorphic to the originals up to
strong bisimulation. We also demonstrate different notions of computation on data terms,
including cryptographic primitives and a lambda-calculus with erratic choice. Finally, we
prove standard congruence and structural properties of bisimulation; substantial parts of
the proof have been machine-checked using Nominal Isabelle.

1. Introduction

There is today a growing number of high-level constructs in the area of concurrency. Ex-
amples include type systems, communication with pattern matching, encryption primitives,
concurrent constraints, nondeterminism, and dynamic connection topologies. Combinations
of such constructs are included in a variety of application oriented process calculi. For each
such calculus its internal consistency, in terms of congruence results and algebraic laws,
must be established independently. Our aim is a framework where many such calculi fit
and where such results are derived once and for all, eliminating the need for individual
proofs about each calculus.

Our effort in this direction is the framework of psi-calculi [BJPV11], which provides
machine-checked proofs that important meta-theoretical properties, such as compositional-
ity of bisimulation, hold in all instances of the framework. We claim that the theoretical
development is more robust than that of other calculi of comparable complexity, since we
use a structural operational semantics given by a single inductive definition, and since we
have checked most results in the theorem prover Nominal Isabelle [Urb08].
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2 J BORGSTRÖM, R GUTKOVAS, J PARROW, B VICTOR, AND J ÅMAN POHJOLA

In this paper we introduce a novel generalization of pattern matching, decoupled from
the definition of substitution, and introduce sorts for data terms and names. The gener-
alized pattern matching is a new contribution that holds general interest; here it allows
us to directly capture computation on data in advanced process calculi, without elaborate
encodings. We evaluate our framework by providing instances that correspond to standard
calculi, and use several different notions of computation. We define strong criteria for a
psi-calculus to represent another process calculus, meaning that they are for all practical
purposes one and the same. Representation is stronger than the standard encoding cor-
respondences e.g. by Gorla[Gor10], which define criteria for one language to encode the
behaviour of another. The representations that we provide of other calculi advance our
previous work, where we had to resort to nontrivial encodings with unclear formal corre-
spondence to the standard calculi.

1.1. Background: Psi-calculi. In the following we assume the reader to be acquainted
with the basic ideas of process algebras based on the pi-calculus, and explain psi-calculi
by a few simple examples. Full definitions can be found in the references above, and for a
reader not acquainted with our work we recommend the first few sections of [BJPV11] for
an introduction.

A psi-calculus has a notion of data terms, ranged over by K,L,M,N , and we write
M N .P to represent an agent sending the term N along the channel M (which is also a
data term), continuing as the agent P . We write K(λx̃)X .Q to represent an agent that
can input along the channel K, receiving some object matching the pattern X, where x̃
are the variables bound by the prefix. These two agents can interact under two conditions.
First, the two channels must be channel equivalent, as defined by the channel equivalence
predicate M

.↔ K. Second, N must match the pattern X.

Formally, a transition is of kind Ψ � P
α−→ P ′, meaning that in an environ-

ment represented by the assertion Ψ the agent P can do an action α to become P ′.
An assertion embodies a collection of facts used to infer conditions such as the chan-
nel equivalence predicate

.↔. To continue the example, if N = X[x̃ := L̃] we will have

Ψ � M N .P | K(λx̃)X .Q
τ−→ P | Q[x̃ := L̃] when additionally Ψ ` M .↔ K, i.e. when

the assertion Ψ entails that M and K represent the same channel. In this way we may
introduce a parametrised equational theory over a data structure for channels. Conditions,

ranged over by ϕ, can be tested in the if construct: we have that Ψ � if ϕ then P
α−→ P ′

when Ψ ` ϕ and Ψ � P
α−→ P ′. In order to represent concurrent constraints and local

knowledge, assertions can be used as agents: LΨM stands for an agent that asserts Ψ to
its environment. Assertions may contain names and these can be scoped; for example, in
P | (νa)(LΨM | Q) the agent Q uses all entailments provided by Ψ , while P only uses those
that do not contain the name a.

Assertions and conditions can, in general, form any logical theory. Also the data terms
can be drawn from an arbitrary set. One of our major contributions has been to pinpoint the
precise requirements on the data terms and logic for a calculus to be useful in the sense that
the natural formulation of bisimulation satisfies the expected algebraic laws (see Section 2).
It turns out that it is necessary to view the terms and logics as nominal [Pit03]. This means
that there is a distinguished set of names, and for each term a well defined notion of support,
intuitively corresponding to the names occurring in the term. Functions and relations
must be equivariant, meaning that they treat all names equally. In addition, we impose
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straight-forward requirements on the combination of assertions, on channel equivalence,
and on substitution. Our requirements are quite general, and therefore our framework
accommodates a wide variety of applied process calculi.

1.2. Extension: Generalized pattern matching. In our original definition of psi-calculi
([BJPV11], called “the original psi-calculi” below), patterns are just terms and pattern
matching is defined by substitution in the usual way: the output object N matches the

pattern X with binders x̃ iff N = X[x̃ := L̃]. In order to increase the generality we now
introduce a function match which takes a term N , a sequence of names x̃ and a pattern X,

returning a set of sequences of terms; the intuition is that if L̃ is in match(N, x̃,X) then

N matches the pattern X by instantiating x̃ to L̃. The receiving agent K(λx̃)X .Q then

continues as Q[x̃ := L̃].
As an example we consider a term algebra with two function symbols: enc of arity

three and dec of arity two. Here enc(N,n, k) means encrypting N with the key k and
a random nonce n and and dec(N, k) represents symmetric key decryption, discarding
the nonce. Suppose an agent sends an encryption, as in M enc(N,n, k) . P . If we allow
all terms to act as patterns, a receiving agent can use enc(x, y, z) as a pattern, as in
c(λx, y, z)enc(x, y, z) . Q, and in this way decompose the encryption and extract the message
and key. Using the encryption function as a destructor in this way is clearly not the intention
of a cryptographic model. With the new general form of pattern matching, we can simply
limit the patterns to not bind names in terms at key position. Together with the separation
between patterns and terms, this allows to directly represent dialects of the spi-calculus as
in Examples ?? and ?? in Section 5.

Moreover, the generalization makes it possible to safely use rewrite rules such as
dec(enc(M,N,K),K) → M . In the psi-calculi framework such evaluation is not a primi-
tive concept, but it can be part of the substitution function, with the idea that with each
substitution all data terms are normalized according to rewrite rules. Such evaluating sub-
stitutions are dangerous for two reasons. First, in the original psi-calculi they can introduce
ill-formed input prefixes. The input prefix M(λx̃)N is well-formed when x̃ ⊆ n(N), i.e. the
names x̃ must all occur in N ; a rewrite of the well-formed M(λy)dec(enc(N, y, k), k) . P
to M(λy)N .P yields an ill-formed agent when y does not appear in N . Such ill-formed
agents could also arise from input transitions in some original psi-calculi; with the current
generalization preservation of well-formedness is guaranteed.

Second, in the original psi-calculi there is a requirement that a substitution of L̃ for x̃ in

M must yield a term containing all names in L̃ whenever x̃ ⊆ n(M). The reason is explained
at length in [BJPV11]; briefly put, without this requirement the scope extension law is
unsound. If rewrites such as dec(enc(M,N,K),K) → M are performed by substitutions
this requirement is not fulfilled, since a substitution may then erase the names in N and
K. However, a closer examination reveals that this requirement is only necessary for some
uses of substitution. In the transition

M(λx̃)N.P
K N [x̃:=L̃]−−−−−−−→ P [x̃ := L̃]

the non-erasing criterion is important for the substitution above the arrow (N [x̃ := L̃])

but unimportant for the substitution after the arrow (P [x̃ := L̃]). In the present paper,
we replace the former of these uses by the match function, where a similar non-erasing
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criterion applies. All other substitutions may safely use arbitrary rewrites, even erasing
ones.

In this paper, we address these three issues by introducing explicit notions of patterns,
pattern variables and matching. This allows us to control precisely which parts of mes-
sages can be bound by pattern-matching and how messages can be deconstructed. It also
ensures that well-formedness is preserved by transitions and admits computations such as
dec(enc(M,N,K),K)→M in substitutions.

1.3. Extension: Sorting. Applied process calculi often make use of a sort system. The
applied pi-calculus [AF01] has a name sort and a data sort; terms of name sort must not
appear as subterms of terms of data sort. It also makes a distinction between input-bound
variables (which may be substituted) and restriction-bound names (which may not). The
pattern-matching spi-calculus [HJ06] uses a sort of patterns and a sort of implementable
terms; every implementable term can also be used as a pattern.

To represent such calculi, we admit a user-defined sort system on names, terms and
patterns. Substitutions are only well-defined if they conform to the sorting discipline. To
specify which terms can be used as channels, and which values can be received on them, we
use compatibility predicates on the sorts of the subject and the object in input and output
prefixes. The conditions for preservation of sorting by transitions (subject reduction) are
very weak, allowing for great flexibility when defining instances.

The restriction to well-sorted substitution also allows to avoid “junk”: terms that exist
solely to make substitutions total. A prime example is representing the polyadic pi-calculus
as a psi-calculus. The terms that can be transmitted between agents are tuples of names.
Since a tuple is a term it can be substituted for a name, even if that name is already part
of a tuple. The result is that the terms must admit nested tuples of names, which do not
occur in the original calculus. Such anomalies disappear when introducing an appropriate
sort system; cf. Section 4.1.

1.4. Related work. Pattern-matching is in common use in functional programming lan-
guages. Scala admits pattern-matching of objects [EOW07] using a method unapply that
turns the receiving object into a matchable value (e.g. a tuple). F# admits the definition
of pattern cases independently of the type that they should match [SNM07], facilitating
interaction with third-party and foreign-language code. Turning to message-passing sys-
tems, LINDA [Gel85] uses pattern-matching when receiving from a tuple space. Similarly,
in Erlang, message reception from a mailbox is guarded by a pattern.

These notions of patterns, with or without computation, are easily supported by the
match construct. However, the standard first-match policy needs to be accomodated by
extending the pattern language, as is usual for core calculi [Kri09].

Pattern matching in process calculi. The pattern-matching spi-calculus [HJ06] limits which
variables may be binding in a pattern in order to match encrypted messages without bind-
ing unknown keys (cf. Example ??). The Kell calculus [SS05] also uses pattern languages
equipped with a match function. However, in the Kell calculus the channels are single names
and appear as part of the pattern in the input prefix, patterns may match multiple commu-
nications simultaneously (à la join calculus), and first-order pattern variables only match
names (not composite messages) making forwarding and partial decomposition impossible.
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The applied pi-calculus [AF01] models deterministic computation by using for data
language a term algebra modulo an equational logic. ProVerif [Bla11] is a specialised tool
for security protocol verification in an extension of applied pi, including a pattern matching
construct. Its implementation allows pattern matching of tagged tuples modulo a user-
defined rewrite system; this is strictly less general than the psi-calculus pattern matching
described in this paper (cf. Section 5.1).

Other tools for process calculi extended with datatypes include mCRL2 [CGK+13] for
ACP, which allows higher order sorted term algebras and equational logic, and PAT3 [LSD11]
which includes a CSP] [SLDC09] module where actions built over types like booleans and
integers are extended with C]-like programs. In all these cases, the pattern matching is
defined by substitution in the usual way.

A comparison of expressiveness to calculi with non-binary (e.g., join-calculus [FG96])
or bidirectional (e.g., dyadic interaction terms [Hon93] or the concurrent pattern calcu-
lus [GWGJ10]) communication primitives would be interesting. We here inherit positive
results from the pi calculus, such as the encoding of the join-calculus.

Sort systems for mobile processes. Sorts for the pi-calculus were first described by Mil-
ner [Mil93], and were developed in order to remove nonsensical processes using polyadic
communication, similar to the motivation for the present work.

In contrast, Hüttel’s dependently typed psi-calculi [Hüt11] is intended for a more fine-
grained control of the behaviour of processes. Typed psi-calculi are capable of capturing a
wide range of earlier sort systems for pi-like calculi formulated as instances of psi-calculi.
However, we focus on an earlier step: the creation of a calculus that is as close to the
modeller’s intent as possible. Indeed, sorted psi-calculi can be seen as a foundation for
typed psi-calculi: we give a formal account of the separation between variables and names
used in typed psi-calculi, and substantiate that Hüttel’s claim that “the set of well-[sorted]
terms is closed under well-[sorted] substitutions, which suffices” does not cause problems for
the meta-theory of the language. Typed psi-caluli are also less general than sorted psi-calculi
in some ways: the term language of typed psi-calculi is required to be a free term algebra
(without name binders); it uses only the standard notions of substitution and matching, and
does not admit any computation on terms. Furthermore, we prove meta-theoretical results
including congruence results and structural equivalence laws for well-sorted bisimulation,
and the preservation of well-sortedness under structural equivalence; no such results exist
for typed psi-calculi.

The state-of-the art report [HV13] of WG1 of the BETTY project (EU COST Action
IC1201) is a comprehensive guide to behavioural types for process calculi.

Fournet et al. [FGM05] add type-checking for a general authentication logic to a process
calculus with destructor matching; there the authentication logic is only used to specify
program correctness, and does not influence the operational semantics in any way.

1.5. Results and outline. In Section 2 we define psi-calculi with the above extensions and
prove preservation of well-formedness. In Section 3 we prove the usual algebraic properties
of bisimilarity. The proof is in two steps: a machine-checked proof for single-sorted calculi,
followed by a manual proof based on the translation of a multi-sorted psi calculus instance
to a corresponding single-sorted instance. We demonstrate the expressiveness of our gener-
alization in Section 4 where we directly represent standard calculi, and in Section 5 where
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we give examples of calculi with advanced data structures and computations on them, even
nondeterministic reductions.

2. Definitions

Psi-calculi are based on nominal data types. A nominal data type is similar to a
traditional data type, but can also contain binders and identify alpha-variants of terms.
Formally, the only requirements are related to the treatment of the atomic symbols called
names as explained below. In this paper, we consider sorted nominal datatypes, where
names and elements of the data type may have different sorts.

We assume a set of sorts S. Given a countable set of sorts for names SN ⊆ S, we
assume countably infinite pair-wise disjoint sets of atomic names Ns, where s ∈ SN . The
set of all names, N = ∪sNs, is ranged over by a, b, . . . , x, y, z. We write x̃ for a tuple of
names x1, . . . , xn and similarly for other tuples, and x̃ also stands for the set of names
{x1, . . . , xn} if used where a set is expected. We let π range over permutations of tuples of
names: π · x̃ is a tuple of names of the same length as x̃, containing the same names with
the same multiplicities.

A sorted nominal set [Pit03, GP01] is a set equipped with name swapping functions
written (a b), for any sort s and names a, b ∈ Ns, i.e. name swappings must respect sorting.
An intuition is that for any member T it holds that (a b) ·T is T with a replaced by b and b
replaced by a. The support of a term, written n(T ), is intuitively the set of names affected
by name swappings on T . This definition of support coincides with the usual definition of
free names for abstract syntax trees that may contain binders. We write a#T for a 6∈ n(T ),
and extend this to finite sets and tuples by conjunction. A function f is equivariant if
(a b) · (f(T )) = f((a b) · T ) always holds; a relation R is equivariant if x R y implies that
(a b) ·x R (a b) ·y holds; and a constant symbol C is equivariant if (a b) ·C = C. A nominal
data type is a nominal set together with some equivariant functions on it, for instance a
substitution function.

2.1. Original Psi-calculi Parameters. Sorted psi-calculi is an extension of the original
psi-calculi framework [BJPV11], which are given by three nominal datatypes (data terms,
conditions and assertions) as discussed in the introduction.

Definition 2.1 (Original psi-calculus parameters). The psi-calculus parameters from the
original psi-calculus are the following nominal data types: (data) terms M,N ∈ T, condi-
tions ϕ ∈ C, and assertions Ψ ∈ A; equipped with the following four equivariant operators:
channel equivalence

.↔ : T × T → C, assertion composition ⊗ : A × A → A, the unit
assertion 1 ∈ A, and the entailment relation ` ⊆ A×C.

The binary functions
.↔ and ⊗ and the relation ` above will be used in infix form.

Two assertions are said to be equivalent, written Ψ ' Ψ ′, if they entail the same conditions,
i.e. for all ϕ we have that Ψ ` ϕ⇔ Ψ ′ ` ϕ.

We impose certain requisites on the sets and operators. In brief, channel equivalence
must be symmetric and transitive modulo entailment, the assertions with (⊗,1) must form
an abelian monoid modulo ', and ⊗ must be compositional w.r.t. ' (i.e. Ψ1 ' Ψ2 =⇒
Ψ ⊗ Ψ1 ' Ψ ⊗ Ψ2). For details see [BJPV11].
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2.2. New parameters for generalized pattern-matching. To the parameters of the
original psi-calculi we add patterns X,Y , that are used in input prefixes; a function vars
which yields the possible combinations of binding names in the pattern, and a pattern-
matching function match, which is used when the input takes place. Intuitively, an input

pattern (λx̃)X matches a message N if there are L̃ ∈ match(N, x̃,X); the receiving agent

then continues after substituting L̃ for x̃. If match(N, x̃,X) = ∅ then (λx̃)X does not
match N ; if |match(N, x̃,X)| > 1 then one of the matches will be non-deterministically
chosen. Below, we use “variable” for names that can be bound in a pattern.

Definition 2.2 (Psi-calculus parameters for pattern-matching). The psi-calculus parame-
ters for pattern-matching include the nominal data type X of (input) patterns, ranged over
by X,Y , and the two equivariant operators

match : T×N ∗ ×X→ Pfin(T∗) Pattern matching
vars : X→ Pfin(Pfin(N)) Pattern variables

The vars operator gives the possible (finite) sets of names in a pattern which are bound
by an input prefix. For example, an input prefix with a pairing pattern 〈x, y〉 may bind
both x and y, only one of them, or none, so vars(〈x, y〉) = {{x, y}, {x}, {y}, {}}. This
way, we can let the input prefix c(λx)〈x, y〉 only match pairs where the second argument is
the name y. To model a calculus where input patterns cannot be selective in this way, we
may instead define vars(〈x, y〉) = {{x, y}}. This ensures that input prefixes that use the
pattern 〈x, y〉 must be of the form M(λx, y)〈x, y〉, where both x and y are bound. Another
use for vars is to exclude the binding of terms in certain positions, such as the keys of
cryptographic messages (cf. Example ??).

Requisites on vars and match are given below in Definition 2.5. Note that the four
data types T, C, A and X are not required to be disjoint. In most of the examples in this
paper the patterns X is a subset of the terms T.

2.3. New parameters for sorting. To the parameters defined above we add a sorting
function and four sort compatibility predicates.

Definition 2.3 (Psi-calculus parameters for sorting). The psi-calculus parameters for sort-
ing include the sorting function sort : N]T]X→ S, and the four compatibility predicates

∝ ⊆ S × S can be used to receive,
∝ ⊆ S × S can be used to send,
� ⊆ S × S can be substituted by,
Sν ⊆ S can be bound by name restriction.

The sort operator gives the sort of a name, term or pattern; on names we require that
sort(a) = s iff a ∈ Ns. The sort compatibility predicates are used to restrict where terms
and names of certain sorts may appear in processes. Terms of sort s can be used to send
values of sort t if s ∝ t. Dually, a term of sort s can be used to receive with a pattern of sort t
if s ∝ t. A name a can be used in a restriction (νa) if sort(a) ∈ Sν . If sort(a) � sort(M)
we can substitute the term M for the name a. In most of our examples, � is a subset of
the equality relation. These predicates can be chosen freely, although the set of well-formed
substitutions depends on �, as detailed in Definition 2.4 below.
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2.4. Substitution and Matching. We require that each datatype is equipped with an
equivariant substitution function, which intuitively substitutes terms for names. The req-
uisites on substitution differ from the original psi-calculi as indicated in the Introduction.
Substitutions must preserve or refine sorts, and bound pattern variables must not be re-
moved by substitutions.

We define a subsorting preorder ≤ on S as s1 ≤ s2 if s1 can be used as a channel or
message whenever s2 can be: formally s1 ≤ s2 iff ∀t ∈ S.(s2 ∝ t⇒ s1 ∝ t)∧ (s2 ∝ t⇒ s1 ∝
t) ∧ (t ∝ s2 ⇒ t ∝ s1) ∧ (t ∝ s2 ⇒ t ∝ s1). This relation compares the sorts of terms, and
so does not have any formal relationship to � (which relates the sort of a name to the sort
of a term).

Definition 2.4 (Requisites on substitution). If ã is a sequence of distinct names and Ñ
is an equally long sequence of terms such that sort(ai) � sort(Ni) for all i, we say that

[ã := Ñ ] is a substitution. Substitutions are ranged over by σ.
For each data type among T,A,C we define substitution on elements T of that data

type as follows: we require that Tσ is an element of the same data type, and that if (ã b̃) is

a (bijective) name swapping such that b̃#T, ã then T [ã := Ñ ] = ((ã b̃) · T )[̃b := Ñ ] (alpha-
renaming of substituted variables). For terms we additionally require that sort(Mσ) ≤
sort(M).

For substitution on patterns X ∈ X, we require that Xσ ∈ X, and if x̃ ∈ vars(X)
and x̃#σ then sort(Xσ) ≤ sort(X) and x̃ ∈ vars(Xσ) and alpha-renaming of substituted
variables (as above) holds for σ and X.

Intuitively, the requirements on substitutions on patterns ensure that a substitution
on a pattern with binders ((λx̃)X)σ with x̃ ∈ vars(X) and x̃#σ yields a pattern (λx̃)Y
with x̃ ∈ vars(Y ). As an example, consider the pair patterns discussed above with X =
{〈x, y〉 : x 6= y} and vars(〈x, y〉) = {{x, y}}. We can let 〈x, y〉σ = 〈x, y〉 when x, y#σ.
Since vars(〈x, y〉) = {{x, y}} the pattern 〈x, y〉 in a well-formed agent will always occur
directly under the binder (λx, y), i.e. in (λx, y)〈x, y〉, and here a substitution for x or y will
have no effect. It therefore does not matter what e.g. 〈x, y〉[x := M ] is, since it will never
occur in derivations of transitions of well-formed agents. We could think of substitutions as
partial functions which are undefined in such cases; formally, since substitutions are total,
the result of this substitution can be assigned an arbitrary value.

In the original psi-calculi there is no requirement that substitutions on terms preserve
names used as pattern variables (i.e., n(Nσ) ⊇ n(N) \ n(σ)). For this reason, the origi-
nal psi semantics does not always preserve the well-formedness of agents (an input prefix
M(λx̃)N .P is well-formed when x̃ ⊆ n(N)), although this is assumed by the operational se-
mantics [BJPV11]. In pattern-matching psi-calculi, the operational semantics does preserve
well-formedness, as shown below in Theorem 2.11.)

Matching must be invariant under renaming of pattern variables, and the substitution
resulting from a match must not contain any names that are not from the matched term or
the pattern:

Definition 2.5 (Requisites on pattern matching). For the function match we require that

if x̃ ∈ vars(X) are distinct and Ñ ∈ match(M, x̃,X) then it must hold that [x̃ := Ñ ] is a

substitution, that n(Ñ) ⊆ n(M) ∪ (n(X) \ x̃), and that for all name swappings (x̃ ỹ) with

ỹ#X we have Ñ ∈ match(M, ỹ, (x̃ ỹ) ·X) (alpha-renaming of matching).
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In many process calculi, and also in the symbolic semantics of psi [JVP12], the input
construct binds a single variable. This is a trivial instance of pattern matching where the
pattern is a single bound variable, matching any term.

Example 2.6. Given values for the other requisites, we can take X = N with vars(a) =
{a}, meaning that the pattern variable must always occur bound, and match(M,a, a) =
{M} if sort(a) � sort(M). On patterns we define substitution as aσ = a when a#σ.

When all substitutions on terms preserve names, we can recover the pattern matching
of the original psi-calculi. Such psi-calculi also enjoy well-formedness preservation (Theo-
rem 2.11).

Theorem 2.7. Suppose (T,C,A) is an original psi-calculus [BJPV11] where n(Nσ) ⊇
n(N) \ n(σ) for all N , σ. Let X = T and vars(X) = P(n(X)) and match(M, x̃,X) =

{L̃ : M = X[x̃ := L̃]} and S = SN = Sν = {s} and ∝ = ∝ = � = {(s, s)} and sort :
N ]T ]X→ {s}; then (T,X,C,A) is a sorted psi-calculus.

Proof. Straightforward; this result has been checked in Isabelle.

2.5. Agents.

Definition 2.8 (Agents). The agents, ranged over by P,Q, . . ., are of the following forms.

M N.P Output
M(λx̃)X.P Input
case ϕ1 : P1 [] · · · [] ϕn : Pn Case
(νa)P Restriction
P |Q Parallel
!P Replication
LΨM Assertion

In the Input all names in x̃ bind their occurrences in both X and P , and in the
Restriction a binds in P. Substitution on agents is defined inductively on their structure,
using the substitution function of each datatype based on syntactic position, avoiding name
capture.

The output prefix M N.P sends N on a channel that is equivalent to M . Dually,
M(λx̃)X.P receives a message matching the pattern X from a channel equivalent to M . A
non-deterministic case statement case ϕ1 : P1 [] · · · [] ϕn : Pn executes one of the branches
Pi where the corresponding condition ϕi holds, discarding the other branches. Restriction
(νa)P scopes the name a in P ; the scope of a may be extruded if P communicates a data
term containing a. A parallel composition P | Q denotes P and Q running in parallel;
they may proceed independently or communicate. A replication !P models an unbounded
number of copies of the process P . The assertion LΨM contributes Ψ to its environment. We
often write if ϕ then P for case ϕ : P , and nothing or 0 for the empty case statement
case.

In comparison to [BJPV11] we additionally restrict the syntax of well-formed agents by
imposing requirements on sorts: the subjects and objects of prefixes must have compatible
sorts, and restrictions may only bind names of a sort in Sν .
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Definition 2.9. An assertion is guarded if it is a subterm of an Input or Output. An agent
is well-formed if, for all its subterms,

(1) in a replication !P there are no unguarded assertions in P ; and
(2) in case ϕ1 : P1 [] · · · [] ϕn : Pn there is no unguarded assertion in any Pi; and
(3) in an Output M N.P we require that sort(M) ∝ sort(N); and
(4) in an Input M(λx̃)X.P we require that

(a) x̃ ∈ vars(X) is a tuple of distinct names and
(b) sort(M) ∝ sort(X); and

(5) in a Restriction (νa)P we require that sort(a) ∈ Sν .

Requirements 3, 4b and 5 are new for sorted psi-calculi.

2.6. Frames and transitions. Each agent affects other agents that are in parallel with
it via its frame, which may be thought of as the collection of all top-level assertions of the

agent. A frame F is an assertion with local names, written (νb̃)Ψ where b̃ is a sequence of
names that bind into the assertion Ψ . We use F,G to range over frames, and identify alpha-

equivalent frames. We overload ⊗ to frame composition defined by (νb̃1)Ψ1⊗(νb̃2)Ψ2 =

(νb̃1b̃2)(Ψ1⊗Ψ2) where b̃1#b̃2, Ψ2 and vice versa. We write Ψ⊗F to mean (νε)Ψ⊗F , and

(νc)((νb̃)Ψ) for (νcb̃)Ψ .
Intuitively a condition is entailed by a frame if it is entailed by the assertion and does

not contain any names bound by the frame, and two frames are equivalent if they entail
the same conditions. Formally, we define F ` ϕ to mean that there exists an alpha variant

(νb̃)Ψ of F such that b̃#ϕ and Ψ ` ϕ. We also define F ' G to mean that for all ϕ it holds
that F ` ϕ iff G ` ϕ.

Definition 2.10 (Frames and Transitions). The frame F(P ) of an agent P is defined
inductively as follows:

F(LΨM) = (νε)Ψ F(P |Q) = F(P )⊗F(Q) F((νb)P ) = (νb)F(P )

F(M(λx̃)N .P ) = F(M N .P ) = F(case ϕ̃ : P̃ ) = F(!P ) = 1

The actions ranged over by α, β are of the following three kinds: Output M (νã) N
where ã ⊆ n(N), Input M N , and Silent τ . Here we refer to M as the subject and N as the
object. We define bn(M (νã)N) = ã, and bn(α) = ∅ if α is an input or τ . We also define
n(τ) = ∅ and n(α) = n(M) ∪ n(N) for the input and output actions. We write M〈N〉 for
M (νε)N .

A transition is written Ψ � P
α−→ P ′, meaning that in the environment Ψ the well-

formed agent P can do an α to become P ′. The transitions are defined inductively in

Table 1. We write P
α−→ P ′ without an assertion to mean 1 � P

α−→ P ′.

The operational semantics, defined in Table 1, is the same as for the original psi-calculi,
except for the use of match in rule In. We identify alpha-equivalent agents and transitions
(see [BJPV11] for details). In a transition the names in bn(α) bind into both the action
object and the derivative, therefore bn(α) is in the support of α but not in the support of
the transition. This means that the bound names can be chosen fresh, substituting each
occurrence in both the action and the derivative.

As shown in the introduction, well-formedness is not preserved by transitions in the
original psi-calculi. However, in sorted psi-calculi the usual well-formedness preservation
result holds.
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In
Ψ `M .↔ K L̃ ∈ match(N, ỹ,X)

Ψ � M(λỹ)X.P
K N−−−→ P [ỹ := L̃]

Out
Ψ `M .↔ K

Ψ � M N.P
K〈N〉−−−→ P

Com
ΨQ⊗Ψ � P

M (νã)N−−−−−−→ P ′ ΨP⊗Ψ � Q
K N−−−→ Q′ Ψ⊗ΨP⊗ΨQ `M

.↔ K

Ψ � P |Q τ−→ (νã)(P ′ |Q′)
ã#Q

Par
ΨQ⊗Ψ � P

α−→ P ′

Ψ � P | Q α−→ P ′ | Q
bn(α)#Q Case

Ψ � Pi
α−→ P ′ Ψ ` ϕi

Ψ � case ϕ̃ : P̃
α−→ P ′

Rep
Ψ � P | !P α−→ P ′

Ψ � !P
α−→ P ′

Scope
Ψ � P

α−→ P ′

Ψ � (νb)P
α−→ (νb)P ′

b#α, Ψ

Open
Ψ � P

M (νã)N−−−−−−→ P ′

Ψ � (νb)P
M (νã∪{b})N−−−−−−−−−→ P ′

b#ã, Ψ,M
b ∈ n(N)

Symmetric versions of Com and Par are elided. In the rule Com we assume that

F(P ) = (νb̃P )ΨP and F(Q) = (νb̃Q)ΨQ where b̃P is fresh for all of Ψ, b̃Q, Q,M and P , and

that b̃Q is correspondingly fresh. In the rule Par we assume that F(Q) = (νb̃Q)ΨQ where

b̃Q is fresh for Ψ, P and α. In Open the expression νã ∪ {b} means the sequence ã with b
inserted anywhere.

Table 1: Operational semantics.

Theorem 2.11 (Preservation of well-formedness). If P is well-formed, then

(1) Pσ is well-formed; and

(2) if Ψ � P
α−→ P ′ then P ′ is well-formed.

Proof. The first part is by induction on P . The output prefix case uses the sort preserva-
tion property of substitution on terms (Definition 2.4). The interesting case is input prefix
M(λx̃)X.Q: assume that Q is well-formed, that x̃ ∈ vars(X), that sort(M) ∝ sort(X)
and that x̃#σ. By induction Qσ is well-formed. By sort preservation we get sort(Mσ) ≤
sort(M), so sort(Mσ) ∝ sort(X). By preservation of patterns by non-capturing substi-
tutions we have that x̃ ∈ vars(Xσ) and sort(Xσ) ≤ sort(X), so sort(Mσ) ∝ sort(Xσ).

The second part is by induction on the transition rules, using part 1 in the In rule.

3. Meta-theory

As usual, the labelled operational semantics gives rise to notions of labelled bisimilarity.
Similarly to the applied pi-calculus [AF01], the standard definition of bisimilarity needs to be
adapted to take assertions into account. In this section, we show that both strong and weak
bisimilarity satisfy the expected structural congruence laws and the standard congruence
properties of name-passing process calculi. We first prove these results for calculi with a
single sort (Theorem 3.12) supported by Nominal Isabelle, and then extend the result to all
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sorted psi-caluli (Theorem 3.16) by a manual proof. We start by recollecting the required
definitions, beginning with the definition of strong labelled bisimulation on well-formed
agents by Bengtson et al. [BJPV11], to which we refer for examples and more intuitions.

Definition 3.1 (Strong bisimulation). A strong bisimulation R is a ternary relation on
assertions and pairs of agents such that R(Ψ, P,Q) implies the following four statements.

(1) Static equivalence: Ψ⊗F(P ) ' Ψ⊗F(Q).
(2) Symmetry: R(Ψ,Q, P ).
(3) Extension with arbitrary assertion: for all Ψ ′ it holds that R(Ψ⊗Ψ ′, P,Q).

(4) Simulation: for all α, P ′ such that bn(α)#Ψ,Q and Ψ � P
α−→ P ′,

there exists Q′ such that Ψ � Q
α−→ Q′ and R(Ψ, P ′, Q′).

We define bisimilarity P
.∼Ψ Q to mean that there is a bisimulation R such that R(Ψ, P,Q),

and write
.∼ for

.∼1.

Above, (1) corresponds to the capability of a parallel observer to test the truth of a
condition using case, while (3) models an observer taking a step and adding a new assertion
Ψ ′ to the current environment.

We close strong bisimulation under substitutions to obtain a congruence in the usual
way:

Definition 3.2 (Strong bisimulation congruence). P ∼Ψ Q means that for all sequences σ̃
of substitutions it holds that Pσ̃

.∼Ψ Qσ̃. We write P ∼ Q for P ∼1 Q.

To illustrate the definitions of bisimulation and bisimulation congruence, we here prove
a result about the case statement, to be used in Section 4.

Lemma 3.3 (Flatten Case). Suppose that there exists a condition > ∈ C such that Ψ ` >σ̃
for all Ψ and substitution sequences σ̃. Let R = case > : (case ϕ̃ : P̃ ) [] φ̃ : Q̃ and

R′ = case ϕ̃ : P̃ [] φ̃ : Q̃; then R ∼ R′.

Proof. We let I :=
⋃
Ψ,P {(Ψ, P, P )} be the identity relation, and

S :=
⋃

Ψ,P̃ ,Q̃,φ̃,ϕ̃

{(Ψ, case ϕ> : (case ϕ̃ : P̃ ) [] φ̃ : Q̃, case ϕ> : case ϕ̃ : P̃ [] φ̃ : Q̃) :
ϕ> ∈ C ∧ ∀Ψ ′ ∈ A. Ψ ′ ` ϕ>}.

We prove that T := S ∪ S−1 ∪ I is a bisimulation, where S−1 := {(Ψ,Q, P ) : (Ψ, P,Q) ∈ S}.
Then, T (1, Rσ̃, R′σ̃) for all σ̃, so R ∼ R′ by the definition of ∼. The proof that T is a
bisimulation is straightforward:

Static equivalence: The frame of a case agent is always 1, hence static equivalence
follows by reflexivity of '.

Symmetry: Follows by definition of T .
Extension with arbitrary assertion: Trivial by the choice of candidate relation,

since the Ψ in S and I are universally quantified.
Simulation: Trivially, any process P simulates itself. Fix (Ψ,R,R′) ∈ S, such that

R = case ϕ> : (case ϕ̃ : P̃ ) [] φ̃ : Q̃ and R′ = case ϕ̃ : P̃ [] φ̃ : Q̃. Here
Ψ ` ϕ> follows by definition of S. Since T includes both S and S−1, we must follow
transitions from both R and R′.
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• A transition from R via Pi can be derived as follows:

Case

Case
Ψ � Pi

α−→ P ′i Ψ ` ϕi
Ψ � case ϕ̃ : P̃

α−→ P ′i Ψ ` ϕ>
Ψ � case ϕ> : (case ϕ̃ : P̃ ) [] φ̃ : Q̃

α−→ P ′i

Then R′ can simulate this with the following derivation:

Case
Ψ � Pi

α−→ P ′i Ψ ` ϕi
Ψ � case ϕ̃ : P̃ [] φ̃ : Q̃

α−→ P ′i

By reflexivity of
.∼Ψ , we get that P ′i

.∼Ψ P ′i .
• A transition from R′ via Qi can be derived as follows:

Case
Ψ � Qi

α−→ Q′i Ψ ` φi
Ψ � case ϕ̃ : P̃ [] φ̃ : Q̃

α−→ Q′i

The process R can simulate this with the following derivation:

Case
Ψ � Qi

α−→ Q′i Ψ ` φi
Ψ � case ϕ> : (case ϕ̃ : P̃ ) [] φ̃ : Q̃

α−→ Q′i

By reflexivity of
.∼Ψ we get Q′i

.∼Ψ Q′i.
• Symmetrically, R′ can simulate transitions derived from R via Qi, and R can

simulate transitions derived from R′ via Pi.

Psi-calculi are also equipped with a notion of weak bisimilarity (
.
≈) where τ -transitions

cannot be observed, introduced by Bengtson et al. [JBPV10]. We here restate its definition,
but refer to the original publication for examples and more motivation.

The definition of weak transitions is standard.

Definition 3.4 (Weak transitions). Ψ � P =⇒ P ′ means that either P = P ′ or there

exists P ′′ such that Ψ � P
τ−→ P ′′ and Ψ � P ′′ =⇒ P ′.

For weak bisimulation we use static implication (rather than static equivalence) to
compare the frames of the process pair under consideration.

Definition 3.5 (Static implication). P statically implies Q in the environmental assertion
Ψ , written P ≤Ψ Q, if

∀ϕ. Ψ⊗F(P ) ` ϕ ⇒ Ψ⊗F(Q) ` ϕ

Definition 3.6 (Weak bisimulation). A weak bisimulation R is a ternary relation between
assertions and pairs of agents such that R(Ψ, P,Q) implies all of

(1) Weak static implication: for all Ψ ′ there exist Q′, Q′′ such that

Ψ � Q =⇒ Q′ ∧ Ψ⊗Ψ ′ � Q′ =⇒ Q′′ ∧ P ≤Ψ Q′ ∧ R(Ψ⊗Ψ ′, P,Q′′)
(2) Symmetry: R(Ψ,Q, P )
(3) Extension of arbitrary assertion: for all Ψ ′ it holds that R(Ψ⊗Ψ ′, P,Q)
(4) Weak simulation: for all P ′,

(a) if Ψ � P
τ−→ P ′ then ∃Q′. Ψ � Q =⇒ Q′ ∧R(Ψ, P ′, Q′); and
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(b) for all Ψ ′, α 6= τ such that bn(α)#Ψ,Q, there exist Q′, Q′′, Q′′′ such that

Ψ � Q =⇒ Q′ ∧ Ψ � Q′
α−→ Q′′ ∧ Ψ⊗Ψ ′ � Q′′ =⇒ Q′′′

∧ P ≤Ψ Q′ ∧ R(Ψ⊗Ψ ′, P ′, Q′′′)

We define P
.
≈ Q to mean that there exists a weak bisimulation R such that R(1, P,Q)

and we write P
.
≈Ψ Q when there exists a weak bisimulation R such that R(Ψ, P,Q).

Above, (1) allows Q to take τ -transitions before and after enabling at least those con-
ditions that hold in the frame of P , as per Definition 3.5. Moreover, when testing these
conditions, the observer may also add an assertion Ψ ′ to the environment. In (4b), the
observer may test the validity of conditions when matching a visible transition, and may
also add an assertion as above.

To obtain a congruence from weak bisimulation, we must require that every τ -transition
are simulated by a weak transition containing at least one τ -transition.

Definition 3.7. A weak τ -bisimulation R is a ternary relation between assertions and pairs
of agents such that R(Ψ, P,Q) implies all conditions of a weak bisimulation (Definition 3.6)
with 4a replaced by

(4a′) if Ψ � P
τ−→ P ′ then ∃Q′, Q′′. Ψ � Q

τ−→ Q′ ∧ Ψ � Q′ =⇒ Q′′ ∧R(Ψ, P ′, Q′′).

We then let P ≈Ψ Q mean that for all sequences σ̃ of substitutions there is a weak τ -
bisimulation R such that R(Ψ, P σ̃,Qσ̃). We write P ≈ Q for P ≈1 Q.

Lemma 3.8 (Comparing bisimulations). For all relations R ⊆ A×P×P,

• if R is a strong bisimulation then R is a weak τ -bisimulation.
• if R is a weak τ -bisimulation then R is a weak bisimulation.

Corollary 3.9 (Comparing congruences). If P ∼Ψ Q then P ≈Ψ Q.

We seek to establish the following standard congruence and structural properties prop-
erties of strong and weak bisimulation:

Definition 3.10 (Congruence relation). A relation R ⊆ A×P×P, where (Ψ, P,Q) ∈ R
is written P RΨ Q, is a congruence iff for all Ψ , RΨ is an equivalence relation, and the
following hold:

CPar P RΨ Q =⇒ (P |R) RΨ (Q |R)
CRes a#Ψ ∧ P RΨ Q =⇒ (νa)P RΨ (νa)Q
CBang P RΨ Q =⇒ !P RΨ !Q

CCase ∀i.Pi RΨ Qi =⇒ case [] ϕ̃ : P̃ RΨ case [] ϕ̃ : Q̃
COut P RΨ Q =⇒ M N .P RΨ M N .Q
CIn P RΨ Q =⇒ M(λx̃)X .P RΨ M(λx̃)X .Q

A relation that satisfies all of the above implications except CIn is called an open
congruence if it also satisfies the following:

CIn-2 (∀L̃. P [x̃ := L̃] RΨ Q[x̃ := L̃]) =⇒ M(λx̃)X .P RΨ M(λx̃)X .Q

A relation that does not satisfy rule CCase but is otherwise an open congruence is
called a weak open congruence.
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Definition 3.11 (Structural congruence). Structural congruence, denoted ≡ ∈ P × P, is
the smallest relation such that {(1, P,Q) : P ≡ Q} is a congruence relation, and that
satisfies the following clauses whenever a#Q, x̃,M,N,X, ϕ̃:

case [] ϕ̃ : (̃νa)P ≡ (νa)case [] ϕ̃ : P̃ !P ≡ P | !P
M(λx̃)X . (νa)P ≡ (νa)M(λx̃)X .P P | (Q |R) ≡ (P |Q) |R

M N . (νa)P ≡ (νa)M N .P P |Q ≡ Q | P
Q | (νa)P ≡ (νa)(Q | P ) P ≡ P | 0
(νb)(νa)P ≡ (νa)(νb)P (νa)0 ≡ 0

A relation R ⊆ P×P is complete with respect to structual congruence if ≡ ⊆ R.

Our goal is to establish that for all Ψ the relations
.∼Ψ , ∼Ψ ,

.
≈Ψ and ≈Ψ are complete

with respect to structural congruence; that
.∼ is an open congruence; that ∼ is a congruence;

that
.
≈ is a weak open congruence; and that ≈ is a congruence.

3.1. Trivially sorted calculi. A trivially sorted psi calculus is one where � = ∝ = ∝ =
S × S and Sν = S, i.e., the sorts do not affect how terms are used in communications and
substitutions. For technical reasons we here first establish the expected algebraic properties
of bisimilarity and its induced congruence in trivially sorted psi-calculi, and then investigate
how these results are lifted to arbitrary sorted calculi.

Theorem 3.12. For trivially sorted psi-calculi,
.∼Ψ , ∼Ψ ,

.
≈Ψ and ≈Ψ are complete wrt.

structural congruence for all Ψ ,
.∼ is an open congruence, ∼ is a congruence,

.
≈ is a weak

open congruence, and ≈ is a congruence.

These results have all been machine-checked in Isabelle [ÅP14]. The proof scripts are
adapted from Bengtson’s formalisation of psi calculi [Ben10]. They constitute 30579 lines
of Isabelle code; Bengtson’s code is 28414 lines. The same technical lemmas hold and the
proof scripts are essentially identical, save for the input cases of inductive proofs and a more
detailed treatment of structural congruence. This represents no more than three days of
work, with the bulk of the effort going towards proving a crucial technical lemma stating
that transitions do not invent new names with the new matching construct. As indicated
these proof scripts apply only to trivially sorted calculi, meaning that the only extension
to our previous formulation is in the input rule which now uses match. We have also
machine-checked Theorem 2.11 (preservation of well-formedness) in this setting.

The restriction to trivially sorted calculi is a consequence of technicalities in Nominal
Isabelle: it requires every name sort to be declared individually, and there are no facilities
to reason parametrically over the set of name sorts. There is also a discrepancy in that our
definitions in Section 2 considers only well-sorted alpha-renamings, while the mechanisation
works with a single sort of names and thus allows for ill-sorted alpha-renamings. This is only
a technicality, since every use of alpha-renaming in the formal proofs is to ensure that the
bound names in patterns and substitutions avoid other bound names—thus, whenever we
may work with an ill-sorted renaming, there would be a well-sorted renaming that suffices
for the task.
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3.2. Arbitrary sorted psi-calculi. We here extend the results of Theorem 3.12 to ar-
bitrary sorted psi-calculi. The idea is to introduce an explicit error element ⊥, resulting
from application of ill-sorted substitutions. For technical reasons we must also include one
extra condition fail (in order to ensure the compositionality of ⊗) and in the patterns we
need different error elements with different support (in order to ensure the preservation of
pattern variables under substitution).

Let I = (TI ,XI ,CI ,AI , . . . ) be a sorted psi-calculus. We construct a trivially sorted
psi-calculus U(I) with one extra sort, error, and constant symbols ⊥ and fail, with empty
support of sort error, where ⊥ is not a channel, never entailed, matches nothing and entails
nothing but fail.

The parameters of U(I) are defined by U(I) = (TI ∪ {⊥},XI ∪ {(⊥, S) : S ⊂fin N},
CI∪{⊥, fail},AI∪{⊥}). We define Ψ⊗⊥ = ⊥⊗Ψ = ⊥ for all Ψ , and otherwise ⊗ is as in I.
match is the same in U(I) as in I, plus match(M, x̃, (⊥, S)) = ∅. Channel equivalence

.↔
is the same in U(I) as in I, plus M

.↔ ⊥ = ⊥ .↔M = ⊥ .↔ ⊥ = ⊥. For Ψ 6= ⊥ we let Ψ ` ϕ
in U(I) iff Ψ ` ϕ in I, and we let ⊥ ` ϕ iff ϕ = fail. Substitution is then defined in U(I)
as follows:

T [ã := Ñ ]U(I) :=


T [ã := Ñ ]I if sort(ai) �I sort(Ni) and

Ni 6= ⊥ for all i, and T 6= (⊥, S)
(⊥, S \ ã) if T = (⊥, S) is a pattern
(⊥,

⋃
vars(T )) otherwise, if T is a pattern

⊥ otherwise

Lemma 3.13. U(I) as defined above is a sorted psi-calculus, and any well-formed process
P in I is well-formed in U(I).

Proof. A straight-forward application of the definitions.

Processes in I have the same transitions in U(I).

Lemma 3.14. If P is well-formed in I and Ψ 6= ⊥, then Ψ � P
α−→ P ′ in U(I) iff

Ψ � P
α−→ P ′ in I.

Proof. By induction on the derivation of the transitions. The cases In, Out, Case and
Com use the fact that match, ` and

.↔ are the same in I and U(I), and that substitutions
in I have the same effect when considered as substitutions in U(I).

Bisimulation in U(I) coincides with bisimulation in I for processes in I.

Lemma 3.15. Assume that P and Q are well-formed processes in I. Then P
.∼Ψ Q in I

iff P
.∼Ψ Q in U(I), and P

.
≈Ψ Q in I iff P

.
≈Ψ Q in U(I).

Proof. We show only the proof for the strong case; the weak case is similar. Let R be
a bisimulation in U(I). Then {(Ψ, P ′, Q′) ∈ R : Ψ 6= ⊥ ∧ P ′, Q′ well-formed in I} is a
bisimulation in I: the proof is by coinduction, using Lemma 3.14 and Theorem 2.11 in the
simulation case.

Symmetrically, let R′ be a bisimulation in I, and let R′⊥ = {(⊥, P,Q) : ∃Ψ.(Ψ, P,Q) ∈
R′}. Then R′ ∪ R′⊥ is a bisimulation in U(I): simulation steps from R′ lead back to R′
by Lemma 3.14. From R′⊥ there are no transitions, since ⊥ entails no channel equivalence
clauses. The other parts of Definition 3.1 are straightforward; when applying clause 3 with
Ψ ′ = ⊥ the resulting triple is in R′⊥.
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With Lemma 3.15, we can lift the congruence and the structural congruence results for
trivially sorted psi-calculi to arbitrary sorted calculi:

Theorem 3.16. All clauses of Theorem 3.12 are valid in all sorted psi-calculi.

Proof. Fix a sorted psi-calculus I. For strong and weak bisimilarity, we show only the proofs
for commutativity and congruence of the parallel operator. The other cases are analogous.

For commutativity of parallel composition, let P and Q be well-formed in I and Ψ 6= ⊥.
By Theorem 3.12, P | Q ∼Ψ Q | P holds in U(I). By Definition 3.1, (P | Q)σ̃

.∼Ψ (Q | P )σ̃
in U(I) for all σ̃. By Theorem 2.11, when σ̃ is well-sorted then (P |Q)σ̃ and (Q | P )σ̃ are
well-formed. By Lemma 3.15, (P |Q)σ̃

.∼Ψ (Q |P )σ̃ in I for all well-formed σ̃. P |Q ∼Ψ Q |P
follows by definition. P |Q ≈Ψ Q | P follows by Corollary 3.9.

For congruence of parallel composition for bisimulation, assume P
.∼Ψ Q holds in I.

By Lemma 3.15, P
.∼Ψ Q holds in U(I). Theorem 3.12 thus yields P |R .∼Ψ Q |R in U(I),

and Lemma 3.15 yields the same in I. The same argument shows that P
.
≈Ψ Q implies

P |R
.
≈Ψ Q |R in I.

This approach does not work for proving congruence properties for ∼ or ≈, since the
closure of bisimilarity under well-sorted substitutions does not imply its closure under ill-
sorted substitutions: consider a sorted psi-calculus I such that 0 ∼ L1M. This equation does
not hold in U(I): if σ is ill-sorted then 1σ = ⊥, but 0

.∼ L⊥M does not hold since only ⊥
entails fail. Instead, we have performed direct proofs: they are identical, line by line, to
the proofs in the trivially sorted case (cf. [Ben10]).

4. Representing Standard Process Calculi

We here consider psi-calculi corresponding to some variants of popular process calculi.
One main point of our work is that we can represent other calculi directly as psi-calculi,
without elaborate coding schemes. In the original psi-calculi we could in this way directly
represent the monadic pi-calculus, but for the other calculi presented below a corresponding
unsorted psi-calculus would contain terms with no counterpart in the represented calculus,
as explained in Section 1.3. We establish that our formulations enjoy a strong operational
correspondence with the original calculus, under trivial mappings that merely specialise the
original concrete syntax (e.g., the pi-calculus prefix a(x) maps to a(λx)x in psi).

Because of the simplicity of the mapping and the strength of the correspondence we
say that psi-calculi represent other process calculi, in contrast to encoding them. A repre-
sentation is significantly stronger than standard correspondences, such as the approach to
encodability proposed by Gorla [Gor10]. Gorla’s criteria aim to capture the property that
one language can encode the behaviour of another using some (possibly elaborate) proto-
col, while our criteria aim to capture the property that two languages are for all practical
purposes one and the same.

Definition 4.1. A psi-calculus is a representation of a process calculus with processes
P ∈ P and labelled transition system → ⊆ P ×A×P, if there exist an equivariant map J·K
from P to psi-calculus processes and an equivariant relation u between A and psi-calculus
actions that preserves the kind (input, output, tau) and subject of actions, such that

(1) J·K is a simple homomorphism, i.e., for each process constructor f of P there is an
equivariant psi-calculus context C such that Jf(P1, . . . , Pn)K = C[JP1K, . . . , JPnK].
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(2) J·K is a strong operational correspondence (modulo structural equivalence), i.e.,

(a) whenever P
β−→ Q then JP K α−→ P ′ such that JQK ≡ P ′ and β u α; and

(b) whenever JP K α−→ P ′ then P
β−→ Q such that JQK ≡ P ′ and β u α.

A representation is complete if it additionally satisfies

(3) J·K is surjective modulo strong bisimulation congruence, i.e., for each psi process P
there is Q ∈ P such that P ∼ JQK.

Briefly, the differences to Gorla’s criteria are as follows:

• In Gorla’s approach, the contexts that process constructors are translated to may
fix certain names, or translate one name into several names, in accordance with a
renaming policy. Our approach admits no such special treatment of names.
• Gorla requires the translation function to be name invariant up-to the renaming

policy. We require equivariance, which corresponds to name invariance up-to the
policy of renaming every name to itself.
• Gorla uses three criteria for semantic correspondence: weak operational correspon-

dence modulo some equivalence for silent transitions, that the translation does not
introduce divergence, and that reducibility to a success process in the source and
target processes coincides. Clearly strong operational correspondence modulo struc-
tural equivalence implies all of these criteria.
• Our surjectivity requirement implies that the target language cannot express more

behaviours than the source language, something that is not considered in Gorla’s
approach.

Our use of structural equivalence in the operational correspondence allows to admit
representations of calculi that use a structural congruence rule to define a labelled semantics
(cf. Section 4.4).

Below, for simplicity we let the assertions be the singleton {1} in all examples, with
1 ` > and 1 6` ⊥. We use the standard notion of simultaneous substitution, and let
match(M, x̃,X) = ∅ where not otherwise defined. Proofs of lemmas and theorems can be
found in Appendix A.

4.1. Unsorted Polyadic pi-calculus. In the polyadic pi-calculus [Mil93] the only values
that can be transmitted between agents are tuples of names. Tuples cannot be nested. The
processes are defined as follows

P,Q ::= 0 | x(ỹ).P | x〈ỹ〉.P | [a = b]P | νxP | !P | P |Q | P +Q

An input binds a tuple of distinct names and can only communicate with an output of equal
length, resulting in a simultaneous substitution of all names. In the unsorted polyadic pi-
calculus there are no further requirements on agents, in particular a(x).P | a〈y, z〉.Q is
a valid agent. This agent has no communication action since the lengths of the tuples
mismatch.
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We now present the psi-calculus PPI, which we will show represents the polyadic pi-
calculus.

PPI

T = N ∪ {〈ã〉 : ã ⊂fin N}
C = {>} ∪ {a = b | a, b ∈ N}
X = {〈ã〉 : ã ⊂fin N ∧ ã distinct}
.↔ = identity on names

1 ` a = a
vars(〈ã〉) = {ã}
match(〈ã〉, x̃, 〈ỹ〉) = {π · ã} if |ã| = |ỹ| and x̃ = π · ỹ

S = {chan, tup}
SN = {chan}
sort(a) = chan

sort(〈ã〉) = tup

Sν = {chan}
� = {(chan, chan)}
∝ = ∝ = {(chan, tup)}

This being our first substantial example, we give a detailed explanation of the new instance
parameters. Patterns X are finite vectors of distinct names. The sorts S are chan for
channels and tup for tuples (of names); the only sort of names SN is channels, as is the
sort of restricted names. The only sort of substitutions (�) are channels for channels; the
only sort of sending (∝) and receiving (∝) is tuples over channels. In an input prefix all
names in the tuple must be bound (vars) and a vector of names ã matches a pattern ỹ if
the lengths match and all names in the pattern are bound (in some arbitrary order).

As an example the agent a(λx, y)〈x, y〉 . a 〈y〉 .0 is well-formed, since chan ∝ tup and
chan ∝ tup, with vars(〈x, y〉) = {{x, y}}. This demonstrates that PPI disallows anomalies
such as nested tuples but does not enforce a sorting discipline to guarantee that names
communicate tuples of the same length.

To prove that PPI is a psi-calculus, we need to check the requisites on the parameters
(data types and operations) defined above. Clearly the parameters are all equivariant, since
no names appear free in their definitions. For the original psi-calculus parameters (Defini-
tion 2.1), the requisites are symmetry and transitivity of channel equivalence, which hold
because of the same properties of (entailment of) name equality, and abelian monoid laws
and compositionality for assertion composition, which trivially hold since A = {1}. The
standard notion of simultaneous substitution of names for names preserves sorts, and also
satisfies the other requirements of Definition 2.4. To check the requisites on pattern match-
ing (Definition 2.5), it is easy to see that match generates only well-sorted substitutions

(of names for names), and that n(̃b) = n(〈ã〉) whenever b̃ ∈ match(〈ã〉, x̃, 〈ỹ〉) Finally, for
all name swappings (x̃ ỹ) we have match(〈ã〉, x̃, 〈z̃〉) = match(〈ã〉, ỹ, (x̃ ỹ) · 〈z̃〉).

PPI is a direct representation of the polyadic pi-calculus as presented by Sangiorgi [San93]
(with replication instead of process constants).

Definition 4.2 (Polyadic Pi-Calculus to PPI).
Let J·K be the function that maps the polyadic pi-calculus to PPI processes as follows. The
function J·K is homomorphic for 0, restriction, replication and parallel composition, and is
otherwise defined as follows:

JP +QK = case > : JP K [] > : JQK
J[x = y]P K = case x = y : JP K
Jx(ỹ).P K = x(λỹ)〈ỹ〉.JP K
Jx〈ỹ〉.P K = x〈ỹ〉.JP K

Similarly, we also translate the actions of polyadic pi-calculus. Here each action corresponds
to a set of psi actions, since in a pi-calculus output label “the order of the bound names is
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immaterial” [SW01, p. 129], which is not the case in psi-calculi.

J(νỹ)x〈z̃〉K = {x (νỹ′) 〈z̃〉 : ỹ′ = π · ỹ}
Jx〈z̃〉K = {x 〈z̃〉}

JτK = {τ}
Although the binders in bound output actions are ordered in psi-calculi, they can be

arbitrarily reordered.

Lemma 4.3. If Ψ � P
M (νã)N−−−−−−→ Q then Ψ � P

M (νπ·ã)N−−−−−−−→ Q

Proof. By induction on the derivation of the transition. The base case is trivial. In the
Open rule, we use the induction hypothesis to reorder the bound names in the premise as
desired; we can then add the opened name at any position in the action in the conclusion
of the rule. The other induction cases are trivial.

We can now show that J·K is a strong operational correspondence.

Theorem 4.4. If P and Q are polyadic pi-calculus processes, then:

(1) If P
β−→ P ′ then for all α ∈ JβK we have JP K α−→ JP ′K

(2) If JP K α−→ P ′′ then P
β−→ P ′ such that α ∈ JβK and JP ′K = P ′′

Proof. By induction on the length of derivation of the transitions, using Lemma 4.3 in the
OPEN case of (1).

We have now shown that the polyadic pi-calculus can be embedded in PPI, with an
embedding J·K that is a strong operational correspondence.

In order to investigate surjectivity properties of the embedding J·K, we also define a
translation P in the other direction.

Definition 4.5 (PPi to Polyadic Pi-Calculus). The translation · is homomorphic for 0,
restriction, replication and parallel composition, and is otherwise defined as follows:

L1M = 0

case ϕ1 : P1 [] . . . [] ϕn : Pn = ϕ1 : P1 + · · ·+ ϕn : Pn
x(λỹ)〈z̃〉.P = x(z̃).P

x〈ỹ〉.P = x〈ỹ〉.P
where condition-guarded processes are translated as

x = y : P = [x = y]P

> : P = P .

Above, note that the order of the binders in input prefixes is ignored. To show that
the reverse translation is an inverse of J·K modulo bisimilarity, we need to prove that their
order does not matter.

Lemma 4.6. In PPI, x(λỹ)〈z̃〉.P ∼ x(λz̃)〈z̃〉.P .

Proof. Straightforward from the definitions of match and substitution on patterns.

We now show that the embeddings · and J·K are inverses, modulo bisimilarity.

Theorem 4.7. If P is a PPI process, then P ∼ JP K.

Proof. By structural induction on P . The input case uses Lemma 4.6. For case agents, we
use an inner induction on the number of branches, with Lemma 3.3 applied in the induction
case.
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Let the relation ∼ce be an early congruence of polyadic pi-calculus agents as defined in
[San93]. Then we have

Corollary 4.8. If P is a polyadic pi-calculus process, then P ∼ce JP K.

We also have

Corollary 4.9. If P and Q are polyadic pi-calculus process, then P ∼ce Q (i.e., P and Q
are early labelled congruent) iff JP K ∼ JQK.

Proof. Follows from the strong operational correspondence of Theorem 4.4, and J·K com-
muting with substitutions.

This shows that every PPI process corresponds to a polyadic pi-calculus process,
modulo strong bisimulation congruence, since · is surjective on the bisimulation classes
of polyadic pi-calculus, and the inverse of J·K. In other words, PPI is a representation.

Theorem 4.10. PPI is a complete representation of the polyadic pi-calculus.

Proof. We let β u α iff α ∈ JβK.
(1) J·K is a simple homomorphism by definition.
(2) J·K is a strong operational correspondence by Theorem 4.4.
(3) J·K is surjective modulo strong bisimulation congruence by Theorem 4.7.

4.2. LINDA [Gel85]. A process calculus with LINDA-like pattern matching can easily be
obtained from the PPI calculus, by modifying the possible binding names in patterns.

LINDA

Everything as in PPI except:
X = {〈ã〉 : ã ⊂fin N}
vars(〈ã〉) = P(ã)
match(〈ã〉, x̃, 〈ỹ〉) = {c̃ : 〈ã〉 = 〈ỹ〉[x̃ := c̃]}

Here, any subset of the names occurring in a pattern may be bound in the input prefix;
this allows to only receive messages with particular values at certain positions (sometimes
called “structured names” [Gel85]) We also do not require patterns to be linear, i.e., the
same variable may occur more than once in a pattern, and the pattern only matches a tuple
if each occurrence of the variable corresponds to the same name in the tuple.

As an example, a(λx)〈x, x, z〉.P | a〈c, c, z〉.Q τ−→ P [x := c] | Q while the agent
a(λx)〈x, x, z〉.P | a〈c, d, z〉.Q has no τ transition.

To prove that LINDA is a psi-calculus, the interesting case is the preservation of
variables of substitution on patterns in Definition 2.4, i.e., that x̃ ∈ vars(〈ỹ〉) and x̃#σ
implies x̃ ∈ vars(〈ỹ〉σ). This holds because standard substitution preserves names and
structure: if x ∈ ỹ and x#σ, then there is z̃ such that 〈ỹ〉σ = 〈z̃〉 and x ∈ z̃.
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4.3. Sorted polyadic pi-calculus. Milner’s classic sorting [Mil93] regime for the polyadic
pi-calculus ensures that pattern matching in inputs always succeeds, by enforcing that the
length of the pattern is the same as the length of the received tuple. This is achieved as
follows. Milner assumes a countable set of subject sorts S ascribed to names, and a partial
function ob : S ⇀ S∗, assigning a sequence of object sorts to each sort in its domain. The
intuition is that if a has sort s then any communication along a must be a tuple of sort
ob(s). An agent is well-sorted if for any input prefix a(b1, . . . bn) it holds that a has some
sort s where ob(s) is the sequence of sorts of b1, . . . , bn and similarly for output prefixes.

SORTEDPPI

Everything as in PPI except:
SN = Sν = S S = S∗

� = {(s, s) : s ∈ S} ∝ = ∝ = {(s, ob(s)) : s ∈ S}
sort(〈a1, . . . , an〉) = sort(a1), . . . , sort(an)
match(〈ã〉, x̃, 〈ỹ〉) = {π · ã} if x̃ = π · ỹ and sort(〈ã〉) = sort(〈ỹ〉)

We need to show that match always generates well-sorted substitutions: this holds since
whenever c̃ ∈ match(〈ã〉, x̃, 〈ỹ〉) we have that [x̃ := c̃] = [π · ỹ := π · ã] and sort(yi) =
sort(ai) for all i.

As an example, let sort(a) = s with ob(s) = t1, t2 and sort(x) = t1 with ob(t1) = t2
and sort(y) = t2 then the agent a(λx, y)(x, y) . x y .0 is well-formed, since s ∝ t1, t2 and
t1 ∝ t2, with vars(x, y) = {{x, y}}.

A formal comparison with the system in [Mil93] is complicated by the fact that Milner
uses so called concretions and abstractions as agents. Restricting attention to agents in
the normal sense we have the following result, where J·K is the function from the previous
example.

Theorem 4.11. P is well-sorted iff JP K is well-formed.

Proof. A trivial induction over the structure of P , observing that the requirements are
identical.

Theorem 4.12. SORTEDPPI is a complete representation of the sorted polyadic pi-
calculus.

Proof. The operational correspondence in Theorem 4.4 still holds when restricted to well-
formed agents. The inverse translation · maps well-formed agents to well-sorted processes,
so the surjectivity result in Theorem 4.7 still applies.

4.4. Polyadic synchronisation pi-calculus. Carbone and Maffeis [CM03] explore the
so called pi-calculus with polyadic synchronisation, eπ, which can be thought of as a dual
to the polyadic pi-calculus. Here action subjects are tuples of names, while the objects
transmitted are just single names. It is demonstrated that this allows a gradual enabling of
communication by opening the scope of names in a subject, results in simple representations
of localities and cryptography, and gives a strictly greater expressiveness than standard pi-
calculus. The processes of eπ is defined as follows.

P,Q ::= 0 | Σiαi.Pi | P |Q | (νa)P | !P
α ::= ã(x) | ã〈b〉



A SORTED SEMANTIC FRAMEWORK FOR APPLIED PROCESS CALCULI 23

In order to represent eπ, only minor modifications to the representation of the polyadic
pi-calculus in Section 4.1 are necessary. To allow tuples in subject position but not in object
position, we invert the relations ∝ and ∝. Moreover, eπ does not have name matching
conditions a = b, since they can be encoded (see [CM03]).

PSPI

Everything as in PPI except:

C = {>,⊥}
X = N
∝ = ∝ = {(tup, chan)}

ã
.↔ b̃ is > if ã = b̃, and ⊥ otherwise

vars(x) = {{x}}
match(a, x, x) = {a}

For convenience we will consider a dialect of eπ without the τ prefix. This has no cost
in terms of expressiveness since the τ prefix can be encoded using a communication over a
restricted fresh name. The eπ calculus also uses an operational semantics with late input,

unlike psi-calculi. In order to yield a representation, we consider an early version −→e of
the semantics, obtained by turning bound input actions into free input actions at top-level.

eIn
P

x̃(y)−−→ P ′

P
x̃ z−−→e P ′{z/y}

Out
P

x̃〈c〉−−→ P ′

P
x̃〈c〉−−→e P ′

BOut
P

x̃〈νc〉−−−→ P ′

P
x̃〈νc〉−−−→e P ′

Tau
P

τ−→ P ′

P
τ−→e P ′

Definition 4.13 (Polyadic synchronisation pi-calculus to PSPI). J·K is homomorphic for 0,
restriction, replication and parallel composition, and is otherwise defined as follows:

JΣiαi.PiK = case >i : Jαi.PiK
Jx̃(y).P K = 〈x̃〉(λy)y.JP K

Jx̃〈y〉.P K = 〈x̃〉 y.JP K
We translate bound and free output, free input, and tau actions in the following way.

Jx̃〈νc〉K = 〈x̃〉 (νc) c

Jx̃〈c〉K = 〈x̃〉 c
Jx̃ yK = 〈x̃〉 y
JτK = τ

The transition system in eπ is given up to structural congruence, i.e., for all α we have
α−→ = (≡ α−→≡).

Definition 4.14. ≡ is the least congruence satisfying alpha conversion, the commutative
monoidal laws with respect to both (|,0) and (+,0) and the following axioms1:

(νx)P | Q ≡ (νx)(P | Q) if x#Q (νx)P ≡ P if x#P

The proofs of operational correspondence are similar to the polyadic pi-calculus case.
We have the following initial results for late input actions.

Lemma 4.15.

(1) If P
x̃(y)−−→ P ′ then for all z, JP K

〈x̃〉 z
−−−→ P ′′ where P ′′ ≡ JP ′K[y := z].

(2) If JP K
〈x̃〉 z
−−−→ P ′′ then for all y#P , P

x̃(y)−−→ P ′ where JP ′{z/y}K = P ′′.

1The original definition of ≡ [CM03] includes an additional axiom [x = x]P ≡ P allowing to contract
successful matches, but this axiom is omitted here since the eπ calculus does not include the match construct.
Unusually, the definition of ≡ does not admit commuting restrictions, i.e., (νx)(νy)P 6≡ (νy)(νx)P .
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Proof. By induction on the derivation of the transitions.

This in turn yields the desired operational correpondence.

Theorem 4.16.

(1) If P
α−→e P ′ and α 6= x̃(y), then JP K JαK−−→ P ′′ where P ′′ ≡ JP ′K.

(2) If JP K α′−→ P ′′, then P
α−→e P ′ where JαK = α′ and JP ′K = P ′′.

Proof. By induction on the derivation of the transitions.

Again, these results lead us to say that the polyadic synchronization pi-calculus can be
represented as a psi-calculus.

Theorem 4.17. PSPI is a representation of the polyadic synchronization pi-calculus.

Proof. We let β u α iff α = JβK.
(1) J·K is a simple homomorphism by definition.
(2) J·K is a strong operational correspondence by Theorem 4.4.

To investigate the surjectivity properties of J·K, we need to consider the fact that
polyadic synchronization pi has only mixed (i.e., prefix-guarded) choice.

Definition 4.18 (Case-guarded). A PSPI process is case-guarded if in all its subterms of
the form case ϕ1 : P1 [] · · · [] ϕn : Pn, for all i ∈ {1, . . . , n}, ϕi = > implies Pi = M N.Q or
Pi = M(λx̃)X.Q.

We define the translation R from case-guarded PSPI processes to eπ as the translation
with the same name from PPI, except that ⊥-guarded branches of case statements are
discarded.

Theorem 4.19. For all case-guarded PSPI processes R we have R ∼ JRK.

Proof. By structural induction on R. For case agents, we use an inner induction on the
number of branches, with Lemma 3.3 applied in the induction case.

Corollary 4.20. If P is a polyadic synchronization pi-calculus process, then P ∼̇ JP K.

Corollary 4.21. For all eπ processes P , Q, P ∼̇ Q (i.e., P and Q are early labelled
congruent) iff JP K ∼ JQK.

Proof. By strong operational correspondence 4.16, and J·K commuting with substitutions.

We thus have that the case-guarded PSPI processes correspond to polyadic synchro-
nization pi, modulo flattening and structural congruence.

4.5. Value-passing CCS. Value-passing CCS [Mil89] is an extension of pure CCS to admit
arbitrary data from some set V to be sent along channels; there is no dynamic connectivity
so channel names cannot be transmitted. When a value is received in a communication
it replaces the input variable everywhere, and where this results in a closed expression it
is evaluated, so for example a(x) . c(x + 3) can receive 2 along a and become c 5. There
are conditional if constructs that can test if a boolean expression evaluates to true, as
in a(x) . if x > 3 then P . Formally, the value-passing CCS processes are defined by the
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following grammar with x, y ranging over names, v over values, b over boolean expressions,
and L over set of names.

P,Q ::= x(y).P | x(v).P | Σi Pi | if b then P | P \ L | P |Q | !P | 0

To represent this as a psi-calculus we assume an arbitrary set of expressions e ∈ E
including at least the values V. A subset of E is the boolean expressions b ∈ EB. Names
are either used as channels (and then have the sort chan) or expression variables (of sort
exp); only the latter can appear in expressions and be substituted by values. An expression
is closed if it has no name of sort exp in its support, otherwise it is open. The values v ∈ V
are closed and have sort value; all other expressions have sort exp. The boolean values are
VB := V ∩ EB = {>,⊥}, and 1 ` > but ¬(1 ` ⊥). We let E be an evaluation function
on expressions, that takes each closed expression to a value and leaves open expressions

unchanged. We write e{Ṽ /x̃} for the result of syntactically replacing all x̃ simultaneously by

Ṽ in the (boolean) expression e, and assume that the result is a valid (boolean) expression.
For example (x+ 3){2/x} = 2+3, and E(2 + 3) = 5. We define substitution on expressions

to use evaluation, i.e. e[x̃ := Ṽ ] = E(e{Ṽ /x̃}). As an example, (x + 3)[x := 2] = E((x +
3){2/x}) = E(2 + 3) = 5. We use the single-variable patterns of Example 2.6.

VPCCS

T = N ∪E
C = EB

A = {1}
X = N
a
.↔ a = >

e
.↔ e′ = ⊥ otherwise

match(v, a, a) = {v} if v ∈ V
vars(a) = {a}

SN = {chan, exp}
S = SN ∪ {value}
v ∈ V⇒ sort(v) = value

e ∈ E \V⇒ sort(e) = exp

e ∈ E⇒ e[x̃ := M̃ ] = E(e{M̃/x̃})
� = {(exp, value)}
Sν = {chan}
∝ = ∝ = {(chan, exp), (chan, value)}

Closed value-passing CCS processes correspond to VPCCS agents P where all free
names are of sort chan. To prove that VPCCS is a psi-calculus, the interesting case
is when the sort of a term is changed by substitution: let e be an open term, and σ a
substitution such that n(e) ⊆ dom(σ). Here sort(e) = exp and sort(eσ) = value; this
satisfies Definition 2.4 since value ≤ exp in the subsorting preorder (here exp ≤ value also
holds, but is immaterial since there are no names of sort value).

We show that VPCCS represents value-passing CCS as defined by Milner [Mil89], with
the following modifications:

• We use replication instead of process constants.
• We consider only finite sums. Milner allows for infinite sums without specifying

exactly what infinite sets are allowed and how they are represented, making a fully
formal comparison difficult. Introducing infinite sums naively in psi-calculi means
that agents might exhibit cofinite support and exhaust the set of names, rendering
crucial operations such as α-converting all bound names to fresh names impossible.
• We do not consider the relabelling construct P [f ] of CCS at all. Relabelling has

fallen out of fashion since the same effect can be obtained by abstracting over chan-
nels, and it is not included in the psi-calculi framework.
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• We only allow finite sets L in restrictions P \ L. With finite sums, this results in
no loss of expressivity since agents have finite support.

Milner’s restrictions are of sets of names, which we represent as a sequence of ν-binders.
To create a unique such sequence from L, we assume an injective and support-preserving

function −→· : Pfin(Nchan) → (Nchan)
∗. For instance,

−→
L may be defined as sorting the

names in L according to some total order on Nchan, which is always available since Nchan is
countable.

The mapping J·K from value-passing CCS into VPCCS is defined homomorphically on
parallel composition, output and 0, and otherwise as follows.

Jx(y).P K = x(λy)y.JP K
JΣi PiK = case > : JP1K [] · · · [] > : JPiK

Jif b then P K = case b : JP K
JP \ LK = (ν

−→
L )JP K

We translate the value-passing CCS actions as follows

Jx(v)K = x v
Jx(v)K = x v

JτK = τ

As an example, in a version of VPCCS where the expressions E include natural num-
bers and operations on those,

a(λy)x . case x > 3 : c(x+ 3)
a 4−−→ (case x > 3 : c(x+ 3))[x := 4]
= case E((x > 3){4/x}) : c(E((x+ 3){4/x}))
= case E(4 > 3) : c(E(4 + 3))
= case > : c7
c 7−→ 0

In our psi semantics, expressions in processes are evaluated when they are closed by
reception of variables (e.g. in the first transition above), while Milner simply identifies closed
expressions with their values [Mil89, p55f].

Lemma 4.22. If P is a closed VPCCS process and P
α−→ P ′, then P ′ is closed.

Theorem 4.23. If P and Q are closed value-passing CCS processes, then

(1) if P
α−→ P ′ then JP K JαK−−→ JP ′K; and

(2) if JP K α′−→ P ′′ then P
α−→ P ′ where JαK = α′ and JP ′K = P ′′.

Proof. By induction on the derivations of P ′ and P ′′, respectively. The full proof is given
in Appendix A.3.

As before, this yields a representation theorem.

Theorem 4.24. VPCCS is a representation of the closed agents of value-passing CCS
(modulo the modifications described above).

Proof. We let β u α iff α = JβK.
(1) J·K is a simple homomorphism by definition.
(2) J·K is a strong operational correspondence by Theorem 4.23.
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To investigate the surjectivity of the encoding, we let P = {P : sort(n(P )) ⊆ {chan}}
be the VPCCS processes where all fre names are of channel sort.

Lemma 4.25. If P ∈ P, then there is a CCS process Q such that P ∼ JQK.

Proof. As before, we define an inverse translation ·, that is homomorphic except for

case b1 : P1 [] · · · [] bi : Pi = (if b1 then P1) + · · ·+ (if bi then Pi)

Using Lemma 3.3, we get P ∼ JP K.

Example 4.26 (Value-passing pi-calculus). To demonstrate the modularity of psi-calculi,
assume that we wish a variant of the pi-calculus enriched with values in the same way as
value-passing CCS. This is achieved with only a minor change to VPCCS:

VPPI

Everything as in VPCCS except:
match(z, a, a) = {z} if z ∈ V ∪Nch
� = {(exp, value), (chan, chan)}
∝ = ∝ = {(chan, exp), (chan, value), (chan, chan)}

Here also channel names can be substituted for other channel names, and they can be sent
and received along channel names.

5. Advanced Data Structures

We here demonstrate that we can accommodate a variety of term structures for data
and communication channels; in general these can be any kind of data, and substitution
can include any kind of computation on these structures. This indicates that the word
“substitution” may be a misnomer — a better word may be “effect” — though we keep it
to conform with our earlier work. We focus on our new contribution in the patterns and
sorts, and therefore make the following definitions that are common to all the examples
(unless explicitly otherwise defined).

A = {1} 1⊗ 1 = 1
C = {>,⊥} ` = {(1,>)}
M

.↔M = > M
.↔ N = ⊥ if M 6= N

match(M, x̃,X) = ∅ � = {(s, s) : s ∈ S}
∝ = ∝ = S × S Sν = SN = S

If t and u are from some term algebra, we write t � u when t is a (non-strict) subterm of u.

5.1. Convergent rewrite systems on terms. In Example 4.26, the value language con-
sisted of closed terms, with an opaque notion of evaluation. We can instead work with
terms containing names and consider deterministic computations specified by a convergent
rewrite system. The interesting difference is in which terms are admissible as patterns,
and which choices of vars(X) are valid. We first give a general definition and then give a
concrete instance in Example 5.1.

Let Σ be a sorted signature with sorts S, and · ⇓ be normalization with respect to a
convergent sort-preserving rewrite system on the nominal term algebra over N generated
by the signature Σ. We let terms M range over the range of ⇓, i.e., the normal forms. We
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write ρ for sort-preserving capture-avoiding simultaneous substitutions {M̃/̃a} where every

Mi is in normal form; here n(ρ) = n(M̃, ã). A term M is stable if for all ρ, Mρ⇓ = Mρ.
The patterns are all instances of stable terms, i.e., X = Mρ where M is stable. Such a
pattern X can bind any combination of names occurring in M but not in ρ. As an example,
any term M is a pattern (since any name x is stable and M = x{M/x}) that can be used to
match the term M itself (since ∅ ⊆ n(x) \ n(M,x) = ∅).

REWRITE(⇓)
T = X = range(⇓)

M [ỹ := L̃] = M{L̃/̃y}⇓
match(M, x̃,X) = {L̃ : M = X{L̃/̃x}}
vars(X) =

⋃
{P(n(M) \ n(ρ)) : M stable ∧X = Mρ}

We need to show that the patterns are closed under substitution, including preservation of
vars (cf. Definition 2.4), and that matching satisfies the criteria of Definition 2.5. Since
any term is a pattern, the patterns are closed under substitution. Since term substitution
{·/·} and normalization ⇓ are both sort-preserving, term and pattern substitution [· := ·] is
also sort-preserving.

To show preservation of pattern variables, assume that x̃ ∈ vars(X) is a tuple of
distinct names. By definition there are M and ρ such that X = Mρ with M stable and
x̃ ⊆ n(M) \ n(ρ). Assume that x̃#σ; then Xσ = (Mρ)σ = M(σ ◦ ρ) with x̃#σ ◦ ρ, so
x̃ ∈ vars(Xσ).

For the criteria of Definition 2.5, additionally assume that L̃ ∈ match(N, x̃,X) and

let σ = [x̃ := L̃]. Since {L̃/̃x} is well-sorted, so is [x̃ := L̃]. We also immediately have

n(L̃) = n(N)∪ (n(X) \ x̃), and alpha-renaming of matching follows from the same property
for term substitution.

Example 5.1 (Peano arithmetic). As a simple instance of REWRITE(⇓), we may con-
sider Peano arithmetic. The rewrite rules for addition (below) induce a convergent rewrite
system ⇓Peano, where the stable terms are those that do not contain any occurrence of plus.

PEANO

Everything as in REWRITE(⇓) except:
S = {nat, chan}
Σ = {zero : nat, succ : nat→ nat plus : nat× nat→ nat}
plus(K, zero)→ K plus(K, succ(M))→ plus(succ(K),M)
vars(succn(a)) = {∅, {a}} vars(M) = {∅} otherwise

Writing i for succi(zero), the agent (νa)(a 2 | a(λy)succ(y) . c plus(3, y)) of
REWRITE(⇓Peano) has one visible transition, with the label c 4. In particular, the object
of the label is plus(3, y)[y := 1] = plus(3, y){1/y}⇓Peano = 4.

5.2. Symmetric cryptography. We can also consider variants of REWRITE(⇓), such
as a simple Dolev-Yao style [DY83] cryptographic message algebra for symmetric cryptog-
raphy, where we ensure that the encryption keys of received encryptions can not be bound
in input patterns, in agreement with cryptographic intuition.
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The rewrite rule describing decryption dec(enc(M,K),K)→ M induces a convergent
rewrite system ⇓enc, where the terms not containing dec are stable. The construction of
REWRITE(⇓) yields that x̃ ∈ vars(X) if x̃ ⊆ n(X) are pair-wise different and no xi
occurs as a subterm of a dec in X. This construction would still permit to bind the keys of
an encrypted message upon reception, e.g. a(λm, k)enc(m, k) . P would be allowed although
it does not make cryptographic sense. Therefore we further restrict vars(X) to those sets
not containing names that occur in key position in X, thus disallowing the binding of k
above. Below we give the formal definition (recall that � is the subterm preorder).

SYMSPI

Everything as in REWRITE(⇓enc) except:
S = {message, key}
Σ = {enc : message× key→ message, dec : message× key→ message}
dec(enc(M,K),K)→M
vars(X) = P(n(X) \ {a : a � dec(Y1, Y2) � X ∨ (a � Y2 ∧ enc(Y1, Y2) � X)})

The proof of the conditions of Definition 2.4 and Definition 2.5 for patterns is the same as
for REWRITE(·) in Section 5.1 above.

As an example, the agent

(νa, k)(a enc(enc(M, l), k) | a(λy)enc(y, k) . c dec(y, l))

has a visible transition with label c M : the subagent

a(λy)enc(y, k) . c dec(y, l)
a enc(enc(M,l),k)−−−−−−−−−−−→ c dec(y, l)[y := enc(M, l)]

since enc(M, l) ∈ match(enc(enc(M, l), k), y, enc(y, k)). The resulting process is

c dec(y, l)[y := enc(M, l)] = c dec(y, l){enc(M,l)/y} ⇓ = c dec(enc(M, l), l) ⇓ = c M.

5.3. Asymmetric cryptography. A more advanced version of Section 5.2 is the treatment
of data in the pattern-matching spi-calculus [HJ06], to which we refer for more examples
and motivations of the definitions below. The calculus uses asymmetric encryption, and
includes a non-homomorphic definition of substitution that does not preserve sorts, and a
sophisticated way of computing permitted pattern variables. This example highlights the
flexibility of sorted psi-calculi in that such specialized modelling features can be presented
in a form that is very close to the original.

We start from the term algebra TΣ over the unsorted signature

Σ = {(), (·, ·), eKey(·), dKey(·), enc(·, ·) enc−1(·, ·)}
The eKey(M) and dKey(M) constructions represent the encryption and decryption parts
of the key pair M , respectively. The operation enc−1(M,N) is encryption of M with the
inverse of the decryption keyN , which is not an implementable operation but only permitted
to occur in patterns. We add a sort system on TΣ with sorts S = {impl, pat,⊥}, where
impl denotes implementable terms not containing enc−1, and pat those that may only be
used in patterns. The sort ⊥ denotes ill-formed terms, which do not occur in well-formed
processes. Names stand for implementable terms, so we let SN = {impl}. Substitution is
defined homomorphically on the term algebra, except to avoid unimplementable subterms
on the form enc−1(M, dKey(N)).
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In order to define vars(X), we write M̃ 
 Ñ if all Ni ∈ Ñ can be deduced from M̃
in the Dolev-Yao message algebra (i.e., using cryptographic operations such as encryption
and decryption). For the precise definition, see [HJ06]. The definition of vars(X) below
allows to bind a set S of names only if all names in S can be deduced from the message
term X using the other names occurring in X. This excludes binding an unknown key, like
in Example ??.

PMSPI

T = X = TΣ S = {impl, pat,⊥} SN = {impl}
� = ∝ = {(impl, impl)} ∝ = {(impl, impl), (impl, pat)}
sort(M) = impl if ∀N1, N2. enc

−1(N1, N2) 6�M
sort(M) = ⊥ if ∃N1, N2. enc

−1(N1, dKey(N2)) �M
sort(M) = pat otherwise

match(M, x̃,X) = {L̃ : M = X[x̃ := L̃]}
vars(X) = {S ⊆ n(X) : ((n(X) \ S) ∪ {X}) 
 S}

x[ỹ := L̃] = Li if yi = x

x[ỹ := L̃] = x otherwise.

enc−1(M1,M2)[ỹ := L̃] = enc(M1[ỹ := L̃], eKey(N)) when M2[ỹ := L̃] = dKey(N)

f(M1, . . . ,Mn)[ỹ := L̃] = f(M1[ỹ := L̃], . . . ,Mn[ỹ := L̃]) otherwise.

As an example, consider the following transitions in PMSPI:
(νa, k, l)( a enc(dKey(l), eKey(k)).a enc(M, eKey(l))

| a(λy)enc(y, eKey(k)) . a(λz)enc−1(z, y) . c z)
τ−→ (νa, k, l)(a enc(M, eKey(l)) | a(λz)enc(z, eKey(l)) . c z)
τ−→ (νa, k, l)c M.

Note that σ = [y := dKey(l)] resulting from the first input changed the sort of the second
input pattern: sort(enc−1(z, y)) = pat, but sort(enc−1(z, y)σ) = sort(enc(z, eKey(l))) =
impl. However, this is permitted by Definition 2.4 (Substitution), since impl ≤ pat (im-
plementable terms can be used as channels or messages whenever patterns can be).

Terms (and patterns) are trivially closed under substitution. All terms in the domain
of a well-sorted substitution have sort impl, so well-sorted substitutions cannot introduce
subterms of the forms enc−1(N1, N2) or enc−1(N1, dKey(N2)) where none existed; thus
sort(Mσ) ≤ sort(M) as required by Definition 2.4.

To show preservation of pattern variables, we have that ((n(X) \ x̃)∪{X}) 
 x̃ implies
that ((n(Xσ) \ x̃) ∪ {Xσ}) 
 x̃ whenever x#σ, by induction on 
. Add definition, of 
,
give IH? The requisites on matching (Definition 2.5) follow from those on substitution.

5.4. Nondeterministic computation. The previous examples considered total determin-
istic notions of computation on the term language. Here we consider a data term language
equipped with partial non-deterministic evaluation: a lambda calculus extended with the
erratic choice operator · 8 · and the reduction rule M1 8M2 → Mi if i ∈ {1, 2}. Due to
non-determinism and partiality, evaluation cannot be part of the substitution function. In-
stead, we define the match function to collect all evaluations of the received term, which
are non-deterministically selected from by the In rule. This example also highlights the use
of object languages with binders, a common application of nominal logic.
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We let substitution on terms be the usual capture-avoiding syntactic replacement, and
define reduction contexts R ::= [ ] | R M | (λx.M) R (we here use the boldface λ rather
than the λ used in input prefixes). Reduction→ is the smallest pre-congruence for reduction
contexts that contain the rules for β-reduction (λx.M N →M [x := N ]) and ·8· (see above).
We use the single-name patterns of Example 2.6, but include evaluation in matching.

NDLAM

S = {s} X = N
M ::= a |M M | λx.M |M 8M where x binds into M in λx.M
match(M,x, x) = {N : M →∗ N 6→}

As an example, the agent P
def
= (νa)(a(y) . c y .0 | a ((λx.x x)8 (λx.x)) .0) has the following

transitions:

P
τ−→ (νa)(c λx.xx .0 | 0)

c λx.xx−−−−→ 0

P
τ−→ (νa)(c λx.x .0 | 0)

c λx.x−−−−→ 0.

6. Conclusions and further work

We have described two features that taken together significantly improve the precision
of applied process calculi: generalised pattern matching and substitution, which allow us to
model computations on an arbitrary data term language, and a sort system which allows
us to remove spurious data terms from consideration and to ensure that channels carry
data of the appropriate sort. The well-formedness of processes is thereby guaranteed to be
preserved by transitions. Using these features we have provided representations of other
process calculi, ranging from the simple polyadic pi-calculus to the spi-calculus and non-
deterministic computations, in the psi-calculi framework. The critera for representation
(rather than encoding) are stronger than standard correspondences e.g. by Gorla, and mean
that the psi-calculus and the calculus represented by it are for all practical purposes one
and the same.

The meta-theoretic results carry over from the original psi formulations, and many
have been machine-checked in Isabelle. We have also developed a tool for sorted psi-calculi
[BGRV13], the Psi-calculi Workbench (Pwb), which provides an interactive simulator and
automatic bisimulation checker. Users of the tool need only implement the parameters of
their psi-calculus instances, supported by a core library.

Future work includes developing a symbolic semantics with pattern matching. For this,
a reformulation of the operational semantics in the late style, where input objects are not
instantiated until communication takes place, is necessary. We also aim to extend the use
of sorts and generalized pattern matching to other variants of psi-calculi, including higher-
order psi calculi [PBRÅP13] and reliable broadcast psi-calculi [ÅPBP+13]. As mentioned in
Section 3.1, further developments in Nominal Isabelle are needed for mechanizing theories
with arbitrary but fixed sortings.
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Appendix A. Full proofs for Section 4

The following is full proofs of Section 4; we present them here, in a seperate section,
due to their length.

We will assume that the reader is acquainted with the relevant psi-calculi presented in
Section 4, as well as the definitions, notation and terminology of Sangiorgi [San93], Carbone
and Maffeis [CM03], and Milner [Mil89], respectively. We will use their notation except as
concerns the treatment of bound names, where we will adopt our notation, e.g. we will
write bn(α)#Q instead of bn(α) ∩ fn(Q) = ∅.

A.1. Polyadic Pi-Calculus. We follow the exposition of Polyadic Pi-Calculus given by
Sangiorgi in [San93] with only departure being that we use replication in the labelled oper-
ational semantics instead of process constant invocation.

For convenience, we give an explicit definition of the encoding function given in Exam-
ple 4.1.

Definition A.1 (Polyadic Pi-Calculus to PPi).
Agents:

JP +QK = case > : JP K [] > : JQK
J[x = y]P K = case x = y : JP K
Jx(ỹ).P K = x(λỹ)〈ỹ〉.JP K
Jx〈ỹ〉.P K = x〈ỹ〉.JP K

J0K = 0
JP |QK = JP K | JQK
JνxP K = (νx)JP K
J!P K = !JP K

Actions:
J(νỹ′)z〈ỹ〉K = z (νỹ′) 〈ỹ〉

Jx〈z̃〉K = x 〈z̃〉
JτK = τ

In output action ỹ′ do not bind into z.

Definition A.2 (PPi to Polyadic Pi-Calculus).
Process:

L1M = 0
0 = case = 0

case ϕ1 : P1 [] . . . [] ϕn : Pn = ϕ1 : P1 + · · ·+ ϕn : Pn
!P = !P

(νx)P = νxP

P |Q = P |Q
x(λỹ)〈ỹ〉.P = x(ỹ).P

x〈ỹ〉.P = x〈ỹ〉.P
Case clause:

x = y : P = [x = y]P

> : P = P

We prove that substitution function distributes over the encoding function. We use this
auxiliary result in some of the following theorems.
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Lemma A.3. JP K[ỹ := z̃] = JP{z̃/ỹ}K

Proof. By induction on P . We consider only the agents where bn(P ) ∩ fn(P ){z̃/ỹ} = ∅ as
in Definition 2.1.1 in [San93] on page 21. We show the interesting cases of the substitution
application as others are just homomorphic.

• case P = P ′ +Q.

JP ′ +QK[ỹ := z̃] = case >[ỹ := z̃] : JP ′K[ỹ := z̃] [] >[ỹ := z̃] : JQK[ỹ := z̃]
= case > : JP ′K[ỹ := z̃] [] > : JQK[ỹ := z̃]
= case > : JP ′{z̃/ỹ}K [] > : JQ{z̃/ỹ}K (IH)
= JP ′{z̃/ỹ}+Q{z̃/ỹ}K
= J(P ′ +Q){z̃/ỹ}K

• case P = [x = y]Q.

J[x = y]QK[ỹ := z̃] = case x[ỹ := z̃] = y[ỹ := z̃] : JQK[ỹ := z̃]
= case x[ỹ := z̃] = y[ỹ := z̃] : JQ{z̃/ỹ}K (IH)
= [x{z̃/ỹ} = y{z̃/ỹ}]JQ{z̃/ỹ}K
= J([x = y]Q){z̃/ỹ}K

• case P = a(x̃).Q

Ja(x̃).QK[ỹ := z̃] = a[ỹ := z̃](λx̃)〈x̃〉.JQK[ỹ := z̃] (From assumption x̃#[ỹ := z̃])

= a[ỹ := z̃](λx̃)〈x̃〉.JQ{z̃/ỹ}K (IH)

= a{z̃/ỹ}(x̃).JQ{z̃/ỹ}K
= J(a(x̃).Q){z̃/ỹ}K

The following is proof of the strong operational correspondence. The labeled semantics
of polyadic pi-calculus can be found on page 30 of [San93].

Proof of Theorem 4.4.

(1) By induction on the length of the derivation of P ′. We have the following cases to
check by considering the last rule applied to derive P ′.

ALP:
Trivial since in Psi-calculi agents are identified up to alpha equivalence.

OUT:

Assume x〈ỹ〉.P x〈ỹ〉−−→ P and α ∈ {x 〈ỹ〉} = Jx〈ỹ〉K. Since 1 ` x .↔ x and

Jx 〈ỹ〉.P K = x 〈ỹ〉.JP K and α = x 〈ỹ〉, we can derive x 〈ỹ〉.JP K x 〈ỹ〉−−−→ JP K.

INP:

Assume x(ỹ).P
x〈z̃〉−−→ P{z̃/ỹ} with z̃ : ỹ and α ∈ JβK = {x 〈z̃〉}. We compute

that Jx(ỹ).P K = x(λỹ)〈ỹ〉.JP K and z̃ ∈ match(〈z̃〉, ỹ, 〈ỹ〉). Using this and

1 ` x .↔ x we can derive x(λỹ)〈ỹ〉.JP K x 〈z̃〉−−−→ JP K[ỹ := z̃] with the In rule. By
applying Lemma A.3 completes the proof.

SUM:

Assume P + Q
β−→ P ′ and α ∈ JβK, and also P

β−→ P ′. From induction

hypothesis we have that for every α ∈ JβK, JP K α−→ JP ′K. Thus we can derive

case > : JP K [] > : JQK α−→ JP ′K with the Case rule for every α ∈ JβK.
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PAR:

Assume P | Q β−→ P ′ | Q and α ∈ JβK. We also assume P
β−→ P ′ with

bn(β) ∩ fn(Q) = ∅. From induction hypothesis, we get that for every α ∈ JβK,
JP K α−→ JP ′K. From assumption follows that bn(α)#JQK for any α ∈ JβK.
By applying the Par rule, we obtain the required transition JP K | JQK α−→
JP ′K | JQK.

COM:

Assume P | Q τ−→ νỹ′(P ′ | Q′) with ỹ′ ∩ fn(Q) = ∅. We also assume

P
(νỹ′)x〈ỹ〉−−−−−→ P ′ and Q

x〈ỹ〉−−→ Q′. From induction hypothesis, we have that

for every α′ ∈ J(νỹ′)x〈ỹ〉K and α′′ ∈ Jx〈ỹ〉K, JP K α′−→ JP ′K and JQK α′′−→ JQ′K
Moreover, we note that 1 ` x .↔ x and ỹ′#JQK. Finally, we choose α′ and α′′

and choose alpha-variants of the frames of JP K and JQK which are sufficiently

fresh to allow the derivation JP K | JQK τ−→ (νỹ′)(JP ′K | JQ′K) with the Com
rule.

MATCH:

Assume [x = x]P
β−→ P ′ and α ∈ JβK. We also assume P

β−→ P ′. From

induction hypothesis we acquire that JP K α−→ JP ′K. Since 1 ` x = x and

case x = x : JP K = J[x = x]P K, we derive case x = x : JP K α−→ JP ′K with the
Case rule.

REP:

Assume !P
β−→ P ′ and α ∈ JβK. Moreover, assume P | !P

β−→ P ′ and

hence from induction hypothesis JP | !P K α−→ JP ′K. We compute JP K | !JP K =

JP | !P K and apply the Rep rule to obtain !JP K α−→ JP ′K.

RES:

Assume νxP
β−→ νxP ′ where x 6∈ n(β) and α ∈ JβK. We also assume

P
β−→ P ′, to acquire from induction hypothesis JP K α−→ JP ′K. Now by

obtaining x#α from assumption and computing JνxP K = (νx)JP K, we derive

(νx)JP K α−→ (νx)JP ′K with the Scope rule.

OPEN:

Let β = (νx, ỹ′)z〈ỹ〉. Assume νxP
β−→ P ′ and x 6= z, x ∈ ỹ − ỹ′ and

α ∈ JβK = {z (νỹ′′) 〈ỹ〉 : ỹ′′ = π · x, ỹ′}. From induction hypothesis, we get

that for every α′ ∈ J(νỹ′)z〈ỹ〉K = {z (νỹ′′) 〈ỹ〉 : ỹ′′ = π · ỹ′} we can derive

JP K α′−→ JP ′K. We choose α′ = z (νỹ′) ỹ and by having JνxP K = (νx)JP K
derive, (νx)JP K z (νx,ỹ′) 〈ỹ〉−−−−−−−→ JP ′K with the Open rule. The side conditions of
Open, x#ỹ′, z and x ∈ n(ỹ), follow from assumptions.
From the assumption α ∈ JβK, it follows that, for any permutation π, α is of
the form z (νπ · x, ỹ′) 〈ỹ〉. By applying Lemma 4.3, we get the required α and

transition (νx)JP K α−→ JP ′K. And this concludes this proof case.
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(2) We now show that if JP K α−→ P ′′ then P
β−→ P ′ where α ∈ JβK and JP ′K = P ′′.

We proceed by by induction on the length of the derivation of P ′′. We only write
down the interesting cases:

Case:

Assume JP K α−→ P ′′. Because P ′′ is derived with the Case rule, JP K is of

the form case ϕ̃ : P̃ . Since PC = case ϕ̃ : P̃ is in the range of J·K, either
PC = > : JP K [] > : JQK, PC = > : JQK [] > : JP K or PC = case x = y : JP K. We
proceed by case analysis:

(a) When PC = > : JP K [] > : JQK, we note that JP + QK = PC and imitate

the derivation of P ′′ from PC with the derivation P + Q
β−→ P ′, using

the SUM rule and the fact obtained from induction hypothesis α ∈ JβK.
(b) The case when PC = > : JQK [] > : JP K is symmetric to the previous case.
(c) When PC = case x = y : JP K, since 1 ` x = y by the induction hypothe-

sis, x = y. We note that J[x = x]P K = PC and imitate the derivation of

P ′′ from PC with the derivation [x = x]P
β−→ P ′, using the MATCH

rule and the fact obtained from induction hypothesis α ∈ JβK.
Open:

Assume JP K z (νỹ∪{x}) 〈ỹ′〉−−−−−−−−−→ P ′′. Because P ′′ is derived with the Open rule,
JP K is of the form (νx)R. Since (νx)R is in the range of J·K, P = νxR′

where R = JR′K. From induction hypothesis, we have that R
z (νỹ) 〈ỹ′〉−−−−−−→ P ′′

and z (νỹ) 〈ỹ′〉 ∈ Jβ′K and R′
β′−→ P ′ and lastly JP ′K = P ′′. Thus we use

β′ = (νỹ)z〈ỹ′〉 as it gives us z (νỹ) 〈ỹ′〉 ∈ Jβ′K to derive using the rule OPEN,

νxR′
(νx,ỹ)z〈ỹ′〉−−−−−−−→ P ′. Clearly z (νỹ ∪ {x}) 〈ỹ′〉 ∈ J(νx, ỹ)z〈ỹ′〉K for every inser-

tion of x.

From the strong operational correspondence, we obtain full abstraction. We use San-
giorgi’s the definition of bisimulation and congruence of polyadic pi-calculus which can be
found in [San93] on page 42.

Theorem A.4. For polyadic-pi calculus agents P and Q we have P ∼ce Q iff JP K ∼ JQK

Proof. Direction ⇐. Assume JP K ∼ JQK. We claim that the relation R = {(P,Q) : JP K ∼
JQK} is an early congruence in the polyadic pi-calculus.

For simulation, assume P
β−→ P ′. We need to show that for some Q′, s.t. Q

β−→ Q′

and (P ′, Q′) ∈ R. By Theorem 4.4 (1), we get JP K α−→ JP ′K for any α ∈ JβK. By
Theorem 4.4 (2) and using the assumption α ∈ JβK as well as the fact JP K ∼ JQK, we derive

JQK α−→ JQ′K. From simulation clause and that JP K and JQK are congruent follows that
JP ′K ∼ JQ′K and hence (P ′, Q′) ∈ R. Symmetry case follows from the symmetry of ∼.
Hence R is an early bisimulation. Since R is closed under all substitutions by Lemma A.3,
it is an early congruence.

We prove direction⇒, assume P ∼ce Q. We claim the the relation {(1, JP K, JQK) : P ∼ce
Q} is a congruence in PPI. The static equivalence and extension of arbitrary assertion cases
are trivial since there is unit assertion only. Symmetry follows from symmetry of ∼ce, and
simulation follows by Theorem 4.4 and the fact that ∼ce is an early congruence.
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Proof of Theorem 4.7. By structural induction on P . We only consider the case of case
agent as other cases are trivial.

case case ϕ1 : P1 [] . . . [] ϕn : Pn:
We get an induction hypothesis for every i ∈ {1..n}, IHi: Pi ∼ JPiK.

We proceed by induction on n.

base case n = 0:
JcaseK = J0K = 0. By reflexivity of ∼, 0 ∼ 0.

induction step n+ 1:
The IH for this case is

Jcase ϕ1 : P1 [] . . . [] ϕn : PnK ∼ case ϕ1 : P1 [] . . . [] ϕn : Pn = P ′

We need to show that Q ∼ JQK for Q = case ϕ1 : P1 [] . . . [] ϕn : Pn [] ϕn+1 :
Pn+1.
We compute

JQK = Jϕ1 : P1 + · · ·+ ϕn : Pn + ϕn+1 : Pn+1K
= case > : Jϕ1 : P1K [] . . . [] > : Jϕn : PnK [] > : Jϕn+1 : Pn+1K
∼ (by Lemma 3.3)

case > : (case > : Jϕ1 : P1K [] . . . [] > : Jϕn : PnK) [] > : Jϕn+1 : Pn+1K
∼ (by IH)

case > : (case ϕ1 : P1 [] . . . [] ϕn : Pn) [] > : Jϕn+1 : Pn+1K
= case > : P ′ [] > : Jϕn+1 : Pn+1K
= Q′

We distinguish the cases of ϕn+1:

case ϕn+1 = >:

Q′ = case > : P ′ [] > : J> : Pn+1K
= case > : P ′ [] > : JPn+1K
∼ (by IHn+1)

case > : P ′ [] > : Pn+1

∼ (by Lemma 3.3)
case ϕ1 : P1 [] . . . [] ϕn : Pn [] > : Pn+1 = Q

We conclude this case.

case ϕn+1 = x = y:

Q′ = case > : P ′ [] > : Jx = y : Pn+1K
= case > : P ′ [] > : (case x = y : JPn+1K)
∼ (by IHn+1)

case > : P ′ [] > : (case x = y : Pn+1)
∼ (by Lemma 3.3)

case ϕ1 : P1 [] . . . [] ϕn : Pn [] > : (case x = y : Pn+1)
∼ (by Lemma 3.3)

case ϕ1 : P1 [] . . . [] ϕn : Pn [] x = y : Pn+1 = Q

By concluding this case, we conclude the proof.
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Lemma A.5. J·K is injective, that is, for all P,Q, if JP K = JQK then P = Q.

Proof. By induction on P and Q while inspecting all the possible cases.

Lemma A.6. J·K is surjective up to ∼, that is, for every P there is a Q such that JQK ∼ P .

Proof. By structural induction on the well formed agent P .

case x(λỹ)〈ỹ〉.P ′:
IH tells us that, for some Q′, JQ′K ∼ P ′. Let Q = x(ỹ).Q′. Then, JQK = Jx(ỹ).Q′K =
x(λỹ)〈ỹ〉.JQ′K ∼ x(λỹ)〈ỹ〉.P ′. This is what we needed to derive.

case x〈ỹ〉.P ′:
By IH, we have for some Q′, JQ′K ∼ P ′. Let Q = x〈ỹ〉.Q′. Now JQK = x〈ỹ〉.JQ′K ∼
x〈ỹ〉.P ′, which is what we wanted to derive.

case P | P ′:
By IH, we have that for some Q′, Q′′, JQ′K ∼ P and JQ′′K ∼ P ′. Then let Q = Q′ |Q′′,
thus JQK = JQ′K | JQ′′K ∼ P | P ′.

case (νx)P :
By IH, for some Q′, JQ′K ∼ P . Let Q = νxQ′. Then JQK = (νx)JQ′K ∼ (νx)P .

case !P :
By IH, for some Q′, JQ′K ∼ P . Let Q = !Q′. Then JQK = !JQ′K ∼ !P .

case L1M:
Let Q = 0. Then JQK = 0 ∼ L1M.

case case ϕ̃ : P̃ ′:
For induction hypothesis IHcase, we have for every i there is Q′i such that JQ′iK ∼ P ′i .
The proof goes by induction on the length of ϕ̃.

base case:
Let Q = 0, then JQK = 0 ∼ case.

induction step:
At this step, we get the following IH

JQ′′K ∼ case ϕ1 : P1 [] . . . [] ϕn : Pn

We need to show that there is some JQK such that

JQK ∼ case ϕ1 : P1 [] . . . [] ϕn : Pn [] ϕn+1 : Pn+1

First, we note that IHcase holds for every i and in particular i = n + 1, thus
we get JQ′n+1K ∼ Pn+1. Second, we note that ϕn+1 has two forms, thus we
proceed by case analysis on ϕn+1.
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case ϕn+1 = >:
Let Q = Q′′ +Q′n+1. Then

JQK = case > : JQ′′K [] > : JQ′n+1K
∼ case > : (case ϕ1 : P1 [] . . . [] ϕn : Pn)

[] > : JQ′n+1K
∼ case > : (case ϕ1 : P1 [] . . . [] ϕn : Pn)

[] > : Pn+1

∼ (by Lemma 3.3)
case ϕ1 : P1 [] . . . [] ϕn : Pn
[] > : Pn+1

This case is concluded.

case ϕn+1 = x = y:
Let Q = Q′′ + [x = y]Q′n+1. Then

JQK = case > : JQ′′K [] > : J[x = y]Q′n+1K
∼ case > : (case ϕ1 : P1 [] . . . [] ϕn : Pn)

[] > : (case x = y : JQ′n+1K)
∼ case > : (case ϕ1 : P1 [] . . . [] ϕn : Pn)

[] > : (case x = y : Pn+1)
∼ (by Lemma 3.3)

case ϕ1 : P1 [] . . . [] ϕn : Pn
[] > : (case x = y : Pn+1)

∼ (by permuting and applying Lemma 3.3)
case ϕ1 : P1 [] . . . [] ϕn : Pn [] x = y : Pn+1

This is the last part we needed to check, we conclude the proof.

Theorem A.7. J·K is an isomorphism up to ∼.

Proof. Directly follows from Lemma A.5 and Lemma A.6.

A.2. Polyadic Synchronisation Pi-Calculus. We follow the exposition of Polyadic Syn-
chronisation Pi-Calculus, eπ, of Carbone and Maffeis [CM03].

We give an explicit definition of encoding function defined in Example 4.4.

Definition A.8 (Polyadic synchronisation pi-calculus to PSPi).
Agents:

Jx̃(y).P K = 〈x̃〉(λy)y.JP K
Jx̃〈y〉.P K = 〈x̃〉 y.JP K
JP |QK = JP K | JQK
J(νx)P K = (νx)JP K

J!P K = !JP K
J0K = 0

JΣiαi.PiK = case >i : Jαi.PiK
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Actions:
Jx̃〈νc〉K = 〈x̃〉 (νc) c

Jx̃〈c〉K = 〈x̃〉 c
JτK = τ

Jx̃(y)K = undefined

Because in [CM03] Carbone and Maffeis defines late style laballed semantics for eπ the
input action has no translation.

Definition A.9 (PSPi to Polyadic synchronisation pi-calculus).

L1M = 0
0 = 0

!P = !P

(νx)P = (νx)P

P |Q = P |Q
〈ã〉y.P = a〈y〉.P

x̃(λy)y.P = x(y).P
τ.P = τ.P

case > : αi.Pi = Σiαi.Pi

Lemma A.10. If P ≡ Q then JP K ∼ JQK

Proof. The relation R = {(P,Q) : JP K ∼ JQK} satisfies all the axioms defining ≡ and is also
a process congruence. Since ≡ is the least such congruence, ≡ ⊆ R.

We give proof for the strong operational correspondence.

Proof of Theorem 4.16.

(1) By induction on the derivation of P ′, avoiding z.

Prefix:

Here Σix̃i(yi).Pi
x̃i(yi)−−−→ Pi. We have that

JΣix̃i(yi).PiK = case > : 〈x̃〉(λy1)y1.JP1K []

· · · [] > : 〈x̃〉(λyi)yi.JPiK
Since match(z, 〈yi〉, yi) = {z}, we can use the Case and In rules to derive the
transition

case > : 〈x̃1〉(λy1)y1.JP1K [] · · · [] > : 〈x̃i〉(λyi)yi.JPiK
〈x̃〉 z−−−→ JPiK[yi := z]

Finally, we have P ′′ = JPiK[yi := z] and use reflexivity of ∼.

Bang:

Here P | !P
x̃(y)−−→ P ′ and by induction, JP K | !JP K 〈x̃〉 z−−−→ P ′′ with P ′′ ∼

JP ′K[y := z]. By rule Rep, we also have that !JP K 〈x̃〉 z−−−→ P ′′.

Par:

Here P
x̃(y)−−→ P ′, y#Q and by induction, JP K 〈x̃〉 z−−−→ P ′′ with P ′′ ∼ JP ′K[y :=

z]. Using the Par rule we derive JP K | JQK 〈x̃〉 z−−−→ P ′ | JQK. Since ∼ is closed
under |, P ′′ | JQK ∼ JP ′K[y := z] | JQK. Finally, since y#Q, JP ′K[y := z] | JQK =
JP ′ | QK[y := z].
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Struct:

Here P ≡ Q, Q
x̃(y)−−→ Q′ and Q′ ≡ P ′. By induction we obtain Q′′ such

that JQK 〈x̃〉 z−−−→ Q′′ where Q′′ ∼ JQ′K[y := z]. By Lemma A.10, JP K ∼ JQK
and JQ′K ∼ JP ′K, and by definition of ∼, JQ′K[y := z] ∼ JP ′K[y := z]. Since

JP K ∼ JQK and JQK 〈x̃〉 z−−−→ Q′′, there exists P ′′ such that JP K 〈x̃〉 z−−−→ P ′′ and
Q′′ ∼ P ′′. By transitivity of ∼, P ′′ ∼ JP ′K[y := z].

Res:

Here P
x̃(y)−−→ P ′, a 6= y, a 6= z a#x̃, and by induction, JP K 〈x̃〉 z−−−→ P ′′

with P ′′ ∼ JP ′K[y := z]. This gives us sufficient freshness conditions to de-

rive (νa)JP K 〈x̃〉 z−−−→ (νa)P ′′. Since ∼ is closed under restriction, (νa)P ′′ ∼
(νa)(JP ′K[y := z]). Finally, a is sufficiently fresh to so that (νa)(JP ′K[y :=
z]) = ((νa)JP ′K)[y := z]

(2) By induction on the derivation of P ′. The cases not shown here are similar to the
previous clause of this theorem, where P does an input.

Comm:

Here P
x̃〈y〉−−→ P ′ and Q

x̃(z)−−→ Q′. By induction, JP K 〈x̃〉 y−−−→ P ′′ where

P ′′ ∼ JP ′K and by the previous clause of this theorem, JQK 〈x̃〉 y−−−→ Q′′ such that
JQ′K[z := y] ∼ Q′′. The Com rule lets us derive the transition

JP K | JQK τ−→ P ′′ | Q′′

To complete the induction case, we note that (νy)(P ′′ | Q′′) ∼ J(νy)(P ′ | Q′{y/z})K
Close:

Here P
x̃〈νy〉−−−→ P ′ and Q

x̃(y)−−→ Q′. We assume y#Q; if not, y can be α-

converted so that this holds. By induction, JP K 〈x̃〉 (νy) y−−−−−−→ P ′′ where P ′′ ∼ JP ′K
and by the previous clause of this theorem, JQK 〈x̃〉 y−−−→ Q′′ such that JQ′K[y :=
y] = JQ′K ∼ Q′′. The Com rule lets us derive the transition

JP K | JQK τ−→ (νy)(P ′′ | Q′′)
To complete the induction case, we note that (νy)(P ′′ | Q′′) ∼ J(νy)(P ′ | Q′)K

Open:

Here P
x̃〈y〉−−→ P ′ with y 6= x, and by induction, JP K 〈x̃〉 y−−−→ P ′′ where

P ′′ ∼ JP ′K. By Open, we derive (νy)JP K 〈x̃〉 (νy) y−−−−−−→ P ′′.
(3) By induction on the derivation of P”, avoiding y.

Par:

Here JP K x 〈z̃〉−−−→ P ′′, y#P,Q, and by induction P
x̃(y)−−→ P ′ where JP ′{z/y}K =

P ′′. By Par using y#Q, we derive P | Q x̃(y)−−→ P ′ | Q. Finally, we note that
since y#Q, J(P ′ | Q){z/y}K = P ′′ | JQK.

Case:

Here PC
x̃ z−−→ P ′′, where PC = case ϕ̃ : Q̃ is in the range of J·K - hence

PC must be the encoding of some prefix-guarded sum, ie PC = JΣiαi.PiK =
case > : Jα1K.JP1K [] . . . [] > : JαiK.JPiK. By transition inversion we can deduce
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that for some j, αj = x̃(y) and JPjK[y := z] = P ′′. By the Prefix rule,

Σiαi.Pi
x̃(y)−−→ Pj .

Out:
A special case of Case.

Rep:

Here JP K | !JP K x 〈z̃〉−−−→ P ′′ and by induction P | !P x̃(y)−−→ P ′ where JP ′{z/y}K =

P ′′. By Bang we derive !P
x̃(y)−−→ P ′.

Scope:

Here JP K x 〈z̃〉−−−→ P ′′, y#P,Q, a#x̃, y, z and by induction P
x̃(y)−−→ P ′

where JP ′{z/y}K = P ′′. Since a#x̃, y, z, the Res rule admits the derivation

(νa)P
x̃(y)−−→ (νa)P ′, and J((νa)P ′){z/y}K = (νa)P ′′

(4) By induction on the derivation of P”. The cases not shown are similar to the previous
clause of this theorem.

Com:

Here JP K 〈x̃〉 (νỹ′) y−−−−−−→ P ′′, JQK 〈x̃〉 y−−−→ Q′′ and y′#Q. Either ỹ′ = ε or ỹ′ = y; we
proceed by case analysis.

(a) If ỹ′ = ε, we have P
x̃〈y〉−−→ P ′ where JP ′K = P ′′ by induction and, by the

previous clause of this theorem, Q
x̃(z)−−→ Q′ where JQ′{y/z}K = Q′′. The

Comm rule then lets us derive P | Q τ−→ P ′ | Q′{y/z}.
(b) If ỹ′ = y, we have P

x̃〈νy〉−−−→ P ′ where JP ′K = P ′′ by induction and, by the

previous clause of this theorem, Q
x̃(y)−−→ Q′ where JQ′{y/y}K = JQ′K =

Q′′. The Close rule then lets us derive P | Q τ−→ (νy)(P ′ | Q′).
Open:

Here JP K 〈x̃〉 y−−−→ P ′′ with y 6= x. By induction, P
x̃〈y〉−−→ P ′ where JP ′K = P ′′.

By rule Open, (νy)P
x̃〈νy〉−−−→ P ′.

We give the full abstraction result for this calculus. The definition of congruence for
polyadic synchronisation pi-calculus can be found in [CM03] on page 6.

Theorem A.11. For all eπ processes P and Q, P ∼ Q iff JP K ∼ JQK

Proof. R = {(P,Q) : JP K ∼ JQK} is an early congruence in the polyadic synchronisation
pi-calculus; if P R Q then

(1) If P
x̃(y)−−→ P ′ and JP K ∼ JQK, since R is equivariant, we can assume that y#P,Q

without loss of generality. Fix z. By Theorem 4.16 (1), JP K 〈x̃〉 z−−−→ P ′′ where P ′′ ∼
JP ′K[y := z] = JP ′{z/y}K. Hence, since JP K ∼ JQK, JQK 〈x̃〉 z−−−→ Q′′ where P ′′ ∼ Q′′.

Hence, by Theorem 4.16.3 using y#Q, Q
x̃(y)−−→ Q′ where JQ′{z/y}K = Q′′. By

transitivity, JP ′{z/y}K ∼ JQ′{z/y}K.
(2) If P

α−→ P ′ and JP K ∼ JQK, since R is equivariant, we can assume that bn(α)#P,Q

without loss of generality. By Theorem 4.16.2, we have that JP K JαK−−→ P ′′ with P ′′ ∼
JP ′K. Hence, since JP K ∼ JQK and bn(α)#Q, there is a Q′′ such that JQK JαK−−→ Q′′
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and Q′′ ∼ P ′′. By Theorem 4.16.4, there is Q′ such that Q
α−→ Q′ and JQ′K = Q′′.

By transitivity, JP ′K ∼ JQ′K.
Symmetrically, we show that R = {(1, JP K, JQK) : P ∼ Q} is a congruence in PSPI:

Static equivalence:
Trivial since there is only a unit assertion.

Symmetry:
By symmetry of ∼

Simulation:

Here JP K α′−→ P ′′ and P ∼ Q. We proceed by case analysis on α′:

(1) If α′ = 〈x̃〉 z, then by Theorem 4.16 (3) and a sufficiently fresh y, P
x̃(y)−−→ P ′

where JP ′{z/y}K = P ′′. Since P ∼ Q, there exists Q′ such that Q
x̃(y)−−→ Q′

and P ′{z/y} ∼ Q′{z/y}. Hence, by Theorem 4.16 (1), JQK 〈x̃〉 z−−−→ Q′′ where
Q′′ ∼ JQ′K[y := z] = JQ′{z/y}K. We have that P ′′ = JP ′{z/y}K R JQ′{z/y}K ∼
Q′′, which suffices.

(2) If α′ is not an input, since R is equivariant, we can assume that bn(α′)#P,Q

without loss of generality. Since JP K α′−→ P ′′, by Theorem 4.16 (4) we have

that P
α−→ P ′ where JαK = α′ and JP ′K = P ′′. Since P ∼ Q, there is Q′

such that Q
α−→ Q′ and P ′ ∼ Q′. By Theorem 4.16 (2), JQK JαK−−→ Q′′, where

Q′′ ∼ JQ′K. Hence P ′′ = JP ′K R JQ′K ∼ Q′′, which suffices.

Extension of arbitrary assertion:
Trivial since there is only a unit assertion.

Lemma A.12. J·K is surjective up to ∼ on the set of case-guarded processes, that is, for
every case-guarded P there is a Q such that JQK ∼ P .

Proof. By induction on a well formed agent P .

case 〈x̃〉(λy)y.P ′:

It is valid to consider only this form, since {y} ∈ vars(y). The IH is for some Q′,
JQ′K ∼ P ′. Let Q = x̃(y).Q′. Then JQK = 〈x̃〉(λy)y.JQ′K ∼ 〈x̃〉(λy)y.P ′.

case 〈x̃〉 y.P ′:
From IH, we get for some Q′, JQ′K ∼ P ′. Let Q = x̃〈y〉.Q′. Then JQK = 〈x̃〉 y.JQ′K ∼
〈x̃〉 y.P ′.

case P ′ | P ′′:
From IH, for some Q′, Q′′, we have JQ′K ∼ P ′ and JQ′′K ∼ P ′′. Let Q = Q′ | Q′′.
Then JQK = JQ′K | JQ′′K ∼ P ′ | P ′′.

case (νx)P ′:
Let Q = νxQ′, then by induction hypothesis JQK = (νx)JQ′K ∼ (νx)P ′.

case !P ′:
Let Q =!Q′ (Q′ from IH). JQK = !JQ′K ∼ !P ′.

case 0:
Then J0K = 0 ∼ 0.
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case L1M:
Then J0K = 0 ∼ L1M.

case case ϕ̃ : P̃ ′:
For induction hypothesis IHcase, we have for every i there is Q′i such that JQ′iK ∼ P ′i .
The proof goes by induction on the length of ϕ̃.

base case:
Let Q = 0, then JQK = 0 ∼ case.

induction step:
At this step, we get the following IH

JQ′′K ∼ case ϕ1 : P1 [] . . . [] ϕn : Pn

We need to show that there is some JQK such that

JQK ∼ case ϕ1 : P1 [] . . . [] ϕn : Pn [] ϕn+1 : Pn+1 = P

First, we note that IHcase holds for every i and in particular i = n + 1, thus
we get JQ′n+1K ∼ Pn+1. Second, we note that ϕn+1 has two forms, thus we
proceed by case analysis on ϕn+1.

case ϕn+1 = ⊥:
Let Q = Q′′. Then

JQK = JQ′′K
∼ case ϕ1 : P1 [] . . . [] ϕn : Pn
∼ case ϕ1 : P1 [] . . . [] ϕn : Pn [] ⊥ : Pn+1

This case is concluded.

case ϕn+1 = >:
From the assumption, we know that Pn+1 is of form α.P ′n+1 and that
JQ′n+1K ∼ α.P ′n+1. By investigating the construction of Q′n+1 we can
conclude that Q′n+1 = α.Q′′n+1 where JQ′′n+1K ∼ P ′n+1. The agent from IH
Q′′ is either 0, or prefixed agent, or a mixed sum.
In case Q′′ = 0, let Q = Q′n+1, then JQK = JQ′n+1K ∼ P .
In case Q′′ is prefixed agent, let Q = Q′′+Q′n+1. Since Q′′ and Q′n+1 are
prefixed, Q is well formed. Then JQK = case > : JQ′′K [] > : JQ′n+1K ∼
case ϕ1 : P1 [] . . . [] ϕn : Pn [] > : Pn+1.
In case Q′′ is a sum, let Q = Q′′ + Q′n+1. Since Q′n+1 is guarded, Q is
well formed. Then

JQK = case > : JQ′′K [] > : JQ′n+1K
∼ case > : (case ϕ1 : P1 [] . . . [] ϕn : Pn)

[] > : JQ′n+1K
∼ (by Lemma 3.3)

case ϕ1 : P1 [] . . . [] ϕn : Pn
[] > : JQ′n+1K

∼ case ϕ1 : P1 [] . . . [] ϕn : Pn
[] > : P ′n+1

This concludes the proof.
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Lemma A.13. J·K is injective, that is, for all P,Q, if JP K = JQK then P = Q.

Proof. By induction on P and Q while inspecting all the possible cases.

Theorem A.14. J·K is an isomorphism up to ∼ between eπ and the case-guarded processes
in PSPI.

Proof. Directly follows from Lemma A.13 and Lemma A.12.

A.3. Value-passing CCS.

Lemma A.15. If P is a VPCCS process such that P
M (νx̃)N−−−−−−→ P ′′ then x̃ = ε

Proof. By induction on the derivation of P ′. Obvious in all cases except Open, where
we derive a contradiction since only values can be transmitted yet only channels can be
restricted - hence the name a is both a name and a value.

We assume a reverse translation ·̂ from VPCCS to value-passing CCS. We prove strong
operational correspondence.

Proof of Theorem 4.23.

(1) By induction on the derivation of P ′.

Act:

We have that α.P
α−→ P . Since α.P is in the range of ·̂, there must be x and

v such that either α = x(v) (for if α was an input, α.P would be outside the

range of ·̂). The Out rule then admits the derivation x v.JP K x v−−→ JP K

Sum:
There are two cases to consider: either ΣiPi is the encoding of an input, or a
summation.

(a) If ΣiPi = Σvx(v).P{v/y} = x̂(y).P we have that α = x(v). Then for

each v, we can derive x(λy)y.JP K x v−−→ JP{v/yK using the In rule.

(b) Otherwise, we have that Pj
α−→ P ′ and by induction,

JPjK
JαK−−→ JP ′K

The Case rule lets us derive

case > : JP1K [] · · · [] > : Pi
JαK−−→ JP ′K

This suffices since JΣiPiK = case > : JP1K [] · · · [] > : Pi.

Com1:

Here P
α−→ P ′ and by induction, JP K JαK−−→ JP ′K. The Par rule admits

derivation of the transition JP K | JQK JαK−−→ JP ′K | JQK, using Lemma A.15 to
discharge the freshness side condition.

Com2:
Symmetric to Com1.
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Com3:

Here P
α−→ P ′, Q

α−→ Q′. Since α is in the range of ·̂, there are x and v
such that α = x(v) and α = x(v) (or vice versa, in which case read the next

sentence symmetrically). By the induction hypotheses, JP K x v−−→ JP ′K and

JQK x v−−→ JQ′K - hence JP K | JQK τ−→ JP ′K | JQ′K by the Com rule, using
Lemma A.15 to discharge the freshness side condition.

Res:

Here P
α−→ P ′ with L#α - hence σ(L)#α. By induction, JP K JαK−−→ JP ′K.

Then we use the Res rule |L| times to derive (νσ(L))JP K JαK−−→ (νσ(L))JP ′K.

Rep:

Here P | !P α−→ P ′. By induction, JP K | !JP K JαK−−→ JP ′K, and by the Rep rule,

!JP K JαK−−→ JP ′K
(2) By induction on the derivation of P ′.

In:

Here x(λy)y.JP K x v−−→ JP{v/y}K. We match this by deriving x̂(y).P
x(v)−−→

P̂{v/y} using the Act and Sum rules.

Out:

Here x v.JP K x v−−→ JP K. We match this by deriving x̂(v).P
x(v)−−→ P̂ using the

Act rule.

Com:

Here JP K x (νỹ) v−−−−−→ P ′′, JQK x v−−→ Q′′. By Lemma A.15, ỹ = ε, and by induction,

P
x(v)−−→ P ′ and Q

x(v)−−→ Q′where JP ′K = P ′′ and JQ′K = Q′′. Using the Com3

rule we derive P | Q τ−→ P ′ | Q′

Par:
Easy.

Case:
Our case statement can either be the encoding of either a summation or an if
statement. We proceed by case analysis:

(a) Here JPjK
α′−→ P ′′. By induction, Pj

α−→ P ′ where JαK = α′. By Sum,

ΣiPi
α−→ P ′.

(b) Here JP K α′−→ P ′′ and 1 ` b. By induction, P
α−→ P ′ where JαK = α′

and JP ′K = P ′′. Since b evaluates to true, ̂if b then P = P̂ - hence

if b then P
α−→ P ′.

Rep:
Easy.

Scope:

Here JP K α′−→ P ′′ with x]α′ and by induction, P
α−→ P ′ where α′ = JαK and

P ′′ = JP ′K. Hence we can derive P \ {x} α−→ P ′ \ {x} by the Res rule.



48 J BORGSTRÖM, R GUTKOVAS, J PARROW, B VICTOR, AND J ÅMAN POHJOLA

Open:
Opening is not possible.
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