
Solving SAT and SAT Modulo Theories: From an Abstract
Davis–Putnam–Logemann–Loveland Procedure to DPLL(T)

ROBERT NIEUWENHUIS AND ALBERT OLIVERAS

Technical University of Catalonia, Barcelona, Spain

AND

CESARE TINELLI

The University of Iowa, Iowa City, Iowa

Abstract. We first introduce Abstract DPLL, a rule-based formulation of the Davis–Putnam–
Logemann–Loveland (DPLL) procedure for propositional satisfiability. This abstract framework al-
lows one to cleanly express practical DPLL algorithms and to formally reason about them in a simple
way. Its properties, such as soundness, completeness or termination, immediately carry over to the
modern DPLL implementations with features such as backjumping or clause learning.

We then extend the framework to Satisfiability Modulo background Theories (SMT) and use it to
model several variants of the so-called lazy approach for SMT. In particular, we use it to introduce a
few variants of a new, efficient and modular approach for SMT based on a general DPLL(X ) engine,
whose parameter X can be instantiated with a specialized solver SolverT for a given theory T , thus
producing a DPLL(T ) system. We describe the high-level design of DPLL(X ) and its cooperation
with SolverT , discuss the role of theory propagation, and describe different DPLL(T ) strategies for
some theories arising in industrial applications.

Our extensive experimental evidence, summarized in this article, shows that DPLL(T ) systems
can significantly outperform the other state-of-the-art tools, frequently even in orders of magnitude,
and have better scaling properties.

Categories and Subject Descriptors: B.6.3 [Logic Design]: Design Aids—Verification; F.4.1 [Math-
ematical Logic and Formal Languages]: Mathematical Logic—Computational logic; verification;
I.2.3 [Artificial Intelligence]: Deduction and Theorem Proving—Deduction (e.g., natural, rule-
based)
General Terms: Theory, Verification

Additional Key Words and Phrases: SAT solvers, Satisfiability Modulo Theories

Presentation of

by

Ramūnas Gutkovas
SMT Reading Group
Uppsala
2012-10-31

1Wednesday, October 



Background for Abstract DPLL

Original DPLL [Davis et al. ‘62]

Modern SAT (~2006) solvers based on DPLL 
use many extensions and combinations 
thereof

Problem: these extensions lack 
formal treatment
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Background for Abstract DPLL

Original DPLL [Davis et al. ‘62]

Modern SAT (~2006) solvers based on DPLL 
use many extensions and combinations 
thereof

+ lemma learning
+ restarts

+ background theories

+ backjumping

Problem: these extensions lack 
formal treatment
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Abstract DPLL

[NOT‘06]

... a uniform, declarative 
framework for describing DPLL-
based solvers, both for 
propositional satisfiability 
and for satisfiability modulo 
theories.

“

(emphasis is mine)

Solution: Abstract DPLL
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Notions and Classical DPLL

Abstract 
DPLL
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Formal Preliminaries (1/3)
Propositional Case

set of propositions (atoms)p 2 P

F = C1, . . . , Cm formula is a set of clauses

C = l1 _ · · · _ ln clause is a set of literals

F is in CNF

l is a literal whenever p ¬porisl

negation op. on literal¬l = if l = p then ¬p else p

(in examples this set will be identified with natural numbers)
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Formal Preliminaries (2/3)
Propositional Case

is defined in if l M l 2 M ¬l 2 Mor

p 2 M¬p 2 M andpis consistent if there is no M s.t.

s.t.if there is M ✏ C l 2 C l 2 M

assignment is a consistent sequence of literalsM = l1l2 . . . ln

M ✏ F C 2 F M ✏ Cif for every implies

is a model of 
M ✏ F

M F
F is satisfiable

whenever for some{ } M

F ✏ F 0 M ✏ F M ✏ F 0impliesif for every 

C = l1 _ · · · _ ln
F = C1, . . . , Cm

p atom

l literal

M ✏ ¬C impliesif for every l 2 C ¬l 2 Mconflict
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Abstract DPLL System (3/3)
Transition System C = l1 _ · · · _ ln

F = C1, . . . , Cm

p atom

l literal

M = l1l2 . . . ln
CNF

model

clause

S =) S0Transition

M ||F2.

FailState1.

S 2 � in case of ADPLL is one ofState

=)2 �⇥ �h�,=)i whereTransition system

ofReflexive-transitive closure =)⇤ =)

inDecision literal M = NldN 0ld

S 6=)=)Final state wrtS whenever
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Solving SAT and SAT Modulo Theories 941

The concatenation of two such sequences will be denoted by simple juxtaposition.
When we want to emphasize that a literal l is annotated as a decision literal we
will write it as ld. We will denote the empty sequence of literals (or the empty
assignment) by ∅. We say that a clause C is conflicting in a state M ‖ F, C if
M |= ¬C .

We will model each DPLL procedure by means of a set of states together with a
binary relation =⇒ over these states, called the transition relation. As usual, we use
infix notation, writing S =⇒ S′ instead of (S, S′) ∈ =⇒. If S =⇒ S′ we say that
there is a transition from S to S′. We denote by =⇒∗ the reflexive-transitive closure
of =⇒. We call any sequence of transitions of the form S0 =⇒ S1, S1 =⇒ S2, · · ·
a derivation, and denote it by S0 =⇒ S1 =⇒ S2 =⇒ · · · . We call any subsequence
of a derivation a subderivation.

In what follows, transition relations will be defined by means of conditional
transition rules. For a given state S, a transition rule precisely defines whether
there is a transition from S by this rule and, if so, to which state S′. Such a transition
is called an application step of the rule.

A transition system is a set of transition rules defined over some given set of
states. Given a transition system R, the transition relation defined by R will be
denoted by =⇒R . If there is no transition from S by =⇒R , we will say that S is
final with respect to R (examples of a transition system and a final state with respect
to it can be found in Definition 2.1 and Example 2.2).

2.3. THE CLASSICAL DPLL PROCEDURE. A very simple DPLL system, faithful
to the classical DPLL algorithm, consists of the following five transition rules. We
give this system here mainly for explanatory and historical reasons. The informally
stated results for it are easily obtained by adapting the more general ones given in
Section 2.5.

Definition 2.1. The Classical DPLL system is the transition system Cl consist-
ing of the following five transition rules. In this system, the literals added to M by
all rules except Decide are annotated as non-decision literals.

UnitPropagate :

M ‖ F, C ∨ l =⇒ M l ‖ F, C ∨ l if
{

M |= ¬C
l is undefined in M.

PureLiteral :

M ‖ F =⇒ M l ‖ F if






l occurs in some clause of F
¬l occurs in no clause of F
l is undefined in M.

Decide :

M ‖ F =⇒ M ld ‖ F if
{

l or ¬l occurs in a clause of F
l is undefined in M .

Fail :

M ‖ F, C =⇒ FailState if
{

M |= ¬C
M contains no decision literals.

Backtrack :

M ld N ‖ F, C =⇒ M ¬l ‖ F, C if
{

M ld N |= ¬C
N contains no decision literals.

    Classical DPLL system =)Cl

C = l1 _ · · · _ ln
F = C1, . . . , Cm

p atom

l literal

M = l1l2 . . . ln
CNF

model

clause
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No order (strategy) of 
rule application 

prescribed.
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No order (strategy) of 
rule application 

prescribed.

These rules produce models which 
are total, i.e, every atom of the 

formula appears in the model.
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Classical DPLL Example

Strategy: apply Decide if other rules don’t apply

Fz }| {
Mz }| {
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One can use the transition system Cl for deciding the satisfiability of an input
formula F simply by generating an arbitrary derivation ∅ ‖ F =⇒Cl · · · =⇒Cl Sn ,
where Sn is a final state with respect to Cl. The applicability of each of the five
rules is easy to check and, as we will see, their application always leads to finite
derivations. Moreover, for every derivation like the above ending in a final state
Sn , (i) F is unsatisfiable if, and only if, Sn is FailState, and (ii) if Sn is of the form
M ‖ F then M is a model of F . Note that in this Classical DPLL system the second
component of a state remains unchanged, a property that does not hold for the other
transition systems we introduce later.

We now briefly comment on what the different rules do. In the following, if M is
a sequence of the form M0 l1 M1 · · · lk Mk , where the li are all the decision literals
in M , we say that the state M ‖ F is at decision level k, and that all the literals of
each li Mi belong to decision level i .

—UnitPropagate: To satisfy a CNF formula, all its clauses have to be true. Hence, if
a clause of F contains a literal l whose truth value is not defined by the current
assignment M while all the remaining literals of the clause are false, then M
must be extended to make l true.

—PureLiteral: If a literal l is pure in F , that is, it occurs in F while its negation does
not, then F is satisfiable only if it has a model that makes l true. Thus, if M does
not define l it can be extended to make l true.

—Decide: This rule represents a case split. An undefined literal l is chosen from
F , and added to M . The literal is annotated as a decision literal, to denote that
if M l cannot be extended to a model of F then the alternative extension M ¬l
must still be considered. This is done by means of the Backtrack rule.

—Fail: This rule detects a conflicting clause C and produces the FailState state
whenever M contains no decision literals.

—Backtrack: If a conflicting clause C is detected and Fail does not apply, then the
rule backtracks one decision level, by replacing the most recent decision literal ld

by ¬l and removing any subsequent literals in the current assignment. Note that
¬l is annotated as a nondecision literal, since the other possibility l has already
been explored.

Example 2.2. The following is a derivation in the Classical DPLL system, with
each transition annotated by the rule that makes it possible. To improve readability
we denote atoms by natural numbers, and negation by overlining.

∅ ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (Decide)
1d ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (UnitPropagate)

1d 2 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (UnitPropagate)
1d 2 3 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (UnitPropagate)

1d 2 3 4 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (Backtrack)
1 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (UnitPropagate)

1 4 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (Decide)
1 4 3

d ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (UnitPropagate)
1 4 3

d
2 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4

Strategy: apply Decide if other rules don’t apply

Fz }| {
Mz }| {
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Example 2.2. The following is a derivation in the Classical DPLL system, with
each transition annotated by the rule that makes it possible. To improve readability
we denote atoms by natural numbers, and negation by overlining.

∅ ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (Decide)
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1 4 3
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d
2 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4

Strategy: apply Decide if other rules don’t apply

Fz }| {
Mz }| {
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One can use the transition system Cl for deciding the satisfiability of an input
formula F simply by generating an arbitrary derivation ∅ ‖ F =⇒Cl · · · =⇒Cl Sn ,
where Sn is a final state with respect to Cl. The applicability of each of the five
rules is easy to check and, as we will see, their application always leads to finite
derivations. Moreover, for every derivation like the above ending in a final state
Sn , (i) F is unsatisfiable if, and only if, Sn is FailState, and (ii) if Sn is of the form
M ‖ F then M is a model of F . Note that in this Classical DPLL system the second
component of a state remains unchanged, a property that does not hold for the other
transition systems we introduce later.

We now briefly comment on what the different rules do. In the following, if M is
a sequence of the form M0 l1 M1 · · · lk Mk , where the li are all the decision literals
in M , we say that the state M ‖ F is at decision level k, and that all the literals of
each li Mi belong to decision level i .

—UnitPropagate: To satisfy a CNF formula, all its clauses have to be true. Hence, if
a clause of F contains a literal l whose truth value is not defined by the current
assignment M while all the remaining literals of the clause are false, then M
must be extended to make l true.

—PureLiteral: If a literal l is pure in F , that is, it occurs in F while its negation does
not, then F is satisfiable only if it has a model that makes l true. Thus, if M does
not define l it can be extended to make l true.

—Decide: This rule represents a case split. An undefined literal l is chosen from
F , and added to M . The literal is annotated as a decision literal, to denote that
if M l cannot be extended to a model of F then the alternative extension M ¬l
must still be considered. This is done by means of the Backtrack rule.

—Fail: This rule detects a conflicting clause C and produces the FailState state
whenever M contains no decision literals.

—Backtrack: If a conflicting clause C is detected and Fail does not apply, then the
rule backtracks one decision level, by replacing the most recent decision literal ld

by ¬l and removing any subsequent literals in the current assignment. Note that
¬l is annotated as a nondecision literal, since the other possibility l has already
been explored.

Example 2.2. The following is a derivation in the Classical DPLL system, with
each transition annotated by the rule that makes it possible. To improve readability
we denote atoms by natural numbers, and negation by overlining.

∅ ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (Decide)
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1d 2 3 4 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (Backtrack)
1 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (UnitPropagate)

1 4 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (Decide)
1 4 3

d ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (UnitPropagate)
1 4 3
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2 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4
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component of a state remains unchanged, a property that does not hold for the other
transition systems we introduce later.

We now briefly comment on what the different rules do. In the following, if M is
a sequence of the form M0 l1 M1 · · · lk Mk , where the li are all the decision literals
in M , we say that the state M ‖ F is at decision level k, and that all the literals of
each li Mi belong to decision level i .

—UnitPropagate: To satisfy a CNF formula, all its clauses have to be true. Hence, if
a clause of F contains a literal l whose truth value is not defined by the current
assignment M while all the remaining literals of the clause are false, then M
must be extended to make l true.

—PureLiteral: If a literal l is pure in F , that is, it occurs in F while its negation does
not, then F is satisfiable only if it has a model that makes l true. Thus, if M does
not define l it can be extended to make l true.

—Decide: This rule represents a case split. An undefined literal l is chosen from
F , and added to M . The literal is annotated as a decision literal, to denote that
if M l cannot be extended to a model of F then the alternative extension M ¬l
must still be considered. This is done by means of the Backtrack rule.

—Fail: This rule detects a conflicting clause C and produces the FailState state
whenever M contains no decision literals.

—Backtrack: If a conflicting clause C is detected and Fail does not apply, then the
rule backtracks one decision level, by replacing the most recent decision literal ld

by ¬l and removing any subsequent literals in the current assignment. Note that
¬l is annotated as a nondecision literal, since the other possibility l has already
been explored.

Example 2.2. The following is a derivation in the Classical DPLL system, with
each transition annotated by the rule that makes it possible. To improve readability
we denote atoms by natural numbers, and negation by overlining.
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2 is undefined in 1d and 1d ✏ ¬1
Strategy: apply Decide if other rules don’t apply

Fz }| {
Mz }| {
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component of a state remains unchanged, a property that does not hold for the other
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if M l cannot be extended to a model of F then the alternative extension M ¬l
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rules is easy to check and, as we will see, their application always leads to finite
derivations. Moreover, for every derivation like the above ending in a final state
Sn , (i) F is unsatisfiable if, and only if, Sn is FailState, and (ii) if Sn is of the form
M ‖ F then M is a model of F . Note that in this Classical DPLL system the second
component of a state remains unchanged, a property that does not hold for the other
transition systems we introduce later.

We now briefly comment on what the different rules do. In the following, if M is
a sequence of the form M0 l1 M1 · · · lk Mk , where the li are all the decision literals
in M , we say that the state M ‖ F is at decision level k, and that all the literals of
each li Mi belong to decision level i .

—UnitPropagate: To satisfy a CNF formula, all its clauses have to be true. Hence, if
a clause of F contains a literal l whose truth value is not defined by the current
assignment M while all the remaining literals of the clause are false, then M
must be extended to make l true.

—PureLiteral: If a literal l is pure in F , that is, it occurs in F while its negation does
not, then F is satisfiable only if it has a model that makes l true. Thus, if M does
not define l it can be extended to make l true.

—Decide: This rule represents a case split. An undefined literal l is chosen from
F , and added to M . The literal is annotated as a decision literal, to denote that
if M l cannot be extended to a model of F then the alternative extension M ¬l
must still be considered. This is done by means of the Backtrack rule.

—Fail: This rule detects a conflicting clause C and produces the FailState state
whenever M contains no decision literals.

—Backtrack: If a conflicting clause C is detected and Fail does not apply, then the
rule backtracks one decision level, by replacing the most recent decision literal ld

by ¬l and removing any subsequent literals in the current assignment. Note that
¬l is annotated as a nondecision literal, since the other possibility l has already
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Example 2.2. The following is a derivation in the Classical DPLL system, with
each transition annotated by the rule that makes it possible. To improve readability
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∅ ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (Decide)
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1d 2 3 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (UnitPropagate)

1d 2 3 4 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (Backtrack)
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One can use the transition system Cl for deciding the satisfiability of an input
formula F simply by generating an arbitrary derivation ∅ ‖ F =⇒Cl · · · =⇒Cl Sn ,
where Sn is a final state with respect to Cl. The applicability of each of the five
rules is easy to check and, as we will see, their application always leads to finite
derivations. Moreover, for every derivation like the above ending in a final state
Sn , (i) F is unsatisfiable if, and only if, Sn is FailState, and (ii) if Sn is of the form
M ‖ F then M is a model of F . Note that in this Classical DPLL system the second
component of a state remains unchanged, a property that does not hold for the other
transition systems we introduce later.

We now briefly comment on what the different rules do. In the following, if M is
a sequence of the form M0 l1 M1 · · · lk Mk , where the li are all the decision literals
in M , we say that the state M ‖ F is at decision level k, and that all the literals of
each li Mi belong to decision level i .

—UnitPropagate: To satisfy a CNF formula, all its clauses have to be true. Hence, if
a clause of F contains a literal l whose truth value is not defined by the current
assignment M while all the remaining literals of the clause are false, then M
must be extended to make l true.

—PureLiteral: If a literal l is pure in F , that is, it occurs in F while its negation does
not, then F is satisfiable only if it has a model that makes l true. Thus, if M does
not define l it can be extended to make l true.

—Decide: This rule represents a case split. An undefined literal l is chosen from
F , and added to M . The literal is annotated as a decision literal, to denote that
if M l cannot be extended to a model of F then the alternative extension M ¬l
must still be considered. This is done by means of the Backtrack rule.

—Fail: This rule detects a conflicting clause C and produces the FailState state
whenever M contains no decision literals.

—Backtrack: If a conflicting clause C is detected and Fail does not apply, then the
rule backtracks one decision level, by replacing the most recent decision literal ld

by ¬l and removing any subsequent literals in the current assignment. Note that
¬l is annotated as a nondecision literal, since the other possibility l has already
been explored.

Example 2.2. The following is a derivation in the Classical DPLL system, with
each transition annotated by the rule that makes it possible. To improve readability
we denote atoms by natural numbers, and negation by overlining.

∅ ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (Decide)
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One can use the transition system Cl for deciding the satisfiability of an input
formula F simply by generating an arbitrary derivation ∅ ‖ F =⇒Cl · · · =⇒Cl Sn ,
where Sn is a final state with respect to Cl. The applicability of each of the five
rules is easy to check and, as we will see, their application always leads to finite
derivations. Moreover, for every derivation like the above ending in a final state
Sn , (i) F is unsatisfiable if, and only if, Sn is FailState, and (ii) if Sn is of the form
M ‖ F then M is a model of F . Note that in this Classical DPLL system the second
component of a state remains unchanged, a property that does not hold for the other
transition systems we introduce later.

We now briefly comment on what the different rules do. In the following, if M is
a sequence of the form M0 l1 M1 · · · lk Mk , where the li are all the decision literals
in M , we say that the state M ‖ F is at decision level k, and that all the literals of
each li Mi belong to decision level i .

—UnitPropagate: To satisfy a CNF formula, all its clauses have to be true. Hence, if
a clause of F contains a literal l whose truth value is not defined by the current
assignment M while all the remaining literals of the clause are false, then M
must be extended to make l true.

—PureLiteral: If a literal l is pure in F , that is, it occurs in F while its negation does
not, then F is satisfiable only if it has a model that makes l true. Thus, if M does
not define l it can be extended to make l true.

—Decide: This rule represents a case split. An undefined literal l is chosen from
F , and added to M . The literal is annotated as a decision literal, to denote that
if M l cannot be extended to a model of F then the alternative extension M ¬l
must still be considered. This is done by means of the Backtrack rule.

—Fail: This rule detects a conflicting clause C and produces the FailState state
whenever M contains no decision literals.

—Backtrack: If a conflicting clause C is detected and Fail does not apply, then the
rule backtracks one decision level, by replacing the most recent decision literal ld

by ¬l and removing any subsequent literals in the current assignment. Note that
¬l is annotated as a nondecision literal, since the other possibility l has already
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Example 2.2. The following is a derivation in the Classical DPLL system, with
each transition annotated by the rule that makes it possible. To improve readability
we denote atoms by natural numbers, and negation by overlining.
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1d 2 3 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (UnitPropagate)

1d 2 3 4 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (Backtrack)
1 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (UnitPropagate)

1 4 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (Decide)
1 4 3

d ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (UnitPropagate)
1 4 3

d
2 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4

942 R. NIEUWENHUIS ET AL.

One can use the transition system Cl for deciding the satisfiability of an input
formula F simply by generating an arbitrary derivation ∅ ‖ F =⇒Cl · · · =⇒Cl Sn ,
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rules is easy to check and, as we will see, their application always leads to finite
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Sn , (i) F is unsatisfiable if, and only if, Sn is FailState, and (ii) if Sn is of the form
M ‖ F then M is a model of F . Note that in this Classical DPLL system the second
component of a state remains unchanged, a property that does not hold for the other
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We now briefly comment on what the different rules do. In the following, if M is
a sequence of the form M0 l1 M1 · · · lk Mk , where the li are all the decision literals
in M , we say that the state M ‖ F is at decision level k, and that all the literals of
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—UnitPropagate: To satisfy a CNF formula, all its clauses have to be true. Hence, if
a clause of F contains a literal l whose truth value is not defined by the current
assignment M while all the remaining literals of the clause are false, then M
must be extended to make l true.

—PureLiteral: If a literal l is pure in F , that is, it occurs in F while its negation does
not, then F is satisfiable only if it has a model that makes l true. Thus, if M does
not define l it can be extended to make l true.

—Decide: This rule represents a case split. An undefined literal l is chosen from
F , and added to M . The literal is annotated as a decision literal, to denote that
if M l cannot be extended to a model of F then the alternative extension M ¬l
must still be considered. This is done by means of the Backtrack rule.

—Fail: This rule detects a conflicting clause C and produces the FailState state
whenever M contains no decision literals.

—Backtrack: If a conflicting clause C is detected and Fail does not apply, then the
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by ¬l and removing any subsequent literals in the current assignment. Note that
¬l is annotated as a nondecision literal, since the other possibility l has already
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Example 2.2. The following is a derivation in the Classical DPLL system, with
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One can use the transition system Cl for deciding the satisfiability of an input
formula F simply by generating an arbitrary derivation ∅ ‖ F =⇒Cl · · · =⇒Cl Sn ,
where Sn is a final state with respect to Cl. The applicability of each of the five
rules is easy to check and, as we will see, their application always leads to finite
derivations. Moreover, for every derivation like the above ending in a final state
Sn , (i) F is unsatisfiable if, and only if, Sn is FailState, and (ii) if Sn is of the form
M ‖ F then M is a model of F . Note that in this Classical DPLL system the second
component of a state remains unchanged, a property that does not hold for the other
transition systems we introduce later.

We now briefly comment on what the different rules do. In the following, if M is
a sequence of the form M0 l1 M1 · · · lk Mk , where the li are all the decision literals
in M , we say that the state M ‖ F is at decision level k, and that all the literals of
each li Mi belong to decision level i .

—UnitPropagate: To satisfy a CNF formula, all its clauses have to be true. Hence, if
a clause of F contains a literal l whose truth value is not defined by the current
assignment M while all the remaining literals of the clause are false, then M
must be extended to make l true.

—PureLiteral: If a literal l is pure in F , that is, it occurs in F while its negation does
not, then F is satisfiable only if it has a model that makes l true. Thus, if M does
not define l it can be extended to make l true.

—Decide: This rule represents a case split. An undefined literal l is chosen from
F , and added to M . The literal is annotated as a decision literal, to denote that
if M l cannot be extended to a model of F then the alternative extension M ¬l
must still be considered. This is done by means of the Backtrack rule.

—Fail: This rule detects a conflicting clause C and produces the FailState state
whenever M contains no decision literals.

—Backtrack: If a conflicting clause C is detected and Fail does not apply, then the
rule backtracks one decision level, by replacing the most recent decision literal ld

by ¬l and removing any subsequent literals in the current assignment. Note that
¬l is annotated as a nondecision literal, since the other possibility l has already
been explored.

Example 2.2. The following is a derivation in the Classical DPLL system, with
each transition annotated by the rule that makes it possible. To improve readability
we denote atoms by natural numbers, and negation by overlining.
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1 4 3
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d
2 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4

3 is undefined in 1d2 and 1d2 ✏ ¬2
Strategy: apply Decide if other rules don’t apply

Fz }| {
Mz }| {
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not, then F is satisfiable only if it has a model that makes l true. Thus, if M does
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must still be considered. This is done by means of the Backtrack rule.
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by ¬l and removing any subsequent literals in the current assignment. Note that
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Example 2.2. The following is a derivation in the Classical DPLL system, with
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—PureLiteral: If a literal l is pure in F , that is, it occurs in F while its negation does
not, then F is satisfiable only if it has a model that makes l true. Thus, if M does
not define l it can be extended to make l true.

—Decide: This rule represents a case split. An undefined literal l is chosen from
F , and added to M . The literal is annotated as a decision literal, to denote that
if M l cannot be extended to a model of F then the alternative extension M ¬l
must still be considered. This is done by means of the Backtrack rule.

—Fail: This rule detects a conflicting clause C and produces the FailState state
whenever M contains no decision literals.

—Backtrack: If a conflicting clause C is detected and Fail does not apply, then the
rule backtracks one decision level, by replacing the most recent decision literal ld

by ¬l and removing any subsequent literals in the current assignment. Note that
¬l is annotated as a nondecision literal, since the other possibility l has already
been explored.

Example 2.2. The following is a derivation in the Classical DPLL system, with
each transition annotated by the rule that makes it possible. To improve readability
we denote atoms by natural numbers, and negation by overlining.
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where Sn is a final state with respect to Cl. The applicability of each of the five
rules is easy to check and, as we will see, their application always leads to finite
derivations. Moreover, for every derivation like the above ending in a final state
Sn , (i) F is unsatisfiable if, and only if, Sn is FailState, and (ii) if Sn is of the form
M ‖ F then M is a model of F . Note that in this Classical DPLL system the second
component of a state remains unchanged, a property that does not hold for the other
transition systems we introduce later.

We now briefly comment on what the different rules do. In the following, if M is
a sequence of the form M0 l1 M1 · · · lk Mk , where the li are all the decision literals
in M , we say that the state M ‖ F is at decision level k, and that all the literals of
each li Mi belong to decision level i .

—UnitPropagate: To satisfy a CNF formula, all its clauses have to be true. Hence, if
a clause of F contains a literal l whose truth value is not defined by the current
assignment M while all the remaining literals of the clause are false, then M
must be extended to make l true.

—PureLiteral: If a literal l is pure in F , that is, it occurs in F while its negation does
not, then F is satisfiable only if it has a model that makes l true. Thus, if M does
not define l it can be extended to make l true.

—Decide: This rule represents a case split. An undefined literal l is chosen from
F , and added to M . The literal is annotated as a decision literal, to denote that
if M l cannot be extended to a model of F then the alternative extension M ¬l
must still be considered. This is done by means of the Backtrack rule.

—Fail: This rule detects a conflicting clause C and produces the FailState state
whenever M contains no decision literals.

—Backtrack: If a conflicting clause C is detected and Fail does not apply, then the
rule backtracks one decision level, by replacing the most recent decision literal ld

by ¬l and removing any subsequent literals in the current assignment. Note that
¬l is annotated as a nondecision literal, since the other possibility l has already
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Example 2.2. The following is a derivation in the Classical DPLL system, with
each transition annotated by the rule that makes it possible. To improve readability
we denote atoms by natural numbers, and negation by overlining.
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1 4 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (Decide)
1 4 3

d ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (UnitPropagate)
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One can use the transition system Cl for deciding the satisfiability of an input
formula F simply by generating an arbitrary derivation ∅ ‖ F =⇒Cl · · · =⇒Cl Sn ,
where Sn is a final state with respect to Cl. The applicability of each of the five
rules is easy to check and, as we will see, their application always leads to finite
derivations. Moreover, for every derivation like the above ending in a final state
Sn , (i) F is unsatisfiable if, and only if, Sn is FailState, and (ii) if Sn is of the form
M ‖ F then M is a model of F . Note that in this Classical DPLL system the second
component of a state remains unchanged, a property that does not hold for the other
transition systems we introduce later.

We now briefly comment on what the different rules do. In the following, if M is
a sequence of the form M0 l1 M1 · · · lk Mk , where the li are all the decision literals
in M , we say that the state M ‖ F is at decision level k, and that all the literals of
each li Mi belong to decision level i .

—UnitPropagate: To satisfy a CNF formula, all its clauses have to be true. Hence, if
a clause of F contains a literal l whose truth value is not defined by the current
assignment M while all the remaining literals of the clause are false, then M
must be extended to make l true.

—PureLiteral: If a literal l is pure in F , that is, it occurs in F while its negation does
not, then F is satisfiable only if it has a model that makes l true. Thus, if M does
not define l it can be extended to make l true.

—Decide: This rule represents a case split. An undefined literal l is chosen from
F , and added to M . The literal is annotated as a decision literal, to denote that
if M l cannot be extended to a model of F then the alternative extension M ¬l
must still be considered. This is done by means of the Backtrack rule.

—Fail: This rule detects a conflicting clause C and produces the FailState state
whenever M contains no decision literals.

—Backtrack: If a conflicting clause C is detected and Fail does not apply, then the
rule backtracks one decision level, by replacing the most recent decision literal ld

by ¬l and removing any subsequent literals in the current assignment. Note that
¬l is annotated as a nondecision literal, since the other possibility l has already
been explored.

Example 2.2. The following is a derivation in the Classical DPLL system, with
each transition annotated by the rule that makes it possible. To improve readability
we denote atoms by natural numbers, and negation by overlining.

∅ ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (Decide)
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1 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (UnitPropagate)

1 4 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (Decide)
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Strategy: apply Decide if other rules don’t apply

Fz }| {
Mz }| {
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One can use the transition system Cl for deciding the satisfiability of an input
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where Sn is a final state with respect to Cl. The applicability of each of the five
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Sn , (i) F is unsatisfiable if, and only if, Sn is FailState, and (ii) if Sn is of the form
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a clause of F contains a literal l whose truth value is not defined by the current
assignment M while all the remaining literals of the clause are false, then M
must be extended to make l true.

—PureLiteral: If a literal l is pure in F , that is, it occurs in F while its negation does
not, then F is satisfiable only if it has a model that makes l true. Thus, if M does
not define l it can be extended to make l true.

—Decide: This rule represents a case split. An undefined literal l is chosen from
F , and added to M . The literal is annotated as a decision literal, to denote that
if M l cannot be extended to a model of F then the alternative extension M ¬l
must still be considered. This is done by means of the Backtrack rule.

—Fail: This rule detects a conflicting clause C and produces the FailState state
whenever M contains no decision literals.

—Backtrack: If a conflicting clause C is detected and Fail does not apply, then the
rule backtracks one decision level, by replacing the most recent decision literal ld
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Example 2.2. The following is a derivation in the Classical DPLL system, with
each transition annotated by the rule that makes it possible. To improve readability
we denote atoms by natural numbers, and negation by overlining.
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where Sn is a final state with respect to Cl. The applicability of each of the five
rules is easy to check and, as we will see, their application always leads to finite
derivations. Moreover, for every derivation like the above ending in a final state
Sn , (i) F is unsatisfiable if, and only if, Sn is FailState, and (ii) if Sn is of the form
M ‖ F then M is a model of F . Note that in this Classical DPLL system the second
component of a state remains unchanged, a property that does not hold for the other
transition systems we introduce later.

We now briefly comment on what the different rules do. In the following, if M is
a sequence of the form M0 l1 M1 · · · lk Mk , where the li are all the decision literals
in M , we say that the state M ‖ F is at decision level k, and that all the literals of
each li Mi belong to decision level i .

—UnitPropagate: To satisfy a CNF formula, all its clauses have to be true. Hence, if
a clause of F contains a literal l whose truth value is not defined by the current
assignment M while all the remaining literals of the clause are false, then M
must be extended to make l true.

—PureLiteral: If a literal l is pure in F , that is, it occurs in F while its negation does
not, then F is satisfiable only if it has a model that makes l true. Thus, if M does
not define l it can be extended to make l true.

—Decide: This rule represents a case split. An undefined literal l is chosen from
F , and added to M . The literal is annotated as a decision literal, to denote that
if M l cannot be extended to a model of F then the alternative extension M ¬l
must still be considered. This is done by means of the Backtrack rule.

—Fail: This rule detects a conflicting clause C and produces the FailState state
whenever M contains no decision literals.

—Backtrack: If a conflicting clause C is detected and Fail does not apply, then the
rule backtracks one decision level, by replacing the most recent decision literal ld

by ¬l and removing any subsequent literals in the current assignment. Note that
¬l is annotated as a nondecision literal, since the other possibility l has already
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rules is easy to check and, as we will see, their application always leads to finite
derivations. Moreover, for every derivation like the above ending in a final state
Sn , (i) F is unsatisfiable if, and only if, Sn is FailState, and (ii) if Sn is of the form
M ‖ F then M is a model of F . Note that in this Classical DPLL system the second
component of a state remains unchanged, a property that does not hold for the other
transition systems we introduce later.

We now briefly comment on what the different rules do. In the following, if M is
a sequence of the form M0 l1 M1 · · · lk Mk , where the li are all the decision literals
in M , we say that the state M ‖ F is at decision level k, and that all the literals of
each li Mi belong to decision level i .

—UnitPropagate: To satisfy a CNF formula, all its clauses have to be true. Hence, if
a clause of F contains a literal l whose truth value is not defined by the current
assignment M while all the remaining literals of the clause are false, then M
must be extended to make l true.

—PureLiteral: If a literal l is pure in F , that is, it occurs in F while its negation does
not, then F is satisfiable only if it has a model that makes l true. Thus, if M does
not define l it can be extended to make l true.

—Decide: This rule represents a case split. An undefined literal l is chosen from
F , and added to M . The literal is annotated as a decision literal, to denote that
if M l cannot be extended to a model of F then the alternative extension M ¬l
must still be considered. This is done by means of the Backtrack rule.

—Fail: This rule detects a conflicting clause C and produces the FailState state
whenever M contains no decision literals.

—Backtrack: If a conflicting clause C is detected and Fail does not apply, then the
rule backtracks one decision level, by replacing the most recent decision literal ld

by ¬l and removing any subsequent literals in the current assignment. Note that
¬l is annotated as a nondecision literal, since the other possibility l has already
been explored.

Example 2.2. The following is a derivation in the Classical DPLL system, with
each transition annotated by the rule that makes it possible. To improve readability
we denote atoms by natural numbers, and negation by overlining.

∅ ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (Decide)
1d ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (UnitPropagate)

1d 2 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (UnitPropagate)
1d 2 3 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (UnitPropagate)

1d 2 3 4 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (Backtrack)
1 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (UnitPropagate)

1 4 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (Decide)
1 4 3

d ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (UnitPropagate)
1 4 3

d
2 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4
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One can use the transition system Cl for deciding the satisfiability of an input
formula F simply by generating an arbitrary derivation ∅ ‖ F =⇒Cl · · · =⇒Cl Sn ,
where Sn is a final state with respect to Cl. The applicability of each of the five
rules is easy to check and, as we will see, their application always leads to finite
derivations. Moreover, for every derivation like the above ending in a final state
Sn , (i) F is unsatisfiable if, and only if, Sn is FailState, and (ii) if Sn is of the form
M ‖ F then M is a model of F . Note that in this Classical DPLL system the second
component of a state remains unchanged, a property that does not hold for the other
transition systems we introduce later.

We now briefly comment on what the different rules do. In the following, if M is
a sequence of the form M0 l1 M1 · · · lk Mk , where the li are all the decision literals
in M , we say that the state M ‖ F is at decision level k, and that all the literals of
each li Mi belong to decision level i .

—UnitPropagate: To satisfy a CNF formula, all its clauses have to be true. Hence, if
a clause of F contains a literal l whose truth value is not defined by the current
assignment M while all the remaining literals of the clause are false, then M
must be extended to make l true.

—PureLiteral: If a literal l is pure in F , that is, it occurs in F while its negation does
not, then F is satisfiable only if it has a model that makes l true. Thus, if M does
not define l it can be extended to make l true.

—Decide: This rule represents a case split. An undefined literal l is chosen from
F , and added to M . The literal is annotated as a decision literal, to denote that
if M l cannot be extended to a model of F then the alternative extension M ¬l
must still be considered. This is done by means of the Backtrack rule.

—Fail: This rule detects a conflicting clause C and produces the FailState state
whenever M contains no decision literals.

—Backtrack: If a conflicting clause C is detected and Fail does not apply, then the
rule backtracks one decision level, by replacing the most recent decision literal ld

by ¬l and removing any subsequent literals in the current assignment. Note that
¬l is annotated as a nondecision literal, since the other possibility l has already
been explored.

Example 2.2. The following is a derivation in the Classical DPLL system, with
each transition annotated by the rule that makes it possible. To improve readability
we denote atoms by natural numbers, and negation by overlining.

∅ ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (Decide)
1d ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (UnitPropagate)

1d 2 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (UnitPropagate)
1d 2 3 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (UnitPropagate)

1d 2 3 4 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (Backtrack)
1 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (UnitPropagate)

1 4 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (Decide)
1 4 3

d ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (UnitPropagate)
1 4 3

d
2 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4

4 is undefined in 1d23 and 1d23 ✏ ¬(1 _ 3)

Strategy: apply Decide if other rules don’t apply

Fz }| {
Mz }| {
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One can use the transition system Cl for deciding the satisfiability of an input
formula F simply by generating an arbitrary derivation ∅ ‖ F =⇒Cl · · · =⇒Cl Sn ,
where Sn is a final state with respect to Cl. The applicability of each of the five
rules is easy to check and, as we will see, their application always leads to finite
derivations. Moreover, for every derivation like the above ending in a final state
Sn , (i) F is unsatisfiable if, and only if, Sn is FailState, and (ii) if Sn is of the form
M ‖ F then M is a model of F . Note that in this Classical DPLL system the second
component of a state remains unchanged, a property that does not hold for the other
transition systems we introduce later.

We now briefly comment on what the different rules do. In the following, if M is
a sequence of the form M0 l1 M1 · · · lk Mk , where the li are all the decision literals
in M , we say that the state M ‖ F is at decision level k, and that all the literals of
each li Mi belong to decision level i .

—UnitPropagate: To satisfy a CNF formula, all its clauses have to be true. Hence, if
a clause of F contains a literal l whose truth value is not defined by the current
assignment M while all the remaining literals of the clause are false, then M
must be extended to make l true.

—PureLiteral: If a literal l is pure in F , that is, it occurs in F while its negation does
not, then F is satisfiable only if it has a model that makes l true. Thus, if M does
not define l it can be extended to make l true.

—Decide: This rule represents a case split. An undefined literal l is chosen from
F , and added to M . The literal is annotated as a decision literal, to denote that
if M l cannot be extended to a model of F then the alternative extension M ¬l
must still be considered. This is done by means of the Backtrack rule.

—Fail: This rule detects a conflicting clause C and produces the FailState state
whenever M contains no decision literals.

—Backtrack: If a conflicting clause C is detected and Fail does not apply, then the
rule backtracks one decision level, by replacing the most recent decision literal ld

by ¬l and removing any subsequent literals in the current assignment. Note that
¬l is annotated as a nondecision literal, since the other possibility l has already
been explored.

Example 2.2. The following is a derivation in the Classical DPLL system, with
each transition annotated by the rule that makes it possible. To improve readability
we denote atoms by natural numbers, and negation by overlining.

∅ ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (Decide)
1d ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (UnitPropagate)

1d 2 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (UnitPropagate)
1d 2 3 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (UnitPropagate)

1d 2 3 4 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (Backtrack)
1 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (UnitPropagate)

1 4 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (Decide)
1 4 3

d ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (UnitPropagate)
1 4 3
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2 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4
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One can use the transition system Cl for deciding the satisfiability of an input
formula F simply by generating an arbitrary derivation ∅ ‖ F =⇒Cl · · · =⇒Cl Sn ,
where Sn is a final state with respect to Cl. The applicability of each of the five
rules is easy to check and, as we will see, their application always leads to finite
derivations. Moreover, for every derivation like the above ending in a final state
Sn , (i) F is unsatisfiable if, and only if, Sn is FailState, and (ii) if Sn is of the form
M ‖ F then M is a model of F . Note that in this Classical DPLL system the second
component of a state remains unchanged, a property that does not hold for the other
transition systems we introduce later.

We now briefly comment on what the different rules do. In the following, if M is
a sequence of the form M0 l1 M1 · · · lk Mk , where the li are all the decision literals
in M , we say that the state M ‖ F is at decision level k, and that all the literals of
each li Mi belong to decision level i .

—UnitPropagate: To satisfy a CNF formula, all its clauses have to be true. Hence, if
a clause of F contains a literal l whose truth value is not defined by the current
assignment M while all the remaining literals of the clause are false, then M
must be extended to make l true.

—PureLiteral: If a literal l is pure in F , that is, it occurs in F while its negation does
not, then F is satisfiable only if it has a model that makes l true. Thus, if M does
not define l it can be extended to make l true.

—Decide: This rule represents a case split. An undefined literal l is chosen from
F , and added to M . The literal is annotated as a decision literal, to denote that
if M l cannot be extended to a model of F then the alternative extension M ¬l
must still be considered. This is done by means of the Backtrack rule.

—Fail: This rule detects a conflicting clause C and produces the FailState state
whenever M contains no decision literals.

—Backtrack: If a conflicting clause C is detected and Fail does not apply, then the
rule backtracks one decision level, by replacing the most recent decision literal ld

by ¬l and removing any subsequent literals in the current assignment. Note that
¬l is annotated as a nondecision literal, since the other possibility l has already
been explored.

Example 2.2. The following is a derivation in the Classical DPLL system, with
each transition annotated by the rule that makes it possible. To improve readability
we denote atoms by natural numbers, and negation by overlining.

∅ ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (Decide)
1d ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (UnitPropagate)

1d 2 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (UnitPropagate)
1d 2 3 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (UnitPropagate)

1d 2 3 4 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (Backtrack)
1 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (UnitPropagate)

1 4 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (Decide)
1 4 3

d ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (UnitPropagate)
1 4 3
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2 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4
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One can use the transition system Cl for deciding the satisfiability of an input
formula F simply by generating an arbitrary derivation ∅ ‖ F =⇒Cl · · · =⇒Cl Sn ,
where Sn is a final state with respect to Cl. The applicability of each of the five
rules is easy to check and, as we will see, their application always leads to finite
derivations. Moreover, for every derivation like the above ending in a final state
Sn , (i) F is unsatisfiable if, and only if, Sn is FailState, and (ii) if Sn is of the form
M ‖ F then M is a model of F . Note that in this Classical DPLL system the second
component of a state remains unchanged, a property that does not hold for the other
transition systems we introduce later.

We now briefly comment on what the different rules do. In the following, if M is
a sequence of the form M0 l1 M1 · · · lk Mk , where the li are all the decision literals
in M , we say that the state M ‖ F is at decision level k, and that all the literals of
each li Mi belong to decision level i .

—UnitPropagate: To satisfy a CNF formula, all its clauses have to be true. Hence, if
a clause of F contains a literal l whose truth value is not defined by the current
assignment M while all the remaining literals of the clause are false, then M
must be extended to make l true.

—PureLiteral: If a literal l is pure in F , that is, it occurs in F while its negation does
not, then F is satisfiable only if it has a model that makes l true. Thus, if M does
not define l it can be extended to make l true.

—Decide: This rule represents a case split. An undefined literal l is chosen from
F , and added to M . The literal is annotated as a decision literal, to denote that
if M l cannot be extended to a model of F then the alternative extension M ¬l
must still be considered. This is done by means of the Backtrack rule.

—Fail: This rule detects a conflicting clause C and produces the FailState state
whenever M contains no decision literals.

—Backtrack: If a conflicting clause C is detected and Fail does not apply, then the
rule backtracks one decision level, by replacing the most recent decision literal ld

by ¬l and removing any subsequent literals in the current assignment. Note that
¬l is annotated as a nondecision literal, since the other possibility l has already
been explored.

Example 2.2. The following is a derivation in the Classical DPLL system, with
each transition annotated by the rule that makes it possible. To improve readability
we denote atoms by natural numbers, and negation by overlining.

∅ ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (Decide)
1d ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (UnitPropagate)

1d 2 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (UnitPropagate)
1d 2 3 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (UnitPropagate)

1d 2 3 4 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (Backtrack)
1 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (UnitPropagate)

1 4 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (Decide)
1 4 3

d ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (UnitPropagate)
1 4 3
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One can use the transition system Cl for deciding the satisfiability of an input
formula F simply by generating an arbitrary derivation ∅ ‖ F =⇒Cl · · · =⇒Cl Sn ,
where Sn is a final state with respect to Cl. The applicability of each of the five
rules is easy to check and, as we will see, their application always leads to finite
derivations. Moreover, for every derivation like the above ending in a final state
Sn , (i) F is unsatisfiable if, and only if, Sn is FailState, and (ii) if Sn is of the form
M ‖ F then M is a model of F . Note that in this Classical DPLL system the second
component of a state remains unchanged, a property that does not hold for the other
transition systems we introduce later.

We now briefly comment on what the different rules do. In the following, if M is
a sequence of the form M0 l1 M1 · · · lk Mk , where the li are all the decision literals
in M , we say that the state M ‖ F is at decision level k, and that all the literals of
each li Mi belong to decision level i .

—UnitPropagate: To satisfy a CNF formula, all its clauses have to be true. Hence, if
a clause of F contains a literal l whose truth value is not defined by the current
assignment M while all the remaining literals of the clause are false, then M
must be extended to make l true.

—PureLiteral: If a literal l is pure in F , that is, it occurs in F while its negation does
not, then F is satisfiable only if it has a model that makes l true. Thus, if M does
not define l it can be extended to make l true.

—Decide: This rule represents a case split. An undefined literal l is chosen from
F , and added to M . The literal is annotated as a decision literal, to denote that
if M l cannot be extended to a model of F then the alternative extension M ¬l
must still be considered. This is done by means of the Backtrack rule.

—Fail: This rule detects a conflicting clause C and produces the FailState state
whenever M contains no decision literals.

—Backtrack: If a conflicting clause C is detected and Fail does not apply, then the
rule backtracks one decision level, by replacing the most recent decision literal ld

by ¬l and removing any subsequent literals in the current assignment. Note that
¬l is annotated as a nondecision literal, since the other possibility l has already
been explored.

Example 2.2. The following is a derivation in the Classical DPLL system, with
each transition annotated by the rule that makes it possible. To improve readability
we denote atoms by natural numbers, and negation by overlining.

∅ ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (Decide)
1d ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (UnitPropagate)

1d 2 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (UnitPropagate)
1d 2 3 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (UnitPropagate)

1d 2 3 4 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (Backtrack)
1 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (UnitPropagate)

1 4 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (Decide)
1 4 3

d ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (UnitPropagate)
1 4 3
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2 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4

942 R. NIEUWENHUIS ET AL.

One can use the transition system Cl for deciding the satisfiability of an input
formula F simply by generating an arbitrary derivation ∅ ‖ F =⇒Cl · · · =⇒Cl Sn ,
where Sn is a final state with respect to Cl. The applicability of each of the five
rules is easy to check and, as we will see, their application always leads to finite
derivations. Moreover, for every derivation like the above ending in a final state
Sn , (i) F is unsatisfiable if, and only if, Sn is FailState, and (ii) if Sn is of the form
M ‖ F then M is a model of F . Note that in this Classical DPLL system the second
component of a state remains unchanged, a property that does not hold for the other
transition systems we introduce later.

We now briefly comment on what the different rules do. In the following, if M is
a sequence of the form M0 l1 M1 · · · lk Mk , where the li are all the decision literals
in M , we say that the state M ‖ F is at decision level k, and that all the literals of
each li Mi belong to decision level i .

—UnitPropagate: To satisfy a CNF formula, all its clauses have to be true. Hence, if
a clause of F contains a literal l whose truth value is not defined by the current
assignment M while all the remaining literals of the clause are false, then M
must be extended to make l true.

—PureLiteral: If a literal l is pure in F , that is, it occurs in F while its negation does
not, then F is satisfiable only if it has a model that makes l true. Thus, if M does
not define l it can be extended to make l true.

—Decide: This rule represents a case split. An undefined literal l is chosen from
F , and added to M . The literal is annotated as a decision literal, to denote that
if M l cannot be extended to a model of F then the alternative extension M ¬l
must still be considered. This is done by means of the Backtrack rule.

—Fail: This rule detects a conflicting clause C and produces the FailState state
whenever M contains no decision literals.

—Backtrack: If a conflicting clause C is detected and Fail does not apply, then the
rule backtracks one decision level, by replacing the most recent decision literal ld

by ¬l and removing any subsequent literals in the current assignment. Note that
¬l is annotated as a nondecision literal, since the other possibility l has already
been explored.

Example 2.2. The following is a derivation in the Classical DPLL system, with
each transition annotated by the rule that makes it possible. To improve readability
we denote atoms by natural numbers, and negation by overlining.

∅ ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (Decide)
1d ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (UnitPropagate)

1d 2 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (UnitPropagate)
1d 2 3 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (UnitPropagate)

1d 2 3 4 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (Backtrack)
1 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (UnitPropagate)

1 4 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (Decide)
1 4 3

d ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (UnitPropagate)
1 4 3

d
2 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4

Strategy: apply Decide if other rules don’t apply

Fz }| {
Mz }| {
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One can use the transition system Cl for deciding the satisfiability of an input
formula F simply by generating an arbitrary derivation ∅ ‖ F =⇒Cl · · · =⇒Cl Sn ,
where Sn is a final state with respect to Cl. The applicability of each of the five
rules is easy to check and, as we will see, their application always leads to finite
derivations. Moreover, for every derivation like the above ending in a final state
Sn , (i) F is unsatisfiable if, and only if, Sn is FailState, and (ii) if Sn is of the form
M ‖ F then M is a model of F . Note that in this Classical DPLL system the second
component of a state remains unchanged, a property that does not hold for the other
transition systems we introduce later.

We now briefly comment on what the different rules do. In the following, if M is
a sequence of the form M0 l1 M1 · · · lk Mk , where the li are all the decision literals
in M , we say that the state M ‖ F is at decision level k, and that all the literals of
each li Mi belong to decision level i .

—UnitPropagate: To satisfy a CNF formula, all its clauses have to be true. Hence, if
a clause of F contains a literal l whose truth value is not defined by the current
assignment M while all the remaining literals of the clause are false, then M
must be extended to make l true.

—PureLiteral: If a literal l is pure in F , that is, it occurs in F while its negation does
not, then F is satisfiable only if it has a model that makes l true. Thus, if M does
not define l it can be extended to make l true.

—Decide: This rule represents a case split. An undefined literal l is chosen from
F , and added to M . The literal is annotated as a decision literal, to denote that
if M l cannot be extended to a model of F then the alternative extension M ¬l
must still be considered. This is done by means of the Backtrack rule.

—Fail: This rule detects a conflicting clause C and produces the FailState state
whenever M contains no decision literals.

—Backtrack: If a conflicting clause C is detected and Fail does not apply, then the
rule backtracks one decision level, by replacing the most recent decision literal ld

by ¬l and removing any subsequent literals in the current assignment. Note that
¬l is annotated as a nondecision literal, since the other possibility l has already
been explored.

Example 2.2. The following is a derivation in the Classical DPLL system, with
each transition annotated by the rule that makes it possible. To improve readability
we denote atoms by natural numbers, and negation by overlining.

∅ ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (Decide)
1d ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (UnitPropagate)

1d 2 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (UnitPropagate)
1d 2 3 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (UnitPropagate)

1d 2 3 4 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (Backtrack)
1 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (UnitPropagate)

1 4 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (Decide)
1 4 3

d ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (UnitPropagate)
1 4 3

d
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One can use the transition system Cl for deciding the satisfiability of an input
formula F simply by generating an arbitrary derivation ∅ ‖ F =⇒Cl · · · =⇒Cl Sn ,
where Sn is a final state with respect to Cl. The applicability of each of the five
rules is easy to check and, as we will see, their application always leads to finite
derivations. Moreover, for every derivation like the above ending in a final state
Sn , (i) F is unsatisfiable if, and only if, Sn is FailState, and (ii) if Sn is of the form
M ‖ F then M is a model of F . Note that in this Classical DPLL system the second
component of a state remains unchanged, a property that does not hold for the other
transition systems we introduce later.

We now briefly comment on what the different rules do. In the following, if M is
a sequence of the form M0 l1 M1 · · · lk Mk , where the li are all the decision literals
in M , we say that the state M ‖ F is at decision level k, and that all the literals of
each li Mi belong to decision level i .

—UnitPropagate: To satisfy a CNF formula, all its clauses have to be true. Hence, if
a clause of F contains a literal l whose truth value is not defined by the current
assignment M while all the remaining literals of the clause are false, then M
must be extended to make l true.

—PureLiteral: If a literal l is pure in F , that is, it occurs in F while its negation does
not, then F is satisfiable only if it has a model that makes l true. Thus, if M does
not define l it can be extended to make l true.

—Decide: This rule represents a case split. An undefined literal l is chosen from
F , and added to M . The literal is annotated as a decision literal, to denote that
if M l cannot be extended to a model of F then the alternative extension M ¬l
must still be considered. This is done by means of the Backtrack rule.

—Fail: This rule detects a conflicting clause C and produces the FailState state
whenever M contains no decision literals.

—Backtrack: If a conflicting clause C is detected and Fail does not apply, then the
rule backtracks one decision level, by replacing the most recent decision literal ld

by ¬l and removing any subsequent literals in the current assignment. Note that
¬l is annotated as a nondecision literal, since the other possibility l has already
been explored.

Example 2.2. The following is a derivation in the Classical DPLL system, with
each transition annotated by the rule that makes it possible. To improve readability
we denote atoms by natural numbers, and negation by overlining.

∅ ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (Decide)
1d ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (UnitPropagate)
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1d 2 3 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (UnitPropagate)

1d 2 3 4 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (Backtrack)
1 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (UnitPropagate)

1 4 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (Decide)
1 4 3

d ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (UnitPropagate)
1 4 3
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formula F simply by generating an arbitrary derivation ∅ ‖ F =⇒Cl · · · =⇒Cl Sn ,
where Sn is a final state with respect to Cl. The applicability of each of the five
rules is easy to check and, as we will see, their application always leads to finite
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Sn , (i) F is unsatisfiable if, and only if, Sn is FailState, and (ii) if Sn is of the form
M ‖ F then M is a model of F . Note that in this Classical DPLL system the second
component of a state remains unchanged, a property that does not hold for the other
transition systems we introduce later.

We now briefly comment on what the different rules do. In the following, if M is
a sequence of the form M0 l1 M1 · · · lk Mk , where the li are all the decision literals
in M , we say that the state M ‖ F is at decision level k, and that all the literals of
each li Mi belong to decision level i .

—UnitPropagate: To satisfy a CNF formula, all its clauses have to be true. Hence, if
a clause of F contains a literal l whose truth value is not defined by the current
assignment M while all the remaining literals of the clause are false, then M
must be extended to make l true.

—PureLiteral: If a literal l is pure in F , that is, it occurs in F while its negation does
not, then F is satisfiable only if it has a model that makes l true. Thus, if M does
not define l it can be extended to make l true.

—Decide: This rule represents a case split. An undefined literal l is chosen from
F , and added to M . The literal is annotated as a decision literal, to denote that
if M l cannot be extended to a model of F then the alternative extension M ¬l
must still be considered. This is done by means of the Backtrack rule.

—Fail: This rule detects a conflicting clause C and produces the FailState state
whenever M contains no decision literals.

—Backtrack: If a conflicting clause C is detected and Fail does not apply, then the
rule backtracks one decision level, by replacing the most recent decision literal ld

by ¬l and removing any subsequent literals in the current assignment. Note that
¬l is annotated as a nondecision literal, since the other possibility l has already
been explored.

Example 2.2. The following is a derivation in the Classical DPLL system, with
each transition annotated by the rule that makes it possible. To improve readability
we denote atoms by natural numbers, and negation by overlining.

∅ ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (Decide)
1d ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (UnitPropagate)
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1d 2 3 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (UnitPropagate)

1d 2 3 4 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (Backtrack)
1 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (UnitPropagate)

1 4 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (Decide)
1 4 3
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One can use the transition system Cl for deciding the satisfiability of an input
formula F simply by generating an arbitrary derivation ∅ ‖ F =⇒Cl · · · =⇒Cl Sn ,
where Sn is a final state with respect to Cl. The applicability of each of the five
rules is easy to check and, as we will see, their application always leads to finite
derivations. Moreover, for every derivation like the above ending in a final state
Sn , (i) F is unsatisfiable if, and only if, Sn is FailState, and (ii) if Sn is of the form
M ‖ F then M is a model of F . Note that in this Classical DPLL system the second
component of a state remains unchanged, a property that does not hold for the other
transition systems we introduce later.

We now briefly comment on what the different rules do. In the following, if M is
a sequence of the form M0 l1 M1 · · · lk Mk , where the li are all the decision literals
in M , we say that the state M ‖ F is at decision level k, and that all the literals of
each li Mi belong to decision level i .

—UnitPropagate: To satisfy a CNF formula, all its clauses have to be true. Hence, if
a clause of F contains a literal l whose truth value is not defined by the current
assignment M while all the remaining literals of the clause are false, then M
must be extended to make l true.

—PureLiteral: If a literal l is pure in F , that is, it occurs in F while its negation does
not, then F is satisfiable only if it has a model that makes l true. Thus, if M does
not define l it can be extended to make l true.

—Decide: This rule represents a case split. An undefined literal l is chosen from
F , and added to M . The literal is annotated as a decision literal, to denote that
if M l cannot be extended to a model of F then the alternative extension M ¬l
must still be considered. This is done by means of the Backtrack rule.

—Fail: This rule detects a conflicting clause C and produces the FailState state
whenever M contains no decision literals.

—Backtrack: If a conflicting clause C is detected and Fail does not apply, then the
rule backtracks one decision level, by replacing the most recent decision literal ld

by ¬l and removing any subsequent literals in the current assignment. Note that
¬l is annotated as a nondecision literal, since the other possibility l has already
been explored.

Example 2.2. The following is a derivation in the Classical DPLL system, with
each transition annotated by the rule that makes it possible. To improve readability
we denote atoms by natural numbers, and negation by overlining.

∅ ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (Decide)
1d ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (UnitPropagate)

1d 2 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (UnitPropagate)
1d 2 3 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (UnitPropagate)

1d 2 3 4 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (Backtrack)
1 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (UnitPropagate)

1 4 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (Decide)
1 4 3

d ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (UnitPropagate)
1 4 3
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One can use the transition system Cl for deciding the satisfiability of an input
formula F simply by generating an arbitrary derivation ∅ ‖ F =⇒Cl · · · =⇒Cl Sn ,
where Sn is a final state with respect to Cl. The applicability of each of the five
rules is easy to check and, as we will see, their application always leads to finite
derivations. Moreover, for every derivation like the above ending in a final state
Sn , (i) F is unsatisfiable if, and only if, Sn is FailState, and (ii) if Sn is of the form
M ‖ F then M is a model of F . Note that in this Classical DPLL system the second
component of a state remains unchanged, a property that does not hold for the other
transition systems we introduce later.

We now briefly comment on what the different rules do. In the following, if M is
a sequence of the form M0 l1 M1 · · · lk Mk , where the li are all the decision literals
in M , we say that the state M ‖ F is at decision level k, and that all the literals of
each li Mi belong to decision level i .

—UnitPropagate: To satisfy a CNF formula, all its clauses have to be true. Hence, if
a clause of F contains a literal l whose truth value is not defined by the current
assignment M while all the remaining literals of the clause are false, then M
must be extended to make l true.

—PureLiteral: If a literal l is pure in F , that is, it occurs in F while its negation does
not, then F is satisfiable only if it has a model that makes l true. Thus, if M does
not define l it can be extended to make l true.

—Decide: This rule represents a case split. An undefined literal l is chosen from
F , and added to M . The literal is annotated as a decision literal, to denote that
if M l cannot be extended to a model of F then the alternative extension M ¬l
must still be considered. This is done by means of the Backtrack rule.

—Fail: This rule detects a conflicting clause C and produces the FailState state
whenever M contains no decision literals.

—Backtrack: If a conflicting clause C is detected and Fail does not apply, then the
rule backtracks one decision level, by replacing the most recent decision literal ld

by ¬l and removing any subsequent literals in the current assignment. Note that
¬l is annotated as a nondecision literal, since the other possibility l has already
been explored.

Example 2.2. The following is a derivation in the Classical DPLL system, with
each transition annotated by the rule that makes it possible. To improve readability
we denote atoms by natural numbers, and negation by overlining.

∅ ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (Decide)
1d ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (UnitPropagate)

1d 2 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (UnitPropagate)
1d 2 3 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (UnitPropagate)

1d 2 3 4 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (Backtrack)
1 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (UnitPropagate)

1 4 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (Decide)
1 4 3

d ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (UnitPropagate)
1 4 3

d
2 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4

1d234 ✏ ¬(2 _ 3 _ 4)

Strategy: apply Decide if other rules don’t apply
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One can use the transition system Cl for deciding the satisfiability of an input
formula F simply by generating an arbitrary derivation ∅ ‖ F =⇒Cl · · · =⇒Cl Sn ,
where Sn is a final state with respect to Cl. The applicability of each of the five
rules is easy to check and, as we will see, their application always leads to finite
derivations. Moreover, for every derivation like the above ending in a final state
Sn , (i) F is unsatisfiable if, and only if, Sn is FailState, and (ii) if Sn is of the form
M ‖ F then M is a model of F . Note that in this Classical DPLL system the second
component of a state remains unchanged, a property that does not hold for the other
transition systems we introduce later.

We now briefly comment on what the different rules do. In the following, if M is
a sequence of the form M0 l1 M1 · · · lk Mk , where the li are all the decision literals
in M , we say that the state M ‖ F is at decision level k, and that all the literals of
each li Mi belong to decision level i .

—UnitPropagate: To satisfy a CNF formula, all its clauses have to be true. Hence, if
a clause of F contains a literal l whose truth value is not defined by the current
assignment M while all the remaining literals of the clause are false, then M
must be extended to make l true.

—PureLiteral: If a literal l is pure in F , that is, it occurs in F while its negation does
not, then F is satisfiable only if it has a model that makes l true. Thus, if M does
not define l it can be extended to make l true.

—Decide: This rule represents a case split. An undefined literal l is chosen from
F , and added to M . The literal is annotated as a decision literal, to denote that
if M l cannot be extended to a model of F then the alternative extension M ¬l
must still be considered. This is done by means of the Backtrack rule.

—Fail: This rule detects a conflicting clause C and produces the FailState state
whenever M contains no decision literals.

—Backtrack: If a conflicting clause C is detected and Fail does not apply, then the
rule backtracks one decision level, by replacing the most recent decision literal ld

by ¬l and removing any subsequent literals in the current assignment. Note that
¬l is annotated as a nondecision literal, since the other possibility l has already
been explored.

Example 2.2. The following is a derivation in the Classical DPLL system, with
each transition annotated by the rule that makes it possible. To improve readability
we denote atoms by natural numbers, and negation by overlining.

∅ ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (Decide)
1d ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (UnitPropagate)

1d 2 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (UnitPropagate)
1d 2 3 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (UnitPropagate)

1d 2 3 4 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (Backtrack)
1 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (UnitPropagate)

1 4 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (Decide)
1 4 3
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One can use the transition system Cl for deciding the satisfiability of an input
formula F simply by generating an arbitrary derivation ∅ ‖ F =⇒Cl · · · =⇒Cl Sn ,
where Sn is a final state with respect to Cl. The applicability of each of the five
rules is easy to check and, as we will see, their application always leads to finite
derivations. Moreover, for every derivation like the above ending in a final state
Sn , (i) F is unsatisfiable if, and only if, Sn is FailState, and (ii) if Sn is of the form
M ‖ F then M is a model of F . Note that in this Classical DPLL system the second
component of a state remains unchanged, a property that does not hold for the other
transition systems we introduce later.

We now briefly comment on what the different rules do. In the following, if M is
a sequence of the form M0 l1 M1 · · · lk Mk , where the li are all the decision literals
in M , we say that the state M ‖ F is at decision level k, and that all the literals of
each li Mi belong to decision level i .

—UnitPropagate: To satisfy a CNF formula, all its clauses have to be true. Hence, if
a clause of F contains a literal l whose truth value is not defined by the current
assignment M while all the remaining literals of the clause are false, then M
must be extended to make l true.

—PureLiteral: If a literal l is pure in F , that is, it occurs in F while its negation does
not, then F is satisfiable only if it has a model that makes l true. Thus, if M does
not define l it can be extended to make l true.

—Decide: This rule represents a case split. An undefined literal l is chosen from
F , and added to M . The literal is annotated as a decision literal, to denote that
if M l cannot be extended to a model of F then the alternative extension M ¬l
must still be considered. This is done by means of the Backtrack rule.

—Fail: This rule detects a conflicting clause C and produces the FailState state
whenever M contains no decision literals.

—Backtrack: If a conflicting clause C is detected and Fail does not apply, then the
rule backtracks one decision level, by replacing the most recent decision literal ld

by ¬l and removing any subsequent literals in the current assignment. Note that
¬l is annotated as a nondecision literal, since the other possibility l has already
been explored.

Example 2.2. The following is a derivation in the Classical DPLL system, with
each transition annotated by the rule that makes it possible. To improve readability
we denote atoms by natural numbers, and negation by overlining.

∅ ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (Decide)
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1 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (UnitPropagate)
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One can use the transition system Cl for deciding the satisfiability of an input
formula F simply by generating an arbitrary derivation ∅ ‖ F =⇒Cl · · · =⇒Cl Sn ,
where Sn is a final state with respect to Cl. The applicability of each of the five
rules is easy to check and, as we will see, their application always leads to finite
derivations. Moreover, for every derivation like the above ending in a final state
Sn , (i) F is unsatisfiable if, and only if, Sn is FailState, and (ii) if Sn is of the form
M ‖ F then M is a model of F . Note that in this Classical DPLL system the second
component of a state remains unchanged, a property that does not hold for the other
transition systems we introduce later.

We now briefly comment on what the different rules do. In the following, if M is
a sequence of the form M0 l1 M1 · · · lk Mk , where the li are all the decision literals
in M , we say that the state M ‖ F is at decision level k, and that all the literals of
each li Mi belong to decision level i .

—UnitPropagate: To satisfy a CNF formula, all its clauses have to be true. Hence, if
a clause of F contains a literal l whose truth value is not defined by the current
assignment M while all the remaining literals of the clause are false, then M
must be extended to make l true.

—PureLiteral: If a literal l is pure in F , that is, it occurs in F while its negation does
not, then F is satisfiable only if it has a model that makes l true. Thus, if M does
not define l it can be extended to make l true.

—Decide: This rule represents a case split. An undefined literal l is chosen from
F , and added to M . The literal is annotated as a decision literal, to denote that
if M l cannot be extended to a model of F then the alternative extension M ¬l
must still be considered. This is done by means of the Backtrack rule.

—Fail: This rule detects a conflicting clause C and produces the FailState state
whenever M contains no decision literals.

—Backtrack: If a conflicting clause C is detected and Fail does not apply, then the
rule backtracks one decision level, by replacing the most recent decision literal ld

by ¬l and removing any subsequent literals in the current assignment. Note that
¬l is annotated as a nondecision literal, since the other possibility l has already
been explored.

Example 2.2. The following is a derivation in the Classical DPLL system, with
each transition annotated by the rule that makes it possible. To improve readability
we denote atoms by natural numbers, and negation by overlining.
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1 4 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (Decide)
1 4 3
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M ‖ F then M is a model of F . Note that in this Classical DPLL system the second
component of a state remains unchanged, a property that does not hold for the other
transition systems we introduce later.
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in M , we say that the state M ‖ F is at decision level k, and that all the literals of
each li Mi belong to decision level i .

—UnitPropagate: To satisfy a CNF formula, all its clauses have to be true. Hence, if
a clause of F contains a literal l whose truth value is not defined by the current
assignment M while all the remaining literals of the clause are false, then M
must be extended to make l true.

—PureLiteral: If a literal l is pure in F , that is, it occurs in F while its negation does
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rules is easy to check and, as we will see, their application always leads to finite
derivations. Moreover, for every derivation like the above ending in a final state
Sn , (i) F is unsatisfiable if, and only if, Sn is FailState, and (ii) if Sn is of the form
M ‖ F then M is a model of F . Note that in this Classical DPLL system the second
component of a state remains unchanged, a property that does not hold for the other
transition systems we introduce later.

We now briefly comment on what the different rules do. In the following, if M is
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—PureLiteral: If a literal l is pure in F , that is, it occurs in F while its negation does
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derivations. Moreover, for every derivation like the above ending in a final state
Sn , (i) F is unsatisfiable if, and only if, Sn is FailState, and (ii) if Sn is of the form
M ‖ F then M is a model of F . Note that in this Classical DPLL system the second
component of a state remains unchanged, a property that does not hold for the other
transition systems we introduce later.

We now briefly comment on what the different rules do. In the following, if M is
a sequence of the form M0 l1 M1 · · · lk Mk , where the li are all the decision literals
in M , we say that the state M ‖ F is at decision level k, and that all the literals of
each li Mi belong to decision level i .

—UnitPropagate: To satisfy a CNF formula, all its clauses have to be true. Hence, if
a clause of F contains a literal l whose truth value is not defined by the current
assignment M while all the remaining literals of the clause are false, then M
must be extended to make l true.

—PureLiteral: If a literal l is pure in F , that is, it occurs in F while its negation does
not, then F is satisfiable only if it has a model that makes l true. Thus, if M does
not define l it can be extended to make l true.

—Decide: This rule represents a case split. An undefined literal l is chosen from
F , and added to M . The literal is annotated as a decision literal, to denote that
if M l cannot be extended to a model of F then the alternative extension M ¬l
must still be considered. This is done by means of the Backtrack rule.

—Fail: This rule detects a conflicting clause C and produces the FailState state
whenever M contains no decision literals.

—Backtrack: If a conflicting clause C is detected and Fail does not apply, then the
rule backtracks one decision level, by replacing the most recent decision literal ld

by ¬l and removing any subsequent literals in the current assignment. Note that
¬l is annotated as a nondecision literal, since the other possibility l has already
been explored.

Example 2.2. The following is a derivation in the Classical DPLL system, with
each transition annotated by the rule that makes it possible. To improve readability
we denote atoms by natural numbers, and negation by overlining.

∅ ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (Decide)
1d ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (UnitPropagate)

1d 2 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (UnitPropagate)
1d 2 3 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (UnitPropagate)

1d 2 3 4 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (Backtrack)
1 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (UnitPropagate)

1 4 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (Decide)
1 4 3

d ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (UnitPropagate)
1 4 3

d
2 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4
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One can use the transition system Cl for deciding the satisfiability of an input
formula F simply by generating an arbitrary derivation ∅ ‖ F =⇒Cl · · · =⇒Cl Sn ,
where Sn is a final state with respect to Cl. The applicability of each of the five
rules is easy to check and, as we will see, their application always leads to finite
derivations. Moreover, for every derivation like the above ending in a final state
Sn , (i) F is unsatisfiable if, and only if, Sn is FailState, and (ii) if Sn is of the form
M ‖ F then M is a model of F . Note that in this Classical DPLL system the second
component of a state remains unchanged, a property that does not hold for the other
transition systems we introduce later.

We now briefly comment on what the different rules do. In the following, if M is
a sequence of the form M0 l1 M1 · · · lk Mk , where the li are all the decision literals
in M , we say that the state M ‖ F is at decision level k, and that all the literals of
each li Mi belong to decision level i .

—UnitPropagate: To satisfy a CNF formula, all its clauses have to be true. Hence, if
a clause of F contains a literal l whose truth value is not defined by the current
assignment M while all the remaining literals of the clause are false, then M
must be extended to make l true.

—PureLiteral: If a literal l is pure in F , that is, it occurs in F while its negation does
not, then F is satisfiable only if it has a model that makes l true. Thus, if M does
not define l it can be extended to make l true.

—Decide: This rule represents a case split. An undefined literal l is chosen from
F , and added to M . The literal is annotated as a decision literal, to denote that
if M l cannot be extended to a model of F then the alternative extension M ¬l
must still be considered. This is done by means of the Backtrack rule.

—Fail: This rule detects a conflicting clause C and produces the FailState state
whenever M contains no decision literals.

—Backtrack: If a conflicting clause C is detected and Fail does not apply, then the
rule backtracks one decision level, by replacing the most recent decision literal ld

by ¬l and removing any subsequent literals in the current assignment. Note that
¬l is annotated as a nondecision literal, since the other possibility l has already
been explored.

Example 2.2. The following is a derivation in the Classical DPLL system, with
each transition annotated by the rule that makes it possible. To improve readability
we denote atoms by natural numbers, and negation by overlining.

∅ ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (Decide)
1d ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (UnitPropagate)

1d 2 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (UnitPropagate)
1d 2 3 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (UnitPropagate)

1d 2 3 4 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (Backtrack)
1 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (UnitPropagate)

1 4 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (Decide)
1 4 3

d ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (UnitPropagate)
1 4 3
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2 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4
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One can use the transition system Cl for deciding the satisfiability of an input
formula F simply by generating an arbitrary derivation ∅ ‖ F =⇒Cl · · · =⇒Cl Sn ,
where Sn is a final state with respect to Cl. The applicability of each of the five
rules is easy to check and, as we will see, their application always leads to finite
derivations. Moreover, for every derivation like the above ending in a final state
Sn , (i) F is unsatisfiable if, and only if, Sn is FailState, and (ii) if Sn is of the form
M ‖ F then M is a model of F . Note that in this Classical DPLL system the second
component of a state remains unchanged, a property that does not hold for the other
transition systems we introduce later.

We now briefly comment on what the different rules do. In the following, if M is
a sequence of the form M0 l1 M1 · · · lk Mk , where the li are all the decision literals
in M , we say that the state M ‖ F is at decision level k, and that all the literals of
each li Mi belong to decision level i .

—UnitPropagate: To satisfy a CNF formula, all its clauses have to be true. Hence, if
a clause of F contains a literal l whose truth value is not defined by the current
assignment M while all the remaining literals of the clause are false, then M
must be extended to make l true.

—PureLiteral: If a literal l is pure in F , that is, it occurs in F while its negation does
not, then F is satisfiable only if it has a model that makes l true. Thus, if M does
not define l it can be extended to make l true.

—Decide: This rule represents a case split. An undefined literal l is chosen from
F , and added to M . The literal is annotated as a decision literal, to denote that
if M l cannot be extended to a model of F then the alternative extension M ¬l
must still be considered. This is done by means of the Backtrack rule.

—Fail: This rule detects a conflicting clause C and produces the FailState state
whenever M contains no decision literals.

—Backtrack: If a conflicting clause C is detected and Fail does not apply, then the
rule backtracks one decision level, by replacing the most recent decision literal ld

by ¬l and removing any subsequent literals in the current assignment. Note that
¬l is annotated as a nondecision literal, since the other possibility l has already
been explored.

Example 2.2. The following is a derivation in the Classical DPLL system, with
each transition annotated by the rule that makes it possible. To improve readability
we denote atoms by natural numbers, and negation by overlining.

∅ ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (Decide)
1d ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (UnitPropagate)
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1d 2 3 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (UnitPropagate)

1d 2 3 4 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (Backtrack)
1 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (UnitPropagate)

1 4 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (Decide)
1 4 3

d ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (UnitPropagate)
1 4 3
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2 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4
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One can use the transition system Cl for deciding the satisfiability of an input
formula F simply by generating an arbitrary derivation ∅ ‖ F =⇒Cl · · · =⇒Cl Sn ,
where Sn is a final state with respect to Cl. The applicability of each of the five
rules is easy to check and, as we will see, their application always leads to finite
derivations. Moreover, for every derivation like the above ending in a final state
Sn , (i) F is unsatisfiable if, and only if, Sn is FailState, and (ii) if Sn is of the form
M ‖ F then M is a model of F . Note that in this Classical DPLL system the second
component of a state remains unchanged, a property that does not hold for the other
transition systems we introduce later.

We now briefly comment on what the different rules do. In the following, if M is
a sequence of the form M0 l1 M1 · · · lk Mk , where the li are all the decision literals
in M , we say that the state M ‖ F is at decision level k, and that all the literals of
each li Mi belong to decision level i .

—UnitPropagate: To satisfy a CNF formula, all its clauses have to be true. Hence, if
a clause of F contains a literal l whose truth value is not defined by the current
assignment M while all the remaining literals of the clause are false, then M
must be extended to make l true.

—PureLiteral: If a literal l is pure in F , that is, it occurs in F while its negation does
not, then F is satisfiable only if it has a model that makes l true. Thus, if M does
not define l it can be extended to make l true.

—Decide: This rule represents a case split. An undefined literal l is chosen from
F , and added to M . The literal is annotated as a decision literal, to denote that
if M l cannot be extended to a model of F then the alternative extension M ¬l
must still be considered. This is done by means of the Backtrack rule.

—Fail: This rule detects a conflicting clause C and produces the FailState state
whenever M contains no decision literals.

—Backtrack: If a conflicting clause C is detected and Fail does not apply, then the
rule backtracks one decision level, by replacing the most recent decision literal ld

by ¬l and removing any subsequent literals in the current assignment. Note that
¬l is annotated as a nondecision literal, since the other possibility l has already
been explored.

Example 2.2. The following is a derivation in the Classical DPLL system, with
each transition annotated by the rule that makes it possible. To improve readability
we denote atoms by natural numbers, and negation by overlining.

∅ ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (Decide)
1d ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (UnitPropagate)

1d 2 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (UnitPropagate)
1d 2 3 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (UnitPropagate)

1d 2 3 4 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (Backtrack)
1 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (UnitPropagate)

1 4 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (Decide)
1 4 3

d ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (UnitPropagate)
1 4 3
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2 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4
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One can use the transition system Cl for deciding the satisfiability of an input
formula F simply by generating an arbitrary derivation ∅ ‖ F =⇒Cl · · · =⇒Cl Sn ,
where Sn is a final state with respect to Cl. The applicability of each of the five
rules is easy to check and, as we will see, their application always leads to finite
derivations. Moreover, for every derivation like the above ending in a final state
Sn , (i) F is unsatisfiable if, and only if, Sn is FailState, and (ii) if Sn is of the form
M ‖ F then M is a model of F . Note that in this Classical DPLL system the second
component of a state remains unchanged, a property that does not hold for the other
transition systems we introduce later.

We now briefly comment on what the different rules do. In the following, if M is
a sequence of the form M0 l1 M1 · · · lk Mk , where the li are all the decision literals
in M , we say that the state M ‖ F is at decision level k, and that all the literals of
each li Mi belong to decision level i .

—UnitPropagate: To satisfy a CNF formula, all its clauses have to be true. Hence, if
a clause of F contains a literal l whose truth value is not defined by the current
assignment M while all the remaining literals of the clause are false, then M
must be extended to make l true.

—PureLiteral: If a literal l is pure in F , that is, it occurs in F while its negation does
not, then F is satisfiable only if it has a model that makes l true. Thus, if M does
not define l it can be extended to make l true.

—Decide: This rule represents a case split. An undefined literal l is chosen from
F , and added to M . The literal is annotated as a decision literal, to denote that
if M l cannot be extended to a model of F then the alternative extension M ¬l
must still be considered. This is done by means of the Backtrack rule.

—Fail: This rule detects a conflicting clause C and produces the FailState state
whenever M contains no decision literals.

—Backtrack: If a conflicting clause C is detected and Fail does not apply, then the
rule backtracks one decision level, by replacing the most recent decision literal ld

by ¬l and removing any subsequent literals in the current assignment. Note that
¬l is annotated as a nondecision literal, since the other possibility l has already
been explored.

Example 2.2. The following is a derivation in the Classical DPLL system, with
each transition annotated by the rule that makes it possible. To improve readability
we denote atoms by natural numbers, and negation by overlining.

∅ ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (Decide)
1d ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (UnitPropagate)

1d 2 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (UnitPropagate)
1d 2 3 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (UnitPropagate)

1d 2 3 4 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (Backtrack)
1 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (UnitPropagate)

1 4 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (Decide)
1 4 3

d ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (UnitPropagate)
1 4 3

d
2 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4

Strategy: apply Decide if other rules don’t apply
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One can use the transition system Cl for deciding the satisfiability of an input
formula F simply by generating an arbitrary derivation ∅ ‖ F =⇒Cl · · · =⇒Cl Sn ,
where Sn is a final state with respect to Cl. The applicability of each of the five
rules is easy to check and, as we will see, their application always leads to finite
derivations. Moreover, for every derivation like the above ending in a final state
Sn , (i) F is unsatisfiable if, and only if, Sn is FailState, and (ii) if Sn is of the form
M ‖ F then M is a model of F . Note that in this Classical DPLL system the second
component of a state remains unchanged, a property that does not hold for the other
transition systems we introduce later.

We now briefly comment on what the different rules do. In the following, if M is
a sequence of the form M0 l1 M1 · · · lk Mk , where the li are all the decision literals
in M , we say that the state M ‖ F is at decision level k, and that all the literals of
each li Mi belong to decision level i .

—UnitPropagate: To satisfy a CNF formula, all its clauses have to be true. Hence, if
a clause of F contains a literal l whose truth value is not defined by the current
assignment M while all the remaining literals of the clause are false, then M
must be extended to make l true.

—PureLiteral: If a literal l is pure in F , that is, it occurs in F while its negation does
not, then F is satisfiable only if it has a model that makes l true. Thus, if M does
not define l it can be extended to make l true.

—Decide: This rule represents a case split. An undefined literal l is chosen from
F , and added to M . The literal is annotated as a decision literal, to denote that
if M l cannot be extended to a model of F then the alternative extension M ¬l
must still be considered. This is done by means of the Backtrack rule.

—Fail: This rule detects a conflicting clause C and produces the FailState state
whenever M contains no decision literals.

—Backtrack: If a conflicting clause C is detected and Fail does not apply, then the
rule backtracks one decision level, by replacing the most recent decision literal ld

by ¬l and removing any subsequent literals in the current assignment. Note that
¬l is annotated as a nondecision literal, since the other possibility l has already
been explored.

Example 2.2. The following is a derivation in the Classical DPLL system, with
each transition annotated by the rule that makes it possible. To improve readability
we denote atoms by natural numbers, and negation by overlining.

∅ ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (Decide)
1d ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (UnitPropagate)

1d 2 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (UnitPropagate)
1d 2 3 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (UnitPropagate)

1d 2 3 4 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (Backtrack)
1 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (UnitPropagate)

1 4 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (Decide)
1 4 3

d ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (UnitPropagate)
1 4 3
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2 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4
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One can use the transition system Cl for deciding the satisfiability of an input
formula F simply by generating an arbitrary derivation ∅ ‖ F =⇒Cl · · · =⇒Cl Sn ,
where Sn is a final state with respect to Cl. The applicability of each of the five
rules is easy to check and, as we will see, their application always leads to finite
derivations. Moreover, for every derivation like the above ending in a final state
Sn , (i) F is unsatisfiable if, and only if, Sn is FailState, and (ii) if Sn is of the form
M ‖ F then M is a model of F . Note that in this Classical DPLL system the second
component of a state remains unchanged, a property that does not hold for the other
transition systems we introduce later.

We now briefly comment on what the different rules do. In the following, if M is
a sequence of the form M0 l1 M1 · · · lk Mk , where the li are all the decision literals
in M , we say that the state M ‖ F is at decision level k, and that all the literals of
each li Mi belong to decision level i .

—UnitPropagate: To satisfy a CNF formula, all its clauses have to be true. Hence, if
a clause of F contains a literal l whose truth value is not defined by the current
assignment M while all the remaining literals of the clause are false, then M
must be extended to make l true.

—PureLiteral: If a literal l is pure in F , that is, it occurs in F while its negation does
not, then F is satisfiable only if it has a model that makes l true. Thus, if M does
not define l it can be extended to make l true.

—Decide: This rule represents a case split. An undefined literal l is chosen from
F , and added to M . The literal is annotated as a decision literal, to denote that
if M l cannot be extended to a model of F then the alternative extension M ¬l
must still be considered. This is done by means of the Backtrack rule.

—Fail: This rule detects a conflicting clause C and produces the FailState state
whenever M contains no decision literals.

—Backtrack: If a conflicting clause C is detected and Fail does not apply, then the
rule backtracks one decision level, by replacing the most recent decision literal ld

by ¬l and removing any subsequent literals in the current assignment. Note that
¬l is annotated as a nondecision literal, since the other possibility l has already
been explored.

Example 2.2. The following is a derivation in the Classical DPLL system, with
each transition annotated by the rule that makes it possible. To improve readability
we denote atoms by natural numbers, and negation by overlining.

∅ ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (Decide)
1d ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (UnitPropagate)

1d 2 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (UnitPropagate)
1d 2 3 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (UnitPropagate)

1d 2 3 4 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (Backtrack)
1 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (UnitPropagate)

1 4 ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (Decide)
1 4 3

d ‖ 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (UnitPropagate)
1 4 3
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One can use the transition system Cl for deciding the satisfiability of an input
formula F simply by generating an arbitrary derivation ∅ ‖ F =⇒Cl · · · =⇒Cl Sn ,
where Sn is a final state with respect to Cl. The applicability of each of the five
rules is easy to check and, as we will see, their application always leads to finite
derivations. Moreover, for every derivation like the above ending in a final state
Sn , (i) F is unsatisfiable if, and only if, Sn is FailState, and (ii) if Sn is of the form
M ‖ F then M is a model of F . Note that in this Classical DPLL system the second
component of a state remains unchanged, a property that does not hold for the other
transition systems we introduce later.

We now briefly comment on what the different rules do. In the following, if M is
a sequence of the form M0 l1 M1 · · · lk Mk , where the li are all the decision literals
in M , we say that the state M ‖ F is at decision level k, and that all the literals of
each li Mi belong to decision level i .

—UnitPropagate: To satisfy a CNF formula, all its clauses have to be true. Hence, if
a clause of F contains a literal l whose truth value is not defined by the current
assignment M while all the remaining literals of the clause are false, then M
must be extended to make l true.

—PureLiteral: If a literal l is pure in F , that is, it occurs in F while its negation does
not, then F is satisfiable only if it has a model that makes l true. Thus, if M does
not define l it can be extended to make l true.

—Decide: This rule represents a case split. An undefined literal l is chosen from
F , and added to M . The literal is annotated as a decision literal, to denote that
if M l cannot be extended to a model of F then the alternative extension M ¬l
must still be considered. This is done by means of the Backtrack rule.

—Fail: This rule detects a conflicting clause C and produces the FailState state
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Example 2.2. The following is a derivation in the Classical DPLL system, with
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rules is easy to check and, as we will see, their application always leads to finite
derivations. Moreover, for every derivation like the above ending in a final state
Sn , (i) F is unsatisfiable if, and only if, Sn is FailState, and (ii) if Sn is of the form
M ‖ F then M is a model of F . Note that in this Classical DPLL system the second
component of a state remains unchanged, a property that does not hold for the other
transition systems we introduce later.

We now briefly comment on what the different rules do. In the following, if M is
a sequence of the form M0 l1 M1 · · · lk Mk , where the li are all the decision literals
in M , we say that the state M ‖ F is at decision level k, and that all the literals of
each li Mi belong to decision level i .

—UnitPropagate: To satisfy a CNF formula, all its clauses have to be true. Hence, if
a clause of F contains a literal l whose truth value is not defined by the current
assignment M while all the remaining literals of the clause are false, then M
must be extended to make l true.

—PureLiteral: If a literal l is pure in F , that is, it occurs in F while its negation does
not, then F is satisfiable only if it has a model that makes l true. Thus, if M does
not define l it can be extended to make l true.

—Decide: This rule represents a case split. An undefined literal l is chosen from
F , and added to M . The literal is annotated as a decision literal, to denote that
if M l cannot be extended to a model of F then the alternative extension M ¬l
must still be considered. This is done by means of the Backtrack rule.

—Fail: This rule detects a conflicting clause C and produces the FailState state
whenever M contains no decision literals.

—Backtrack: If a conflicting clause C is detected and Fail does not apply, then the
rule backtracks one decision level, by replacing the most recent decision literal ld

by ¬l and removing any subsequent literals in the current assignment. Note that
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—PureLiteral: If a literal l is pure in F , that is, it occurs in F while its negation does
not, then F is satisfiable only if it has a model that makes l true. Thus, if M does
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—Decide: This rule represents a case split. An undefined literal l is chosen from
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if M l cannot be extended to a model of F then the alternative extension M ¬l
must still be considered. This is done by means of the Backtrack rule.
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Sn , (i) F is unsatisfiable if, and only if, Sn is FailState, and (ii) if Sn is of the form
M ‖ F then M is a model of F . Note that in this Classical DPLL system the second
component of a state remains unchanged, a property that does not hold for the other
transition systems we introduce later.

We now briefly comment on what the different rules do. In the following, if M is
a sequence of the form M0 l1 M1 · · · lk Mk , where the li are all the decision literals
in M , we say that the state M ‖ F is at decision level k, and that all the literals of
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—UnitPropagate: To satisfy a CNF formula, all its clauses have to be true. Hence, if
a clause of F contains a literal l whose truth value is not defined by the current
assignment M while all the remaining literals of the clause are false, then M
must be extended to make l true.

—PureLiteral: If a literal l is pure in F , that is, it occurs in F while its negation does
not, then F is satisfiable only if it has a model that makes l true. Thus, if M does
not define l it can be extended to make l true.

—Decide: This rule represents a case split. An undefined literal l is chosen from
F , and added to M . The literal is annotated as a decision literal, to denote that
if M l cannot be extended to a model of F then the alternative extension M ¬l
must still be considered. This is done by means of the Backtrack rule.

—Fail: This rule detects a conflicting clause C and produces the FailState state
whenever M contains no decision literals.

—Backtrack: If a conflicting clause C is detected and Fail does not apply, then the
rule backtracks one decision level, by replacing the most recent decision literal ld

by ¬l and removing any subsequent literals in the current assignment. Note that
¬l is annotated as a nondecision literal, since the other possibility l has already
been explored.

Example 2.2. The following is a derivation in the Classical DPLL system, with
each transition annotated by the rule that makes it possible. To improve readability
we denote atoms by natural numbers, and negation by overlining.
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where Sn is a final state with respect to Cl. The applicability of each of the five
rules is easy to check and, as we will see, their application always leads to finite
derivations. Moreover, for every derivation like the above ending in a final state
Sn , (i) F is unsatisfiable if, and only if, Sn is FailState, and (ii) if Sn is of the form
M ‖ F then M is a model of F . Note that in this Classical DPLL system the second
component of a state remains unchanged, a property that does not hold for the other
transition systems we introduce later.

We now briefly comment on what the different rules do. In the following, if M is
a sequence of the form M0 l1 M1 · · · lk Mk , where the li are all the decision literals
in M , we say that the state M ‖ F is at decision level k, and that all the literals of
each li Mi belong to decision level i .

—UnitPropagate: To satisfy a CNF formula, all its clauses have to be true. Hence, if
a clause of F contains a literal l whose truth value is not defined by the current
assignment M while all the remaining literals of the clause are false, then M
must be extended to make l true.

—PureLiteral: If a literal l is pure in F , that is, it occurs in F while its negation does
not, then F is satisfiable only if it has a model that makes l true. Thus, if M does
not define l it can be extended to make l true.

—Decide: This rule represents a case split. An undefined literal l is chosen from
F , and added to M . The literal is annotated as a decision literal, to denote that
if M l cannot be extended to a model of F then the alternative extension M ¬l
must still be considered. This is done by means of the Backtrack rule.

—Fail: This rule detects a conflicting clause C and produces the FailState state
whenever M contains no decision literals.

—Backtrack: If a conflicting clause C is detected and Fail does not apply, then the
rule backtracks one decision level, by replacing the most recent decision literal ld

by ¬l and removing any subsequent literals in the current assignment. Note that
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One can use the transition system Cl for deciding the satisfiability of an input
formula F simply by generating an arbitrary derivation ∅ ‖ F =⇒Cl · · · =⇒Cl Sn ,
where Sn is a final state with respect to Cl. The applicability of each of the five
rules is easy to check and, as we will see, their application always leads to finite
derivations. Moreover, for every derivation like the above ending in a final state
Sn , (i) F is unsatisfiable if, and only if, Sn is FailState, and (ii) if Sn is of the form
M ‖ F then M is a model of F . Note that in this Classical DPLL system the second
component of a state remains unchanged, a property that does not hold for the other
transition systems we introduce later.

We now briefly comment on what the different rules do. In the following, if M is
a sequence of the form M0 l1 M1 · · · lk Mk , where the li are all the decision literals
in M , we say that the state M ‖ F is at decision level k, and that all the literals of
each li Mi belong to decision level i .

—UnitPropagate: To satisfy a CNF formula, all its clauses have to be true. Hence, if
a clause of F contains a literal l whose truth value is not defined by the current
assignment M while all the remaining literals of the clause are false, then M
must be extended to make l true.

—PureLiteral: If a literal l is pure in F , that is, it occurs in F while its negation does
not, then F is satisfiable only if it has a model that makes l true. Thus, if M does
not define l it can be extended to make l true.

—Decide: This rule represents a case split. An undefined literal l is chosen from
F , and added to M . The literal is annotated as a decision literal, to denote that
if M l cannot be extended to a model of F then the alternative extension M ¬l
must still be considered. This is done by means of the Backtrack rule.

—Fail: This rule detects a conflicting clause C and produces the FailState state
whenever M contains no decision literals.

—Backtrack: If a conflicting clause C is detected and Fail does not apply, then the
rule backtracks one decision level, by replacing the most recent decision literal ld

by ¬l and removing any subsequent literals in the current assignment. Note that
¬l is annotated as a nondecision literal, since the other possibility l has already
been explored.

Example 2.2. The following is a derivation in the Classical DPLL system, with
each transition annotated by the rule that makes it possible. To improve readability
we denote atoms by natural numbers, and negation by overlining.
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One can use the transition system Cl for deciding the satisfiability of an input
formula F simply by generating an arbitrary derivation ∅ ‖ F =⇒Cl · · · =⇒Cl Sn ,
where Sn is a final state with respect to Cl. The applicability of each of the five
rules is easy to check and, as we will see, their application always leads to finite
derivations. Moreover, for every derivation like the above ending in a final state
Sn , (i) F is unsatisfiable if, and only if, Sn is FailState, and (ii) if Sn is of the form
M ‖ F then M is a model of F . Note that in this Classical DPLL system the second
component of a state remains unchanged, a property that does not hold for the other
transition systems we introduce later.

We now briefly comment on what the different rules do. In the following, if M is
a sequence of the form M0 l1 M1 · · · lk Mk , where the li are all the decision literals
in M , we say that the state M ‖ F is at decision level k, and that all the literals of
each li Mi belong to decision level i .

—UnitPropagate: To satisfy a CNF formula, all its clauses have to be true. Hence, if
a clause of F contains a literal l whose truth value is not defined by the current
assignment M while all the remaining literals of the clause are false, then M
must be extended to make l true.

—PureLiteral: If a literal l is pure in F , that is, it occurs in F while its negation does
not, then F is satisfiable only if it has a model that makes l true. Thus, if M does
not define l it can be extended to make l true.

—Decide: This rule represents a case split. An undefined literal l is chosen from
F , and added to M . The literal is annotated as a decision literal, to denote that
if M l cannot be extended to a model of F then the alternative extension M ¬l
must still be considered. This is done by means of the Backtrack rule.

—Fail: This rule detects a conflicting clause C and produces the FailState state
whenever M contains no decision literals.

—Backtrack: If a conflicting clause C is detected and Fail does not apply, then the
rule backtracks one decision level, by replacing the most recent decision literal ld

by ¬l and removing any subsequent literals in the current assignment. Note that
¬l is annotated as a nondecision literal, since the other possibility l has already
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Example 2.2. The following is a derivation in the Classical DPLL system, with
each transition annotated by the rule that makes it possible. To improve readability
we denote atoms by natural numbers, and negation by overlining.
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where Sn is a final state with respect to Cl. The applicability of each of the five
rules is easy to check and, as we will see, their application always leads to finite
derivations. Moreover, for every derivation like the above ending in a final state
Sn , (i) F is unsatisfiable if, and only if, Sn is FailState, and (ii) if Sn is of the form
M ‖ F then M is a model of F . Note that in this Classical DPLL system the second
component of a state remains unchanged, a property that does not hold for the other
transition systems we introduce later.

We now briefly comment on what the different rules do. In the following, if M is
a sequence of the form M0 l1 M1 · · · lk Mk , where the li are all the decision literals
in M , we say that the state M ‖ F is at decision level k, and that all the literals of
each li Mi belong to decision level i .

—UnitPropagate: To satisfy a CNF formula, all its clauses have to be true. Hence, if
a clause of F contains a literal l whose truth value is not defined by the current
assignment M while all the remaining literals of the clause are false, then M
must be extended to make l true.

—PureLiteral: If a literal l is pure in F , that is, it occurs in F while its negation does
not, then F is satisfiable only if it has a model that makes l true. Thus, if M does
not define l it can be extended to make l true.

—Decide: This rule represents a case split. An undefined literal l is chosen from
F , and added to M . The literal is annotated as a decision literal, to denote that
if M l cannot be extended to a model of F then the alternative extension M ¬l
must still be considered. This is done by means of the Backtrack rule.

—Fail: This rule detects a conflicting clause C and produces the FailState state
whenever M contains no decision literals.

—Backtrack: If a conflicting clause C is detected and Fail does not apply, then the
rule backtracks one decision level, by replacing the most recent decision literal ld

by ¬l and removing any subsequent literals in the current assignment. Note that
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we denote atoms by natural numbers, and negation by overlining.
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Final state wrt =)Cl M ✏ Fand thus
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The last state of this derivation is final. The (total) assignment in it is a model of
the formula.

The Davis–Putnam procedure [Davis and Putnam 1960] was originally presented
as a two-phase proof-procedure for first-order logic. The unsatisfiability of a formula
was to be proved by first generating a suitable set of ground instances which then,
in the second phase, were shown to be propositionally unsatisfiable.

Subsequent improvements, such as the Davis-Logemann-Loveland procedure of
Davis et al. [1962], mostly focused on the propositional phase. What most authors
now call the DPLL Procedure is a satisfiability procedure for propositional logic
based on this propositional phase. Originally, this procedure amounted to the depth-
first search algorithm with backtracking modeled by our Classical DPLL system.

2.4. MODERN DPLL PROCEDURES. The major modern DPLL-based SAT
solvers do not implement the Classical DPLL system. For example, due to effi-
ciency reasons the pure literal rule is normally only used as a preprocessing step—
hence, we will not consider this rule in the following. Moreover, backjumping, a
more general and more powerful backtracking mechanism, is now commonly used
in place of chronological backtracking.

The usefulness of a more sophisticated backtracking mechanism for DPLL
solvers is perhaps best illustrated with another example of derivation in the Classical
DPLL system.

Example 2.3.

∅ ‖ 1∨2, 3∨4, 5∨6, 6∨5∨2 =⇒B (Decide)

1d ‖ 1∨2, 3∨4, 5∨6, 6∨5∨2 =⇒B (UnitPropagate)

1d 2 ‖ 1∨2, 3∨4, 5∨6, 6∨5∨2 =⇒B (Decide)

1d 2 3d ‖ 1∨2, 3∨4, 5∨6, 6∨5∨2 =⇒B (UnitPropagate)

1d 2 3d 4 ‖ 1∨2, 3∨4, 5∨6, 6∨5∨2 =⇒B (Decide)

1d 2 3d 4 5d ‖ 1∨2, 3∨4, 5∨6, 6∨5∨2 =⇒B (UnitPropagate)

1d 2 3d 4 5d 6 ‖ 1∨2, 3∨4, 5∨6, 6∨5∨2 =⇒B (Backtrack)

1d 2 3d 4 5 ‖ 1∨2, 3∨4, 5∨6, 6∨5∨2

Before the Backtrack step, the clause 6 ∨ 5 ∨ 2 is conflicting: it is false in the
assignment 1d 2 3d 4 5d 6. This is a consequence of the unit propagation 2 of the
decision 1d, together with the decision 5d and its unit propagation 6.

Therefore, one can infer that the decision 1d is incompatible with the decision
5d, that is, that the given clause set entails 1∨5. Similarly, it also entails 2∨5.

Such entailed clauses are called backjump clauses if their presence would have
allowed a unit propagation at an earlier decision level. This is precisely what back-
jumping does: given a backjump clause, it goes back to that level and adds the
unit propagated literal. For example, using 2∨5 as a backjump clause, the last
Backtrack step could be replaced by a backjump to a state with first component
1d 2 5.

We model all this in the next system with the Backjump rule, of which Backtrack
is a particular case. In this rule, the clause C ′ ∨ l ′ is the backjump clause, where l ′
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1d 2 5.

We model all this in the next system with the Backjump rule, of which Backtrack
is a particular case. In this rule, the clause C ′ ∨ l ′ is the backjump clause, where l ′
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The last state of this derivation is final. The (total) assignment in it is a model of
the formula.

The Davis–Putnam procedure [Davis and Putnam 1960] was originally presented
as a two-phase proof-procedure for first-order logic. The unsatisfiability of a formula
was to be proved by first generating a suitable set of ground instances which then,
in the second phase, were shown to be propositionally unsatisfiable.

Subsequent improvements, such as the Davis-Logemann-Loveland procedure of
Davis et al. [1962], mostly focused on the propositional phase. What most authors
now call the DPLL Procedure is a satisfiability procedure for propositional logic
based on this propositional phase. Originally, this procedure amounted to the depth-
first search algorithm with backtracking modeled by our Classical DPLL system.

2.4. MODERN DPLL PROCEDURES. The major modern DPLL-based SAT
solvers do not implement the Classical DPLL system. For example, due to effi-
ciency reasons the pure literal rule is normally only used as a preprocessing step—
hence, we will not consider this rule in the following. Moreover, backjumping, a
more general and more powerful backtracking mechanism, is now commonly used
in place of chronological backtracking.

The usefulness of a more sophisticated backtracking mechanism for DPLL
solvers is perhaps best illustrated with another example of derivation in the Classical
DPLL system.

Example 2.3.

∅ ‖ 1∨2, 3∨4, 5∨6, 6∨5∨2 =⇒B (Decide)

1d ‖ 1∨2, 3∨4, 5∨6, 6∨5∨2 =⇒B (UnitPropagate)

1d 2 ‖ 1∨2, 3∨4, 5∨6, 6∨5∨2 =⇒B (Decide)

1d 2 3d ‖ 1∨2, 3∨4, 5∨6, 6∨5∨2 =⇒B (UnitPropagate)

1d 2 3d 4 ‖ 1∨2, 3∨4, 5∨6, 6∨5∨2 =⇒B (Decide)

1d 2 3d 4 5d ‖ 1∨2, 3∨4, 5∨6, 6∨5∨2 =⇒B (UnitPropagate)

1d 2 3d 4 5d 6 ‖ 1∨2, 3∨4, 5∨6, 6∨5∨2 =⇒B (Backtrack)

1d 2 3d 4 5 ‖ 1∨2, 3∨4, 5∨6, 6∨5∨2

Before the Backtrack step, the clause 6 ∨ 5 ∨ 2 is conflicting: it is false in the
assignment 1d 2 3d 4 5d 6. This is a consequence of the unit propagation 2 of the
decision 1d, together with the decision 5d and its unit propagation 6.

Therefore, one can infer that the decision 1d is incompatible with the decision
5d, that is, that the given clause set entails 1∨5. Similarly, it also entails 2∨5.

Such entailed clauses are called backjump clauses if their presence would have
allowed a unit propagation at an earlier decision level. This is precisely what back-
jumping does: given a backjump clause, it goes back to that level and adds the
unit propagated literal. For example, using 2∨5 as a backjump clause, the last
Backtrack step could be replaced by a backjump to a state with first component
1d 2 5.

We model all this in the next system with the Backjump rule, of which Backtrack
is a particular case. In this rule, the clause C ′ ∨ l ′ is the backjump clause, where l ′

=)

12Wednesday, October 



Basic DPLL system

944 R. NIEUWENHUIS ET AL.

is the literal that can be unit propagated (5 in our example). Below we show that
the rule is effective: a backjump clause can always be found.

Definition 2.4. The Basic DPLL system is the four-rule transition system B
consisting of the rules UnitPropagate, Decide, Fail from Classical DPLL, and the
following Backjump rule:

Backjump :

M ld N ‖ F, C =⇒ M l ′ ‖ F, C if






M ld N |= ¬C, and there is
some clause C ′ ∨ l ′ such that:

F, C |= C ′ ∨ l ′ and M |= ¬C ′,
l ′ is undefined in M , and
l ′ or ¬l ′ occurs in F or in M ld N .

We call clause C in Backjump the conflicting clause and clause C ′ ∨ l ′ the backjump
clause.

Chronological backtracking, modeled by Backtrack, always undoes the last de-
cision l, going back to the previous level and adding ¬l to it. Conflict-driven
backjumping, as modeled by Backjump, is generally able to backtrack further than
chronological backtracking by analyzing the reasons that produced the conflicting
clause. Backjump can frequently undo several decisions at once, going back to a
lower decision level than the previous level and adding some new literal to that
lower level. It jumps over levels that are irrelevant to the conflict. In the previous
example, it jumps over the decision 3d and its consequence 4, which are totally un-
related with the reasons for the falsity of the conflicting clause 6∨5∨2. Moreover,
intuitively, the search state 1d 2 5 reached after Backjump is more advanced than
the state 1d 2 3d 4 5 reached after Backtrack. This notion of “being more advanced”
is formalized in Theorem 2.10 below.

We show in the proof of Lemma 2.8 below that the literals of the backjump clause
can always be chosen among the negations of the decision literals—although better
choices usually exist. When the negations of all the decision literals are included
in the backjump clause, the Backjump rule simulates the Backtrack rule of Classical
DPLL. We remark that, in fact, Lemma 2.8 shows that, whenever a state M ‖ F
contains a conflicting clause, either Fail applies, if there are no decision literals in
M , or otherwise Backjump applies.

Most modern DPLL implementations make additional use of backjump clauses:
they add them to the clause set as learned clauses, also called lemmas, implementing
what is usually called conflict-driven learning.

In Example 2.3, learning the clause 2 ∨ 5 will allow the application of
UnitPropagate to any state whose assignment contains either 2 or 5. Hence, it will
prevent any conflict caused by having both 2 and 5 in M . Reaching such similar
conflicts frequently happens in industrial problems having some regular structure,
and learning such lemmas has been shown to be very effective in improving per-
formance.

Since a lemma is aimed at preventing future similar conflicts, when these conflicts
are not very likely to be found again the lemma can be removed. In practice, a
lemma is removed when its relevance (see, e.g., Bayardo and Schrag [1997]) or its
activity level drops below a certain threshold; the activity can be, for example, the

UnitPropagate + Decide + Fail
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is the literal that can be unit propagated (5 in our example). Below we show that
the rule is effective: a backjump clause can always be found.

Definition 2.4. The Basic DPLL system is the four-rule transition system B
consisting of the rules UnitPropagate, Decide, Fail from Classical DPLL, and the
following Backjump rule:

Backjump :

M ld N ‖ F, C =⇒ M l ′ ‖ F, C if
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



M ld N |= ¬C, and there is
some clause C ′ ∨ l ′ such that:

F, C |= C ′ ∨ l ′ and M |= ¬C ′,
l ′ is undefined in M , and
l ′ or ¬l ′ occurs in F or in M ld N .

We call clause C in Backjump the conflicting clause and clause C ′ ∨ l ′ the backjump
clause.

Chronological backtracking, modeled by Backtrack, always undoes the last de-
cision l, going back to the previous level and adding ¬l to it. Conflict-driven
backjumping, as modeled by Backjump, is generally able to backtrack further than
chronological backtracking by analyzing the reasons that produced the conflicting
clause. Backjump can frequently undo several decisions at once, going back to a
lower decision level than the previous level and adding some new literal to that
lower level. It jumps over levels that are irrelevant to the conflict. In the previous
example, it jumps over the decision 3d and its consequence 4, which are totally un-
related with the reasons for the falsity of the conflicting clause 6∨5∨2. Moreover,
intuitively, the search state 1d 2 5 reached after Backjump is more advanced than
the state 1d 2 3d 4 5 reached after Backtrack. This notion of “being more advanced”
is formalized in Theorem 2.10 below.

We show in the proof of Lemma 2.8 below that the literals of the backjump clause
can always be chosen among the negations of the decision literals—although better
choices usually exist. When the negations of all the decision literals are included
in the backjump clause, the Backjump rule simulates the Backtrack rule of Classical
DPLL. We remark that, in fact, Lemma 2.8 shows that, whenever a state M ‖ F
contains a conflicting clause, either Fail applies, if there are no decision literals in
M , or otherwise Backjump applies.

Most modern DPLL implementations make additional use of backjump clauses:
they add them to the clause set as learned clauses, also called lemmas, implementing
what is usually called conflict-driven learning.

In Example 2.3, learning the clause 2 ∨ 5 will allow the application of
UnitPropagate to any state whose assignment contains either 2 or 5. Hence, it will
prevent any conflict caused by having both 2 and 5 in M . Reaching such similar
conflicts frequently happens in industrial problems having some regular structure,
and learning such lemmas has been shown to be very effective in improving per-
formance.

Since a lemma is aimed at preventing future similar conflicts, when these conflicts
are not very likely to be found again the lemma can be removed. In practice, a
lemma is removed when its relevance (see, e.g., Bayardo and Schrag [1997]) or its
activity level drops below a certain threshold; the activity can be, for example, the
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is the literal that can be unit propagated (5 in our example). Below we show that
the rule is effective: a backjump clause can always be found.

Definition 2.4. The Basic DPLL system is the four-rule transition system B
consisting of the rules UnitPropagate, Decide, Fail from Classical DPLL, and the
following Backjump rule:

Backjump :

M ld N ‖ F, C =⇒ M l ′ ‖ F, C if






M ld N |= ¬C, and there is
some clause C ′ ∨ l ′ such that:

F, C |= C ′ ∨ l ′ and M |= ¬C ′,
l ′ is undefined in M , and
l ′ or ¬l ′ occurs in F or in M ld N .

We call clause C in Backjump the conflicting clause and clause C ′ ∨ l ′ the backjump
clause.

Chronological backtracking, modeled by Backtrack, always undoes the last de-
cision l, going back to the previous level and adding ¬l to it. Conflict-driven
backjumping, as modeled by Backjump, is generally able to backtrack further than
chronological backtracking by analyzing the reasons that produced the conflicting
clause. Backjump can frequently undo several decisions at once, going back to a
lower decision level than the previous level and adding some new literal to that
lower level. It jumps over levels that are irrelevant to the conflict. In the previous
example, it jumps over the decision 3d and its consequence 4, which are totally un-
related with the reasons for the falsity of the conflicting clause 6∨5∨2. Moreover,
intuitively, the search state 1d 2 5 reached after Backjump is more advanced than
the state 1d 2 3d 4 5 reached after Backtrack. This notion of “being more advanced”
is formalized in Theorem 2.10 below.

We show in the proof of Lemma 2.8 below that the literals of the backjump clause
can always be chosen among the negations of the decision literals—although better
choices usually exist. When the negations of all the decision literals are included
in the backjump clause, the Backjump rule simulates the Backtrack rule of Classical
DPLL. We remark that, in fact, Lemma 2.8 shows that, whenever a state M ‖ F
contains a conflicting clause, either Fail applies, if there are no decision literals in
M , or otherwise Backjump applies.

Most modern DPLL implementations make additional use of backjump clauses:
they add them to the clause set as learned clauses, also called lemmas, implementing
what is usually called conflict-driven learning.

In Example 2.3, learning the clause 2 ∨ 5 will allow the application of
UnitPropagate to any state whose assignment contains either 2 or 5. Hence, it will
prevent any conflict caused by having both 2 and 5 in M . Reaching such similar
conflicts frequently happens in industrial problems having some regular structure,
and learning such lemmas has been shown to be very effective in improving per-
formance.

Since a lemma is aimed at preventing future similar conflicts, when these conflicts
are not very likely to be found again the lemma can be removed. In practice, a
lemma is removed when its relevance (see, e.g., Bayardo and Schrag [1997]) or its
activity level drops below a certain threshold; the activity can be, for example, the
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is the literal that can be unit propagated (5 in our example). Below we show that
the rule is effective: a backjump clause can always be found.

Definition 2.4. The Basic DPLL system is the four-rule transition system B
consisting of the rules UnitPropagate, Decide, Fail from Classical DPLL, and the
following Backjump rule:

Backjump :

M ld N ‖ F, C =⇒ M l ′ ‖ F, C if






M ld N |= ¬C, and there is
some clause C ′ ∨ l ′ such that:

F, C |= C ′ ∨ l ′ and M |= ¬C ′,
l ′ is undefined in M , and
l ′ or ¬l ′ occurs in F or in M ld N .

We call clause C in Backjump the conflicting clause and clause C ′ ∨ l ′ the backjump
clause.

Chronological backtracking, modeled by Backtrack, always undoes the last de-
cision l, going back to the previous level and adding ¬l to it. Conflict-driven
backjumping, as modeled by Backjump, is generally able to backtrack further than
chronological backtracking by analyzing the reasons that produced the conflicting
clause. Backjump can frequently undo several decisions at once, going back to a
lower decision level than the previous level and adding some new literal to that
lower level. It jumps over levels that are irrelevant to the conflict. In the previous
example, it jumps over the decision 3d and its consequence 4, which are totally un-
related with the reasons for the falsity of the conflicting clause 6∨5∨2. Moreover,
intuitively, the search state 1d 2 5 reached after Backjump is more advanced than
the state 1d 2 3d 4 5 reached after Backtrack. This notion of “being more advanced”
is formalized in Theorem 2.10 below.

We show in the proof of Lemma 2.8 below that the literals of the backjump clause
can always be chosen among the negations of the decision literals—although better
choices usually exist. When the negations of all the decision literals are included
in the backjump clause, the Backjump rule simulates the Backtrack rule of Classical
DPLL. We remark that, in fact, Lemma 2.8 shows that, whenever a state M ‖ F
contains a conflicting clause, either Fail applies, if there are no decision literals in
M , or otherwise Backjump applies.

Most modern DPLL implementations make additional use of backjump clauses:
they add them to the clause set as learned clauses, also called lemmas, implementing
what is usually called conflict-driven learning.

In Example 2.3, learning the clause 2 ∨ 5 will allow the application of
UnitPropagate to any state whose assignment contains either 2 or 5. Hence, it will
prevent any conflict caused by having both 2 and 5 in M . Reaching such similar
conflicts frequently happens in industrial problems having some regular structure,
and learning such lemmas has been shown to be very effective in improving per-
formance.

Since a lemma is aimed at preventing future similar conflicts, when these conflicts
are not very likely to be found again the lemma can be removed. In practice, a
lemma is removed when its relevance (see, e.g., Bayardo and Schrag [1997]) or its
activity level drops below a certain threshold; the activity can be, for example, the
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is the literal that can be unit propagated (5 in our example). Below we show that
the rule is effective: a backjump clause can always be found.

Definition 2.4. The Basic DPLL system is the four-rule transition system B
consisting of the rules UnitPropagate, Decide, Fail from Classical DPLL, and the
following Backjump rule:

Backjump :

M ld N ‖ F, C =⇒ M l ′ ‖ F, C if
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M ld N |= ¬C, and there is
some clause C ′ ∨ l ′ such that:

F, C |= C ′ ∨ l ′ and M |= ¬C ′,
l ′ is undefined in M , and
l ′ or ¬l ′ occurs in F or in M ld N .

We call clause C in Backjump the conflicting clause and clause C ′ ∨ l ′ the backjump
clause.

Chronological backtracking, modeled by Backtrack, always undoes the last de-
cision l, going back to the previous level and adding ¬l to it. Conflict-driven
backjumping, as modeled by Backjump, is generally able to backtrack further than
chronological backtracking by analyzing the reasons that produced the conflicting
clause. Backjump can frequently undo several decisions at once, going back to a
lower decision level than the previous level and adding some new literal to that
lower level. It jumps over levels that are irrelevant to the conflict. In the previous
example, it jumps over the decision 3d and its consequence 4, which are totally un-
related with the reasons for the falsity of the conflicting clause 6∨5∨2. Moreover,
intuitively, the search state 1d 2 5 reached after Backjump is more advanced than
the state 1d 2 3d 4 5 reached after Backtrack. This notion of “being more advanced”
is formalized in Theorem 2.10 below.

We show in the proof of Lemma 2.8 below that the literals of the backjump clause
can always be chosen among the negations of the decision literals—although better
choices usually exist. When the negations of all the decision literals are included
in the backjump clause, the Backjump rule simulates the Backtrack rule of Classical
DPLL. We remark that, in fact, Lemma 2.8 shows that, whenever a state M ‖ F
contains a conflicting clause, either Fail applies, if there are no decision literals in
M , or otherwise Backjump applies.

Most modern DPLL implementations make additional use of backjump clauses:
they add them to the clause set as learned clauses, also called lemmas, implementing
what is usually called conflict-driven learning.

In Example 2.3, learning the clause 2 ∨ 5 will allow the application of
UnitPropagate to any state whose assignment contains either 2 or 5. Hence, it will
prevent any conflict caused by having both 2 and 5 in M . Reaching such similar
conflicts frequently happens in industrial problems having some regular structure,
and learning such lemmas has been shown to be very effective in improving per-
formance.

Since a lemma is aimed at preventing future similar conflicts, when these conflicts
are not very likely to be found again the lemma can be removed. In practice, a
lemma is removed when its relevance (see, e.g., Bayardo and Schrag [1997]) or its
activity level drops below a certain threshold; the activity can be, for example, the
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is the literal that can be unit propagated (5 in our example). Below we show that
the rule is effective: a backjump clause can always be found.

Definition 2.4. The Basic DPLL system is the four-rule transition system B
consisting of the rules UnitPropagate, Decide, Fail from Classical DPLL, and the
following Backjump rule:

Backjump :

M ld N ‖ F, C =⇒ M l ′ ‖ F, C if






M ld N |= ¬C, and there is
some clause C ′ ∨ l ′ such that:

F, C |= C ′ ∨ l ′ and M |= ¬C ′,
l ′ is undefined in M , and
l ′ or ¬l ′ occurs in F or in M ld N .

We call clause C in Backjump the conflicting clause and clause C ′ ∨ l ′ the backjump
clause.

Chronological backtracking, modeled by Backtrack, always undoes the last de-
cision l, going back to the previous level and adding ¬l to it. Conflict-driven
backjumping, as modeled by Backjump, is generally able to backtrack further than
chronological backtracking by analyzing the reasons that produced the conflicting
clause. Backjump can frequently undo several decisions at once, going back to a
lower decision level than the previous level and adding some new literal to that
lower level. It jumps over levels that are irrelevant to the conflict. In the previous
example, it jumps over the decision 3d and its consequence 4, which are totally un-
related with the reasons for the falsity of the conflicting clause 6∨5∨2. Moreover,
intuitively, the search state 1d 2 5 reached after Backjump is more advanced than
the state 1d 2 3d 4 5 reached after Backtrack. This notion of “being more advanced”
is formalized in Theorem 2.10 below.

We show in the proof of Lemma 2.8 below that the literals of the backjump clause
can always be chosen among the negations of the decision literals—although better
choices usually exist. When the negations of all the decision literals are included
in the backjump clause, the Backjump rule simulates the Backtrack rule of Classical
DPLL. We remark that, in fact, Lemma 2.8 shows that, whenever a state M ‖ F
contains a conflicting clause, either Fail applies, if there are no decision literals in
M , or otherwise Backjump applies.

Most modern DPLL implementations make additional use of backjump clauses:
they add them to the clause set as learned clauses, also called lemmas, implementing
what is usually called conflict-driven learning.

In Example 2.3, learning the clause 2 ∨ 5 will allow the application of
UnitPropagate to any state whose assignment contains either 2 or 5. Hence, it will
prevent any conflict caused by having both 2 and 5 in M . Reaching such similar
conflicts frequently happens in industrial problems having some regular structure,
and learning such lemmas has been shown to be very effective in improving per-
formance.

Since a lemma is aimed at preventing future similar conflicts, when these conflicts
are not very likely to be found again the lemma can be removed. In practice, a
lemma is removed when its relevance (see, e.g., Bayardo and Schrag [1997]) or its
activity level drops below a certain threshold; the activity can be, for example, the
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is the literal that can be unit propagated (5 in our example). Below we show that
the rule is effective: a backjump clause can always be found.

Definition 2.4. The Basic DPLL system is the four-rule transition system B
consisting of the rules UnitPropagate, Decide, Fail from Classical DPLL, and the
following Backjump rule:

Backjump :

M ld N ‖ F, C =⇒ M l ′ ‖ F, C if






M ld N |= ¬C, and there is
some clause C ′ ∨ l ′ such that:

F, C |= C ′ ∨ l ′ and M |= ¬C ′,
l ′ is undefined in M , and
l ′ or ¬l ′ occurs in F or in M ld N .

We call clause C in Backjump the conflicting clause and clause C ′ ∨ l ′ the backjump
clause.

Chronological backtracking, modeled by Backtrack, always undoes the last de-
cision l, going back to the previous level and adding ¬l to it. Conflict-driven
backjumping, as modeled by Backjump, is generally able to backtrack further than
chronological backtracking by analyzing the reasons that produced the conflicting
clause. Backjump can frequently undo several decisions at once, going back to a
lower decision level than the previous level and adding some new literal to that
lower level. It jumps over levels that are irrelevant to the conflict. In the previous
example, it jumps over the decision 3d and its consequence 4, which are totally un-
related with the reasons for the falsity of the conflicting clause 6∨5∨2. Moreover,
intuitively, the search state 1d 2 5 reached after Backjump is more advanced than
the state 1d 2 3d 4 5 reached after Backtrack. This notion of “being more advanced”
is formalized in Theorem 2.10 below.

We show in the proof of Lemma 2.8 below that the literals of the backjump clause
can always be chosen among the negations of the decision literals—although better
choices usually exist. When the negations of all the decision literals are included
in the backjump clause, the Backjump rule simulates the Backtrack rule of Classical
DPLL. We remark that, in fact, Lemma 2.8 shows that, whenever a state M ‖ F
contains a conflicting clause, either Fail applies, if there are no decision literals in
M , or otherwise Backjump applies.

Most modern DPLL implementations make additional use of backjump clauses:
they add them to the clause set as learned clauses, also called lemmas, implementing
what is usually called conflict-driven learning.

In Example 2.3, learning the clause 2 ∨ 5 will allow the application of
UnitPropagate to any state whose assignment contains either 2 or 5. Hence, it will
prevent any conflict caused by having both 2 and 5 in M . Reaching such similar
conflicts frequently happens in industrial problems having some regular structure,
and learning such lemmas has been shown to be very effective in improving per-
formance.

Since a lemma is aimed at preventing future similar conflicts, when these conflicts
are not very likely to be found again the lemma can be removed. In practice, a
lemma is removed when its relevance (see, e.g., Bayardo and Schrag [1997]) or its
activity level drops below a certain threshold; the activity can be, for example, the
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is the literal that can be unit propagated (5 in our example). Below we show that
the rule is effective: a backjump clause can always be found.

Definition 2.4. The Basic DPLL system is the four-rule transition system B
consisting of the rules UnitPropagate, Decide, Fail from Classical DPLL, and the
following Backjump rule:

Backjump :

M ld N ‖ F, C =⇒ M l ′ ‖ F, C if






M ld N |= ¬C, and there is
some clause C ′ ∨ l ′ such that:

F, C |= C ′ ∨ l ′ and M |= ¬C ′,
l ′ is undefined in M , and
l ′ or ¬l ′ occurs in F or in M ld N .

We call clause C in Backjump the conflicting clause and clause C ′ ∨ l ′ the backjump
clause.

Chronological backtracking, modeled by Backtrack, always undoes the last de-
cision l, going back to the previous level and adding ¬l to it. Conflict-driven
backjumping, as modeled by Backjump, is generally able to backtrack further than
chronological backtracking by analyzing the reasons that produced the conflicting
clause. Backjump can frequently undo several decisions at once, going back to a
lower decision level than the previous level and adding some new literal to that
lower level. It jumps over levels that are irrelevant to the conflict. In the previous
example, it jumps over the decision 3d and its consequence 4, which are totally un-
related with the reasons for the falsity of the conflicting clause 6∨5∨2. Moreover,
intuitively, the search state 1d 2 5 reached after Backjump is more advanced than
the state 1d 2 3d 4 5 reached after Backtrack. This notion of “being more advanced”
is formalized in Theorem 2.10 below.

We show in the proof of Lemma 2.8 below that the literals of the backjump clause
can always be chosen among the negations of the decision literals—although better
choices usually exist. When the negations of all the decision literals are included
in the backjump clause, the Backjump rule simulates the Backtrack rule of Classical
DPLL. We remark that, in fact, Lemma 2.8 shows that, whenever a state M ‖ F
contains a conflicting clause, either Fail applies, if there are no decision literals in
M , or otherwise Backjump applies.

Most modern DPLL implementations make additional use of backjump clauses:
they add them to the clause set as learned clauses, also called lemmas, implementing
what is usually called conflict-driven learning.

In Example 2.3, learning the clause 2 ∨ 5 will allow the application of
UnitPropagate to any state whose assignment contains either 2 or 5. Hence, it will
prevent any conflict caused by having both 2 and 5 in M . Reaching such similar
conflicts frequently happens in industrial problems having some regular structure,
and learning such lemmas has been shown to be very effective in improving per-
formance.

Since a lemma is aimed at preventing future similar conflicts, when these conflicts
are not very likely to be found again the lemma can be removed. In practice, a
lemma is removed when its relevance (see, e.g., Bayardo and Schrag [1997]) or its
activity level drops below a certain threshold; the activity can be, for example, the
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is the literal that can be unit propagated (5 in our example). Below we show that
the rule is effective: a backjump clause can always be found.

Definition 2.4. The Basic DPLL system is the four-rule transition system B
consisting of the rules UnitPropagate, Decide, Fail from Classical DPLL, and the
following Backjump rule:

Backjump :

M ld N ‖ F, C =⇒ M l ′ ‖ F, C if






M ld N |= ¬C, and there is
some clause C ′ ∨ l ′ such that:

F, C |= C ′ ∨ l ′ and M |= ¬C ′,
l ′ is undefined in M , and
l ′ or ¬l ′ occurs in F or in M ld N .

We call clause C in Backjump the conflicting clause and clause C ′ ∨ l ′ the backjump
clause.

Chronological backtracking, modeled by Backtrack, always undoes the last de-
cision l, going back to the previous level and adding ¬l to it. Conflict-driven
backjumping, as modeled by Backjump, is generally able to backtrack further than
chronological backtracking by analyzing the reasons that produced the conflicting
clause. Backjump can frequently undo several decisions at once, going back to a
lower decision level than the previous level and adding some new literal to that
lower level. It jumps over levels that are irrelevant to the conflict. In the previous
example, it jumps over the decision 3d and its consequence 4, which are totally un-
related with the reasons for the falsity of the conflicting clause 6∨5∨2. Moreover,
intuitively, the search state 1d 2 5 reached after Backjump is more advanced than
the state 1d 2 3d 4 5 reached after Backtrack. This notion of “being more advanced”
is formalized in Theorem 2.10 below.

We show in the proof of Lemma 2.8 below that the literals of the backjump clause
can always be chosen among the negations of the decision literals—although better
choices usually exist. When the negations of all the decision literals are included
in the backjump clause, the Backjump rule simulates the Backtrack rule of Classical
DPLL. We remark that, in fact, Lemma 2.8 shows that, whenever a state M ‖ F
contains a conflicting clause, either Fail applies, if there are no decision literals in
M , or otherwise Backjump applies.

Most modern DPLL implementations make additional use of backjump clauses:
they add them to the clause set as learned clauses, also called lemmas, implementing
what is usually called conflict-driven learning.

In Example 2.3, learning the clause 2 ∨ 5 will allow the application of
UnitPropagate to any state whose assignment contains either 2 or 5. Hence, it will
prevent any conflict caused by having both 2 and 5 in M . Reaching such similar
conflicts frequently happens in industrial problems having some regular structure,
and learning such lemmas has been shown to be very effective in improving per-
formance.

Since a lemma is aimed at preventing future similar conflicts, when these conflicts
are not very likely to be found again the lemma can be removed. In practice, a
lemma is removed when its relevance (see, e.g., Bayardo and Schrag [1997]) or its
activity level drops below a certain threshold; the activity can be, for example, the

=)B

C conflict clause

C 0 _ l0 backjump clause

satisfiable under the same models as F,C

Munit clause wrt 

C = l1 _ · · · _ ln
F = C1, . . . , Cm

p atom

l literal

M = l1l2 . . . ln
CNF

model

clause
Conflict Driven Backtracking

Sanity Check: Modeling Backtrack with Backjump

Mz }| {
M0l

d
1M1 . . . l

d
n

Nz}|{
Mn ||F,C

Suppose

C 0 _ l0 = ¬l1 _ · · · _ ¬lnTake

M0l
d
1M1 . . .¬ln ||F,C

Thus

=)

Have M ✏ ¬(¬l1 _ · · · _ ¬ln�1) () M ✏ l1, . . . , ln�1

948 R. NIEUWENHUIS ET AL.

(4) If M is of the form M0 l1 M1 · · · ln Mn, where l1, . . . , ln are all the decision
literals of M, then F, l1, . . . , li |= Mi for all i in 0 . . . n.

PROOF. Since all four properties trivially hold in the initial state ∅ ‖ F , we only
need to prove that all six rules preserve them. Consider a step M ′ ‖ F ′=⇒L M ′′ ‖ F ′′

and assume all properties hold in M ′ ‖ F ′. Property 1 holds in M ′′ ‖ F ′′ because
the only atoms that may be added to M ′′ or F ′′ are the ones in F ′ or M ′, all of
which belong to F . The side conditions of the rules clearly preserve Property 2.
As for Property 3, only Learn and Forget may break the invariant. But learning (or
forgetting) a clause C that is a logical consequence clearly preserves equivalence
between F ′ and F ′′.

For the fourth property, consider that M ′ is of the form M ′
0 l1 M ′

1 · · · ln M ′
n , and

l1, . . . , ln are all the decision literals of M ′. If the step is an application of Decide,
there is nothing to prove. For Learn or Forget, it easily follows since M ′ is M ′′ and
F ′′ is logically equivalent to F ′. The remaining rules are:

UnitPropagate: Since M ′′ will be of the form M ′l (we use l and C as in the
definition of the rule), we only have to prove that F, l1, . . . , ln |= l, which holds
since (i) F, l1, . . . , ln |= M ′, (ii) M ′ |= ¬C , (iii) C ∨ l is a clause of F ′ and (iv) F
and F ′ are equivalent.

Backjump: Assume that, in the Backjump rule, ld is l j+1, the j +1-th decision
literal. Then (using l ′ and C ′ as in the definition of the rule), M ′′ is of the form
M ′

0 l1 M ′
1 · · · l j M ′

j l ′. We only need to show that F, l1, . . . , l j |= l ′. This holds as for
the UnitPropagate case, since we have (i) F, l1, . . . , l j |= M ′

0 l1 M ′
1 · · · l j M ′

j , (ii)
M ′

0 l1 M ′
1 · · · l j M ′

j |= ¬C ′, (iii) F ′ |= C ′ ∨ l ′ and (iv) F and F ′ are equivalent.

The most interesting property of this lemma is probably Property 4. It shows that
every nondecision literal added to an assignment M is a logical consequence of the
previous decision literals of M and the initial formula F . In other words, we have
that F, l1, . . . , ln |= M . Hence, the only arbitrary additions to M are the ones made
by Decide.

Another important property concerns the applicability of Backjump. Given a state
with a conflicting clause, it may not be clear a priori whether Backjump is ap-
plicable or not, mainly due to the need to find an appropriate backjump clause.
Below we show that, if there is a conflicting clause, it is always the case that either
Backjump or Fail applies. Moreover, whenever the first precondition of Backjump
holds (M ld N |= ¬C), a backjump clause C ′ ∨ l ′ always exists and can be easily
computed.

LEMMA 2.8. Assume that ∅ ‖ F=⇒L
∗ M ‖ F ′ and that M |= ¬C for some clause

C in F ′. Then either Fail or Backjump applies to M ‖ F ′.

PROOF. If there is no decision literal in M , it is immediate that Fail applies.
Otherwise, M is of the form M0 l1 M1 · · · ln Mn for some n > 0, where
l1, . . . , ln are all the decision literals of M . Since M |= ¬C we have, due to
Lemma 2.7-4, that F, l1, . . . , ln |= ¬C . If we now consider any i in 1 · · · n such
that F, l1, . . . , li |= ¬C , and any j in 0 · · · i − 1 such that F, l1, . . . , l j , li |= ¬C ,
we can show that then backjumping to decision level j is possible.

Let C ′ be the clause ¬l1∨· · ·∨¬l j , and note that M is also of the form M ′ l j+1 N .
Then Backjump is applicable to M ‖ F ′, yielding the state M ′ ¬li ‖ F ′. That is
because the clause C ′ ∨ ¬li satisfies all the side conditions of the Backjump rule:

Backjump is a backtracking mechanism.

This follows by a bit more generalized construction of the 
presented one.

And is unsatF,C, l1, . . . , ln () F,C ✏ ¬l1 _ · · · _ ¬ln
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We are now ready to prove that DPLL with learning provides a decision procedure
for the satisfiability of CNF formulas.

THEOREM 2.12. If ∅ ‖ F =⇒L
∗ S where S is final with respect to Basic DPLL,

then

(1) S is FailState if, and only if, F is unsatisfiable.
(2) If S is of the form M ‖ F ′ then M is a model of F.

PROOF. For Property 1, if S is FailState it is because there is some state M ‖ F ′

such that ∅ ‖ F=⇒L
∗ M ‖ F ′=⇒LFailState. By the definition of the Fail rule, there is

no decision literal in M and there is a clause C in F ′ such that M |= ¬C . Since F and
F ′ are equivalent by Lemma 2.7(3), we have that F |= C . However, if M |= ¬C ,
by Lemma 2.7(4), then also F |= ¬C , which implies that F is unsatisfiable. For
the right-to-left implication, if S is not FailState it has to be of the form M ‖ F ′.
But then, by Lemma 2.9(3), M is a model of F and hence F is satisfiable.

For Property 2, if S is M ‖ F ′, then, again by Lemma 2.9(3), M is a model
of F .

Note that the previous theorem does not guarantee confluence in the sense of
rewrite systems, say. With unsatisfiable formulas, the only possible final (with
respect to Basic DPLL) state for a sequence is FailState. If, on the other hand, the
formula is satisfiable, different states that are final with respect to Basic DPLL may
be reachable. However, all of them will be of the form M ‖ F ′, with M a model of
the original formula.

Although Theorem 2.12 was given for the relation =⇒L, it also holds for =⇒B,
since the existence of Learn or Forget is not required in the proof.

THEOREM 2.13. If ∅ ‖ F =⇒∗
B S where S is final with respect to Basic DPLL,

then

(1) S is FailState if, and only if, F is unsatisfiable.
(2) If S is of the form M ‖ F ′, then M is a model of F.

2.6. ABOUT PRACTICAL IMPLEMENTATIONS AND RESTARTS. State-of-the art
SAT-solvers [Moskewicz et al. 2001; Goldberg and Novikov 2002; Eén and
Sörensson 2003; Ryan 2004] essentially apply Abstract DPLL with Learning us-
ing efficient implementation techniques for UnitPropagate (such as the two-watched
literal scheme for unit propagation [Moskewicz et al. 2001]), and good heuristics
for selecting the decision literal when applying the Decide rule. As said, conflict
analysis procedures for applying Backjump and the possibility of applying learning
by other forms of resolution have also been well studied.

In addition, modern DPLL implementations restart the DPLL procedure when-
ever the search is not making enough progress according to some measure. The
rationale behind this idea is that upon each restart, the additional knowledge of the
search space compiled into the newly learned lemmas will lead the heuristics for
Decide to behave differently, and possibly cause the procedure to explore the search
space in a more compact way. The combination of learning and restarts has been
shown to be powerful not only in practice, but also in theory. Essentially, any Basic
DPLL derivation to FailState is equivalent to a tree-like refutation by resolution.
But for some classes of problems tree-like proofs are always exponentially larger

As F 0 = F
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(i) F ′ |= C ′ ∨ ¬li because F, l1, . . . , l j , li |= ¬C , which implies, given that C
is in F ′ and F ′ is equivalent to F (by Lemma 2.7-3), that F, l1, . . . , l j , li is
unsatisfiable or, equivalently, that F |= ¬l1 ∨ · · · ∨ ¬l j ∨ ¬li ; furthermore,
M ′ |= ¬C ′ by construction of C ′;

(ii) ¬li is undefined in M ′ (by Lemma 2.7-2);
(iii) li occurs in M .

It is interesting to observe that, the smaller one can choose the value j in the
previous proof, the higher one can backjump. Note also that, if we construct the
backjump clause as in the proof and take i to be n and j to be n−1 then the Backjump
rule models standard backtracking.

We stress that backjump clauses need not be built as in the proof above, out of
the decision literals of the current assignment. It follows from the termination and
correctness results given in this section that in practice one is free to apply the
backjump rule with any backjump clause. In fact, backjump clauses may be built
to contain no decision literals at all, as is for instance possible in backjumping SAT
solvers relying on the first UIP learning scheme illustrated in Example 2.6.

Given the previous lemma, it is easy to prove that final states with respect to
Basic DPLL will be either FailState or M ‖ F ′, where M is a model of the original
formula F . More formally:

LEMMA 2.9. If ∅ ‖ F =⇒L
∗ S, and S is final with respect to Basic DPLL, then

S is either FailState, or it is of the form M ‖ F ′, where

(1) all literals of F ′ are defined in M,
(2) there is no clause C in F ′ such that M |= ¬C, and
(3) M is a model of F.

PROOF. Assume S is not FailState. If (1) does not hold, then S cannot be final,
since Decide would be applicable. Similarly, for (2): by Lemma 2.8, either Fail or
Backjump would apply. Together (1) and (2) imply that all clauses of F ′ are defined
and true in M , and since by Lemma 2.7(3), F and F ′ are logically equivalent this
implies that M is a model of F .

We now prove termination of the Basic DPLL system.

THEOREM 2.10. There are no infinite derivations of the form ∅ ‖ F =⇒B
S1 =⇒B · · · .

PROOF. It suffices to define a well-founded strict partial ordering ( on states,
and show that each step M ‖ F =⇒B M ′ ‖ F is decreasing with respect to this
ordering, that is, M ‖ F ( M ′ ‖ F . Note that such an ordering must be entirely
based on the first component of the states, because in this system without Learn and
Forget the second component of states remains constant.

Let M be of the form M0 l1 M1 · · · l p Mp, where l1, . . . , l p are all the decision
literals of M . Similarly, let M ′ be M ′

0 l ′1 M ′
1 · · · l ′p′ M ′

p′ .
Let n be the number of distinct atoms (propositional variables) in F . By

Lemma 2.7(1,2), we have that p, p′ and the length of M and M ′ are always smaller
than or equal to n.

For each assignment N , define m(N ) to be n−length(N ), that is, m(N ) is the num-
ber of literals “missing” in N for N to be total. Now define: M ‖ F ′ ( M ′ ‖ F ′′ if

Terminates

with Backjump

=)B
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(i) F ′ |= C ′ ∨ ¬li because F, l1, . . . , l j , li |= ¬C , which implies, given that C
is in F ′ and F ′ is equivalent to F (by Lemma 2.7-3), that F, l1, . . . , l j , li is
unsatisfiable or, equivalently, that F |= ¬l1 ∨ · · · ∨ ¬l j ∨ ¬li ; furthermore,
M ′ |= ¬C ′ by construction of C ′;

(ii) ¬li is undefined in M ′ (by Lemma 2.7-2);
(iii) li occurs in M .

It is interesting to observe that, the smaller one can choose the value j in the
previous proof, the higher one can backjump. Note also that, if we construct the
backjump clause as in the proof and take i to be n and j to be n−1 then the Backjump
rule models standard backtracking.

We stress that backjump clauses need not be built as in the proof above, out of
the decision literals of the current assignment. It follows from the termination and
correctness results given in this section that in practice one is free to apply the
backjump rule with any backjump clause. In fact, backjump clauses may be built
to contain no decision literals at all, as is for instance possible in backjumping SAT
solvers relying on the first UIP learning scheme illustrated in Example 2.6.

Given the previous lemma, it is easy to prove that final states with respect to
Basic DPLL will be either FailState or M ‖ F ′, where M is a model of the original
formula F . More formally:

LEMMA 2.9. If ∅ ‖ F =⇒L
∗ S, and S is final with respect to Basic DPLL, then

S is either FailState, or it is of the form M ‖ F ′, where

(1) all literals of F ′ are defined in M,
(2) there is no clause C in F ′ such that M |= ¬C, and
(3) M is a model of F.

PROOF. Assume S is not FailState. If (1) does not hold, then S cannot be final,
since Decide would be applicable. Similarly, for (2): by Lemma 2.8, either Fail or
Backjump would apply. Together (1) and (2) imply that all clauses of F ′ are defined
and true in M , and since by Lemma 2.7(3), F and F ′ are logically equivalent this
implies that M is a model of F .

We now prove termination of the Basic DPLL system.

THEOREM 2.10. There are no infinite derivations of the form ∅ ‖ F =⇒B
S1 =⇒B · · · .

PROOF. It suffices to define a well-founded strict partial ordering ( on states,
and show that each step M ‖ F =⇒B M ′ ‖ F is decreasing with respect to this
ordering, that is, M ‖ F ( M ′ ‖ F . Note that such an ordering must be entirely
based on the first component of the states, because in this system without Learn and
Forget the second component of states remains constant.

Let M be of the form M0 l1 M1 · · · l p Mp, where l1, . . . , l p are all the decision
literals of M . Similarly, let M ′ be M ′

0 l ′1 M ′
1 · · · l ′p′ M ′

p′ .
Let n be the number of distinct atoms (propositional variables) in F . By

Lemma 2.7(1,2), we have that p, p′ and the length of M and M ′ are always smaller
than or equal to n.

For each assignment N , define m(N ) to be n−length(N ), that is, m(N ) is the num-
ber of literals “missing” in N for N to be total. Now define: M ‖ F ′ ( M ′ ‖ F ′′ if
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(i) F ′ |= C ′ ∨ ¬li because F, l1, . . . , l j , li |= ¬C , which implies, given that C
is in F ′ and F ′ is equivalent to F (by Lemma 2.7-3), that F, l1, . . . , l j , li is
unsatisfiable or, equivalently, that F |= ¬l1 ∨ · · · ∨ ¬l j ∨ ¬li ; furthermore,
M ′ |= ¬C ′ by construction of C ′;

(ii) ¬li is undefined in M ′ (by Lemma 2.7-2);
(iii) li occurs in M .

It is interesting to observe that, the smaller one can choose the value j in the
previous proof, the higher one can backjump. Note also that, if we construct the
backjump clause as in the proof and take i to be n and j to be n−1 then the Backjump
rule models standard backtracking.

We stress that backjump clauses need not be built as in the proof above, out of
the decision literals of the current assignment. It follows from the termination and
correctness results given in this section that in practice one is free to apply the
backjump rule with any backjump clause. In fact, backjump clauses may be built
to contain no decision literals at all, as is for instance possible in backjumping SAT
solvers relying on the first UIP learning scheme illustrated in Example 2.6.

Given the previous lemma, it is easy to prove that final states with respect to
Basic DPLL will be either FailState or M ‖ F ′, where M is a model of the original
formula F . More formally:

LEMMA 2.9. If ∅ ‖ F =⇒L
∗ S, and S is final with respect to Basic DPLL, then

S is either FailState, or it is of the form M ‖ F ′, where

(1) all literals of F ′ are defined in M,
(2) there is no clause C in F ′ such that M |= ¬C, and
(3) M is a model of F.

PROOF. Assume S is not FailState. If (1) does not hold, then S cannot be final,
since Decide would be applicable. Similarly, for (2): by Lemma 2.8, either Fail or
Backjump would apply. Together (1) and (2) imply that all clauses of F ′ are defined
and true in M , and since by Lemma 2.7(3), F and F ′ are logically equivalent this
implies that M is a model of F .

We now prove termination of the Basic DPLL system.

THEOREM 2.10. There are no infinite derivations of the form ∅ ‖ F =⇒B
S1 =⇒B · · · .

PROOF. It suffices to define a well-founded strict partial ordering ( on states,
and show that each step M ‖ F =⇒B M ′ ‖ F is decreasing with respect to this
ordering, that is, M ‖ F ( M ′ ‖ F . Note that such an ordering must be entirely
based on the first component of the states, because in this system without Learn and
Forget the second component of states remains constant.

Let M be of the form M0 l1 M1 · · · l p Mp, where l1, . . . , l p are all the decision
literals of M . Similarly, let M ′ be M ′

0 l ′1 M ′
1 · · · l ′p′ M ′

p′ .
Let n be the number of distinct atoms (propositional variables) in F . By

Lemma 2.7(1,2), we have that p, p′ and the length of M and M ′ are always smaller
than or equal to n.

For each assignment N , define m(N ) to be n−length(N ), that is, m(N ) is the num-
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(i) F ′ |= C ′ ∨ ¬li because F, l1, . . . , l j , li |= ¬C , which implies, given that C
is in F ′ and F ′ is equivalent to F (by Lemma 2.7-3), that F, l1, . . . , l j , li is
unsatisfiable or, equivalently, that F |= ¬l1 ∨ · · · ∨ ¬l j ∨ ¬li ; furthermore,
M ′ |= ¬C ′ by construction of C ′;

(ii) ¬li is undefined in M ′ (by Lemma 2.7-2);
(iii) li occurs in M .

It is interesting to observe that, the smaller one can choose the value j in the
previous proof, the higher one can backjump. Note also that, if we construct the
backjump clause as in the proof and take i to be n and j to be n−1 then the Backjump
rule models standard backtracking.

We stress that backjump clauses need not be built as in the proof above, out of
the decision literals of the current assignment. It follows from the termination and
correctness results given in this section that in practice one is free to apply the
backjump rule with any backjump clause. In fact, backjump clauses may be built
to contain no decision literals at all, as is for instance possible in backjumping SAT
solvers relying on the first UIP learning scheme illustrated in Example 2.6.

Given the previous lemma, it is easy to prove that final states with respect to
Basic DPLL will be either FailState or M ‖ F ′, where M is a model of the original
formula F . More formally:

LEMMA 2.9. If ∅ ‖ F =⇒L
∗ S, and S is final with respect to Basic DPLL, then

S is either FailState, or it is of the form M ‖ F ′, where

(1) all literals of F ′ are defined in M,
(2) there is no clause C in F ′ such that M |= ¬C, and
(3) M is a model of F.

PROOF. Assume S is not FailState. If (1) does not hold, then S cannot be final,
since Decide would be applicable. Similarly, for (2): by Lemma 2.8, either Fail or
Backjump would apply. Together (1) and (2) imply that all clauses of F ′ are defined
and true in M , and since by Lemma 2.7(3), F and F ′ are logically equivalent this
implies that M is a model of F .

We now prove termination of the Basic DPLL system.

THEOREM 2.10. There are no infinite derivations of the form ∅ ‖ F =⇒B
S1 =⇒B · · · .

PROOF. It suffices to define a well-founded strict partial ordering ( on states,
and show that each step M ‖ F =⇒B M ′ ‖ F is decreasing with respect to this
ordering, that is, M ‖ F ( M ′ ‖ F . Note that such an ordering must be entirely
based on the first component of the states, because in this system without Learn and
Forget the second component of states remains constant.

Let M be of the form M0 l1 M1 · · · l p Mp, where l1, . . . , l p are all the decision
literals of M . Similarly, let M ′ be M ′

0 l ′1 M ′
1 · · · l ′p′ M ′

p′ .
Let n be the number of distinct atoms (propositional variables) in F . By

Lemma 2.7(1,2), we have that p, p′ and the length of M and M ′ are always smaller
than or equal to n.

For each assignment N , define m(N ) to be n−length(N ), that is, m(N ) is the num-
ber of literals “missing” in N for N to be total. Now define: M ‖ F ′ ( M ′ ‖ F ′′ if
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It is interesting to observe that, the smaller one can choose the value j in the
previous proof, the higher one can backjump. Note also that, if we construct the
backjump clause as in the proof and take i to be n and j to be n−1 then the Backjump
rule models standard backtracking.

We stress that backjump clauses need not be built as in the proof above, out of
the decision literals of the current assignment. It follows from the termination and
correctness results given in this section that in practice one is free to apply the
backjump rule with any backjump clause. In fact, backjump clauses may be built
to contain no decision literals at all, as is for instance possible in backjumping SAT
solvers relying on the first UIP learning scheme illustrated in Example 2.6.
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since Decide would be applicable. Similarly, for (2): by Lemma 2.8, either Fail or
Backjump would apply. Together (1) and (2) imply that all clauses of F ′ are defined
and true in M , and since by Lemma 2.7(3), F and F ′ are logically equivalent this
implies that M is a model of F .
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THEOREM 2.10. There are no infinite derivations of the form ∅ ‖ F =⇒B
S1 =⇒B · · · .

PROOF. It suffices to define a well-founded strict partial ordering ( on states,
and show that each step M ‖ F =⇒B M ′ ‖ F is decreasing with respect to this
ordering, that is, M ‖ F ( M ′ ‖ F . Note that such an ordering must be entirely
based on the first component of the states, because in this system without Learn and
Forget the second component of states remains constant.

Let M be of the form M0 l1 M1 · · · l p Mp, where l1, . . . , l p are all the decision
literals of M . Similarly, let M ′ be M ′

0 l ′1 M ′
1 · · · l ′p′ M ′

p′ .
Let n be the number of distinct atoms (propositional variables) in F . By

Lemma 2.7(1,2), we have that p, p′ and the length of M and M ′ are always smaller
than or equal to n.

For each assignment N , define m(N ) to be n−length(N ), that is, m(N ) is the num-
ber of literals “missing” in N for N to be total. Now define: M ‖ F ′ ( M ′ ‖ F ′′ if
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conflict graph, where the nodes corresponding to the conflicting clause are shown in
gray:

This figure shows the graph obtained when the decision literal of the current
decision level (here, 9d) is reached in this backwards process—which is why this
node and the nodes belonging to earlier decision levels (in this example, literals 6
and 7) have no incoming arrows.

To find a backjump clause, it suffices to cut the graph into two parts. The first
part must contain (at least) all the literals with no incoming arrows. The second part
must contain (at least) all the literals with no outgoing arrows, that is, the negated
literals of the conflicting clause (in our example, 1, 2 and 3). It is not hard to see that
in such a cut no model of F can satisfy all the literals whose outgoing edges are cut.

For instance, consider the cut indicated by the dotted line in the graph, where
the literals with cut outgoing edges are 8, 7, and 6. From these three literals, by
unit propagation using five clauses of F , one can infer the negated literals of
the conflicting clause. Hence, one can infer from F that 8, 7, and 6 cannot be
simultaneously true, that is, one can infer the clause 8∨7∨6. In this case, this is a
possible backjump clause, that is, the clause C ′ ∨ l ′ in the definition of the Backjump
rule, with the literal 8 playing the role of l ′. The clause allows one to backjump to
the decision level of 7 and add 8 to it. After that, the clause 8∨7∨6 has to be learned
to explain in future conflicts the presence of 8 as a propagation from 6 and 7.

The kind of cuts we have described produce backjump clauses provided that
exactly one of the literals with cut outgoing edges belongs to the current decision
level. The negation of this literal will act as the literal l ′ in the backjump rule. In
the SAT literature, the literal is called a Unique Implication Point (UIP) of the
conflict graph. Formally, UIPs are defined as follows. Let D be the set of all the
literals of a conflicting clause C that have become false at the current decision
level (this set is always nonempty, since Decide is applied only if Fail or Backjump
do not apply). A UIP in the conflict graph of C is any literal that belongs to all
paths in the graph from the current decision literal to the negation of a literal in
D. Note that a conflict graph always contains at least one UIP, the decision literal
itself, but in general it can contain more (in our example 9d and 8 are both UIPs).

In practice, it is not actually necessary to build the conflict graph to produce
a backjump clause; it suffices to work backwards from the conflicting clause,
maintaining only a frontier list of literals yet to be expanded, until the first UIP
(first in the reverse propagation ordering) has been reached [Marques-Silva and
Sakallah 1999; Zhang et al. 2001].
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number of times it becomes a unit or a conflicting clause [Goldberg and Novikov
2002].

To model lemma learning and removal we consider the following extension of
the Basic DPLL system.

Definition 2.5. The DPLL system with learning, denoted by L , consists of the
four transition rules of the Basic DPLL system and the two additional rules:

Learn :

M ‖ F =⇒ M ‖ F, C if
{

each atom of C occurs in F or in M
F |= C.

Forget :
M ‖ F, C =⇒ M ‖ F if

{
F |= C.

In any application step of Learn, the clause C is said to be learned if it did not
already belong to F . Similarly, it is said to be forgotten by Forget.

Observe that the Learn rule allows one to add to the current formula F an arbitrary
clause C entailed by F , as long as all the atoms of C occur in F or M . This models
not only conflict-driven lemma learning but also any other techniques that produce
consequences of F , such as limited forms of resolution (see the following example).

Similarly, the Forget rule can be used in principle to remove from F any clause
that is entailed by the rest of F , not just those previously added to the clause set by
Learn. The applicability of the two rules in their full scope, however, is limited in
practice by the relative cost of determining such entailments in general.

The six rules of the DPLL system with learning model the high-level conceptual
structure of DPLL implementations. These rules will allow us to formally reason
about properties such as correctness or termination.

Example 2.6. We now show how the Backjump rule can be guided by means of
a conflict graph for finding backjump clauses. In this example we assume a strategy
that is followed in most SAT solvers: (i) Decide is applied only if no other Basic
DPLL rule is applicable (Theorem 5.2 of Section 5 shows that this is not needed,
but here we require it for simplicity) and (ii) after each application of Backjump, the
backjump clause is learned.

Consider a state of the form M ‖ F where, among other clauses, F contains:

9∨6∨7∨8 8∨7∨5 6∨8∨4 4∨1 4∨5∨2 5∨7∨3 1∨2∨3

and M is of the form: . . . 6 . . . 7 . . . 9d 8 5 4 1 2 3.
It is easy to see that this state can be reached after the last decision 9d by six

applications of UnitPropagate. For example, 8 is implied by 9, 6, and 7 because of
the clause 9∨6∨7∨8. A typical DPLL implementation will save the sequence of
propagated literals and remember for each one of them the clause that caused its
propagation. Now, in the state M ‖ F above the clause 1∨2∨3 is conflicting, since
M contains 1, 2 and 3. Using the saved information, the DPLL implementation can
trace back the reasons for this conflicting clause. For example, the saved data will
show that 3 was implied by 5 and 7, due to the clause 5∨7∨3. The literal 5 was in
turn implied by 8 and 7, and so on.

This way, working backwards from the conflicting clause and in the opposite
order in which each literal was propagated, it is possible to build the following

F = . . .

M =
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number of times it becomes a unit or a conflicting clause [Goldberg and Novikov
2002].

To model lemma learning and removal we consider the following extension of
the Basic DPLL system.

Definition 2.5. The DPLL system with learning, denoted by L , consists of the
four transition rules of the Basic DPLL system and the two additional rules:

Learn :

M ‖ F =⇒ M ‖ F, C if
{

each atom of C occurs in F or in M
F |= C.

Forget :
M ‖ F, C =⇒ M ‖ F if

{
F |= C.

In any application step of Learn, the clause C is said to be learned if it did not
already belong to F . Similarly, it is said to be forgotten by Forget.

Observe that the Learn rule allows one to add to the current formula F an arbitrary
clause C entailed by F , as long as all the atoms of C occur in F or M . This models
not only conflict-driven lemma learning but also any other techniques that produce
consequences of F , such as limited forms of resolution (see the following example).

Similarly, the Forget rule can be used in principle to remove from F any clause
that is entailed by the rest of F , not just those previously added to the clause set by
Learn. The applicability of the two rules in their full scope, however, is limited in
practice by the relative cost of determining such entailments in general.

The six rules of the DPLL system with learning model the high-level conceptual
structure of DPLL implementations. These rules will allow us to formally reason
about properties such as correctness or termination.

Example 2.6. We now show how the Backjump rule can be guided by means of
a conflict graph for finding backjump clauses. In this example we assume a strategy
that is followed in most SAT solvers: (i) Decide is applied only if no other Basic
DPLL rule is applicable (Theorem 5.2 of Section 5 shows that this is not needed,
but here we require it for simplicity) and (ii) after each application of Backjump, the
backjump clause is learned.

Consider a state of the form M ‖ F where, among other clauses, F contains:

9∨6∨7∨8 8∨7∨5 6∨8∨4 4∨1 4∨5∨2 5∨7∨3 1∨2∨3

and M is of the form: . . . 6 . . . 7 . . . 9d 8 5 4 1 2 3.
It is easy to see that this state can be reached after the last decision 9d by six

applications of UnitPropagate. For example, 8 is implied by 9, 6, and 7 because of
the clause 9∨6∨7∨8. A typical DPLL implementation will save the sequence of
propagated literals and remember for each one of them the clause that caused its
propagation. Now, in the state M ‖ F above the clause 1∨2∨3 is conflicting, since
M contains 1, 2 and 3. Using the saved information, the DPLL implementation can
trace back the reasons for this conflicting clause. For example, the saved data will
show that 3 was implied by 5 and 7, due to the clause 5∨7∨3. The literal 5 was in
turn implied by 8 and 7, and so on.

This way, working backwards from the conflicting clause and in the opposite
order in which each literal was propagated, it is possible to build the following
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conflict graph, where the nodes corresponding to the conflicting clause are shown in
gray:

This figure shows the graph obtained when the decision literal of the current
decision level (here, 9d) is reached in this backwards process—which is why this
node and the nodes belonging to earlier decision levels (in this example, literals 6
and 7) have no incoming arrows.

To find a backjump clause, it suffices to cut the graph into two parts. The first
part must contain (at least) all the literals with no incoming arrows. The second part
must contain (at least) all the literals with no outgoing arrows, that is, the negated
literals of the conflicting clause (in our example, 1, 2 and 3). It is not hard to see that
in such a cut no model of F can satisfy all the literals whose outgoing edges are cut.

For instance, consider the cut indicated by the dotted line in the graph, where
the literals with cut outgoing edges are 8, 7, and 6. From these three literals, by
unit propagation using five clauses of F , one can infer the negated literals of
the conflicting clause. Hence, one can infer from F that 8, 7, and 6 cannot be
simultaneously true, that is, one can infer the clause 8∨7∨6. In this case, this is a
possible backjump clause, that is, the clause C ′ ∨ l ′ in the definition of the Backjump
rule, with the literal 8 playing the role of l ′. The clause allows one to backjump to
the decision level of 7 and add 8 to it. After that, the clause 8∨7∨6 has to be learned
to explain in future conflicts the presence of 8 as a propagation from 6 and 7.

The kind of cuts we have described produce backjump clauses provided that
exactly one of the literals with cut outgoing edges belongs to the current decision
level. The negation of this literal will act as the literal l ′ in the backjump rule. In
the SAT literature, the literal is called a Unique Implication Point (UIP) of the
conflict graph. Formally, UIPs are defined as follows. Let D be the set of all the
literals of a conflicting clause C that have become false at the current decision
level (this set is always nonempty, since Decide is applied only if Fail or Backjump
do not apply). A UIP in the conflict graph of C is any literal that belongs to all
paths in the graph from the current decision literal to the negation of a literal in
D. Note that a conflict graph always contains at least one UIP, the decision literal
itself, but in general it can contain more (in our example 9d and 8 are both UIPs).

In practice, it is not actually necessary to build the conflict graph to produce
a backjump clause; it suffices to work backwards from the conflicting clause,
maintaining only a frontier list of literals yet to be expanded, until the first UIP
(first in the reverse propagation ordering) has been reached [Marques-Silva and
Sakallah 1999; Zhang et al. 2001].
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number of times it becomes a unit or a conflicting clause [Goldberg and Novikov
2002].

To model lemma learning and removal we consider the following extension of
the Basic DPLL system.

Definition 2.5. The DPLL system with learning, denoted by L , consists of the
four transition rules of the Basic DPLL system and the two additional rules:

Learn :

M ‖ F =⇒ M ‖ F, C if
{

each atom of C occurs in F or in M
F |= C.

Forget :
M ‖ F, C =⇒ M ‖ F if

{
F |= C.

In any application step of Learn, the clause C is said to be learned if it did not
already belong to F . Similarly, it is said to be forgotten by Forget.

Observe that the Learn rule allows one to add to the current formula F an arbitrary
clause C entailed by F , as long as all the atoms of C occur in F or M . This models
not only conflict-driven lemma learning but also any other techniques that produce
consequences of F , such as limited forms of resolution (see the following example).

Similarly, the Forget rule can be used in principle to remove from F any clause
that is entailed by the rest of F , not just those previously added to the clause set by
Learn. The applicability of the two rules in their full scope, however, is limited in
practice by the relative cost of determining such entailments in general.

The six rules of the DPLL system with learning model the high-level conceptual
structure of DPLL implementations. These rules will allow us to formally reason
about properties such as correctness or termination.

Example 2.6. We now show how the Backjump rule can be guided by means of
a conflict graph for finding backjump clauses. In this example we assume a strategy
that is followed in most SAT solvers: (i) Decide is applied only if no other Basic
DPLL rule is applicable (Theorem 5.2 of Section 5 shows that this is not needed,
but here we require it for simplicity) and (ii) after each application of Backjump, the
backjump clause is learned.

Consider a state of the form M ‖ F where, among other clauses, F contains:

9∨6∨7∨8 8∨7∨5 6∨8∨4 4∨1 4∨5∨2 5∨7∨3 1∨2∨3

and M is of the form: . . . 6 . . . 7 . . . 9d 8 5 4 1 2 3.
It is easy to see that this state can be reached after the last decision 9d by six

applications of UnitPropagate. For example, 8 is implied by 9, 6, and 7 because of
the clause 9∨6∨7∨8. A typical DPLL implementation will save the sequence of
propagated literals and remember for each one of them the clause that caused its
propagation. Now, in the state M ‖ F above the clause 1∨2∨3 is conflicting, since
M contains 1, 2 and 3. Using the saved information, the DPLL implementation can
trace back the reasons for this conflicting clause. For example, the saved data will
show that 3 was implied by 5 and 7, due to the clause 5∨7∨3. The literal 5 was in
turn implied by 8 and 7, and so on.

This way, working backwards from the conflicting clause and in the opposite
order in which each literal was propagated, it is possible to build the following

F = . . .

M =
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number of times it becomes a unit or a conflicting clause [Goldberg and Novikov
2002].

To model lemma learning and removal we consider the following extension of
the Basic DPLL system.

Definition 2.5. The DPLL system with learning, denoted by L , consists of the
four transition rules of the Basic DPLL system and the two additional rules:

Learn :

M ‖ F =⇒ M ‖ F, C if
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each atom of C occurs in F or in M
F |= C.

Forget :
M ‖ F, C =⇒ M ‖ F if

{
F |= C.

In any application step of Learn, the clause C is said to be learned if it did not
already belong to F . Similarly, it is said to be forgotten by Forget.

Observe that the Learn rule allows one to add to the current formula F an arbitrary
clause C entailed by F , as long as all the atoms of C occur in F or M . This models
not only conflict-driven lemma learning but also any other techniques that produce
consequences of F , such as limited forms of resolution (see the following example).

Similarly, the Forget rule can be used in principle to remove from F any clause
that is entailed by the rest of F , not just those previously added to the clause set by
Learn. The applicability of the two rules in their full scope, however, is limited in
practice by the relative cost of determining such entailments in general.

The six rules of the DPLL system with learning model the high-level conceptual
structure of DPLL implementations. These rules will allow us to formally reason
about properties such as correctness or termination.

Example 2.6. We now show how the Backjump rule can be guided by means of
a conflict graph for finding backjump clauses. In this example we assume a strategy
that is followed in most SAT solvers: (i) Decide is applied only if no other Basic
DPLL rule is applicable (Theorem 5.2 of Section 5 shows that this is not needed,
but here we require it for simplicity) and (ii) after each application of Backjump, the
backjump clause is learned.

Consider a state of the form M ‖ F where, among other clauses, F contains:

9∨6∨7∨8 8∨7∨5 6∨8∨4 4∨1 4∨5∨2 5∨7∨3 1∨2∨3

and M is of the form: . . . 6 . . . 7 . . . 9d 8 5 4 1 2 3.
It is easy to see that this state can be reached after the last decision 9d by six

applications of UnitPropagate. For example, 8 is implied by 9, 6, and 7 because of
the clause 9∨6∨7∨8. A typical DPLL implementation will save the sequence of
propagated literals and remember for each one of them the clause that caused its
propagation. Now, in the state M ‖ F above the clause 1∨2∨3 is conflicting, since
M contains 1, 2 and 3. Using the saved information, the DPLL implementation can
trace back the reasons for this conflicting clause. For example, the saved data will
show that 3 was implied by 5 and 7, due to the clause 5∨7∨3. The literal 5 was in
turn implied by 8 and 7, and so on.

This way, working backwards from the conflicting clause and in the opposite
order in which each literal was propagated, it is possible to build the following
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conflict graph, where the nodes corresponding to the conflicting clause are shown in
gray:

This figure shows the graph obtained when the decision literal of the current
decision level (here, 9d) is reached in this backwards process—which is why this
node and the nodes belonging to earlier decision levels (in this example, literals 6
and 7) have no incoming arrows.

To find a backjump clause, it suffices to cut the graph into two parts. The first
part must contain (at least) all the literals with no incoming arrows. The second part
must contain (at least) all the literals with no outgoing arrows, that is, the negated
literals of the conflicting clause (in our example, 1, 2 and 3). It is not hard to see that
in such a cut no model of F can satisfy all the literals whose outgoing edges are cut.

For instance, consider the cut indicated by the dotted line in the graph, where
the literals with cut outgoing edges are 8, 7, and 6. From these three literals, by
unit propagation using five clauses of F , one can infer the negated literals of
the conflicting clause. Hence, one can infer from F that 8, 7, and 6 cannot be
simultaneously true, that is, one can infer the clause 8∨7∨6. In this case, this is a
possible backjump clause, that is, the clause C ′ ∨ l ′ in the definition of the Backjump
rule, with the literal 8 playing the role of l ′. The clause allows one to backjump to
the decision level of 7 and add 8 to it. After that, the clause 8∨7∨6 has to be learned
to explain in future conflicts the presence of 8 as a propagation from 6 and 7.

The kind of cuts we have described produce backjump clauses provided that
exactly one of the literals with cut outgoing edges belongs to the current decision
level. The negation of this literal will act as the literal l ′ in the backjump rule. In
the SAT literature, the literal is called a Unique Implication Point (UIP) of the
conflict graph. Formally, UIPs are defined as follows. Let D be the set of all the
literals of a conflicting clause C that have become false at the current decision
level (this set is always nonempty, since Decide is applied only if Fail or Backjump
do not apply). A UIP in the conflict graph of C is any literal that belongs to all
paths in the graph from the current decision literal to the negation of a literal in
D. Note that a conflict graph always contains at least one UIP, the decision literal
itself, but in general it can contain more (in our example 9d and 8 are both UIPs).

In practice, it is not actually necessary to build the conflict graph to produce
a backjump clause; it suffices to work backwards from the conflicting clause,
maintaining only a frontier list of literals yet to be expanded, until the first UIP
(first in the reverse propagation ordering) has been reached [Marques-Silva and
Sakallah 1999; Zhang et al. 2001].
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number of times it becomes a unit or a conflicting clause [Goldberg and Novikov
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To model lemma learning and removal we consider the following extension of
the Basic DPLL system.

Definition 2.5. The DPLL system with learning, denoted by L , consists of the
four transition rules of the Basic DPLL system and the two additional rules:

Learn :

M ‖ F =⇒ M ‖ F, C if
{

each atom of C occurs in F or in M
F |= C.

Forget :
M ‖ F, C =⇒ M ‖ F if

{
F |= C.

In any application step of Learn, the clause C is said to be learned if it did not
already belong to F . Similarly, it is said to be forgotten by Forget.

Observe that the Learn rule allows one to add to the current formula F an arbitrary
clause C entailed by F , as long as all the atoms of C occur in F or M . This models
not only conflict-driven lemma learning but also any other techniques that produce
consequences of F , such as limited forms of resolution (see the following example).

Similarly, the Forget rule can be used in principle to remove from F any clause
that is entailed by the rest of F , not just those previously added to the clause set by
Learn. The applicability of the two rules in their full scope, however, is limited in
practice by the relative cost of determining such entailments in general.

The six rules of the DPLL system with learning model the high-level conceptual
structure of DPLL implementations. These rules will allow us to formally reason
about properties such as correctness or termination.

Example 2.6. We now show how the Backjump rule can be guided by means of
a conflict graph for finding backjump clauses. In this example we assume a strategy
that is followed in most SAT solvers: (i) Decide is applied only if no other Basic
DPLL rule is applicable (Theorem 5.2 of Section 5 shows that this is not needed,
but here we require it for simplicity) and (ii) after each application of Backjump, the
backjump clause is learned.

Consider a state of the form M ‖ F where, among other clauses, F contains:

9∨6∨7∨8 8∨7∨5 6∨8∨4 4∨1 4∨5∨2 5∨7∨3 1∨2∨3

and M is of the form: . . . 6 . . . 7 . . . 9d 8 5 4 1 2 3.
It is easy to see that this state can be reached after the last decision 9d by six

applications of UnitPropagate. For example, 8 is implied by 9, 6, and 7 because of
the clause 9∨6∨7∨8. A typical DPLL implementation will save the sequence of
propagated literals and remember for each one of them the clause that caused its
propagation. Now, in the state M ‖ F above the clause 1∨2∨3 is conflicting, since
M contains 1, 2 and 3. Using the saved information, the DPLL implementation can
trace back the reasons for this conflicting clause. For example, the saved data will
show that 3 was implied by 5 and 7, due to the clause 5∨7∨3. The literal 5 was in
turn implied by 8 and 7, and so on.

This way, working backwards from the conflicting clause and in the opposite
order in which each literal was propagated, it is possible to build the following

F = . . .

M =
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number of times it becomes a unit or a conflicting clause [Goldberg and Novikov
2002].

To model lemma learning and removal we consider the following extension of
the Basic DPLL system.

Definition 2.5. The DPLL system with learning, denoted by L , consists of the
four transition rules of the Basic DPLL system and the two additional rules:

Learn :

M ‖ F =⇒ M ‖ F, C if
{

each atom of C occurs in F or in M
F |= C.

Forget :
M ‖ F, C =⇒ M ‖ F if

{
F |= C.

In any application step of Learn, the clause C is said to be learned if it did not
already belong to F . Similarly, it is said to be forgotten by Forget.

Observe that the Learn rule allows one to add to the current formula F an arbitrary
clause C entailed by F , as long as all the atoms of C occur in F or M . This models
not only conflict-driven lemma learning but also any other techniques that produce
consequences of F , such as limited forms of resolution (see the following example).

Similarly, the Forget rule can be used in principle to remove from F any clause
that is entailed by the rest of F , not just those previously added to the clause set by
Learn. The applicability of the two rules in their full scope, however, is limited in
practice by the relative cost of determining such entailments in general.

The six rules of the DPLL system with learning model the high-level conceptual
structure of DPLL implementations. These rules will allow us to formally reason
about properties such as correctness or termination.

Example 2.6. We now show how the Backjump rule can be guided by means of
a conflict graph for finding backjump clauses. In this example we assume a strategy
that is followed in most SAT solvers: (i) Decide is applied only if no other Basic
DPLL rule is applicable (Theorem 5.2 of Section 5 shows that this is not needed,
but here we require it for simplicity) and (ii) after each application of Backjump, the
backjump clause is learned.

Consider a state of the form M ‖ F where, among other clauses, F contains:

9∨6∨7∨8 8∨7∨5 6∨8∨4 4∨1 4∨5∨2 5∨7∨3 1∨2∨3

and M is of the form: . . . 6 . . . 7 . . . 9d 8 5 4 1 2 3.
It is easy to see that this state can be reached after the last decision 9d by six

applications of UnitPropagate. For example, 8 is implied by 9, 6, and 7 because of
the clause 9∨6∨7∨8. A typical DPLL implementation will save the sequence of
propagated literals and remember for each one of them the clause that caused its
propagation. Now, in the state M ‖ F above the clause 1∨2∨3 is conflicting, since
M contains 1, 2 and 3. Using the saved information, the DPLL implementation can
trace back the reasons for this conflicting clause. For example, the saved data will
show that 3 was implied by 5 and 7, due to the clause 5∨7∨3. The literal 5 was in
turn implied by 8 and 7, and so on.

This way, working backwards from the conflicting clause and in the opposite
order in which each literal was propagated, it is possible to build the following

M ||FConsider where

No incoming 
arrows

No outgoing 
arrows

We can learn 6 _ 8 _ 7

Example (Conflict Graph)
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The construction of the backjump clause can also be seen as a derivation in
the resolution calculus, constructed according to the following backwards conflict
resolution process. In our example, the clause 8∨7∨6 is obtained by successive
resolution steps on the conflicting clause, resolving away the literals 3, 2, 1, 4 and
5, in the reverse order their negations were propagated, with the respective clauses
that caused the propagations:

8∨7∨5
6∨8∨4

4∨1
4∨5∨2

5∨7∨3 1∨2∨3
5∨7∨1∨2

4∨5∨7∨1
5∨7∨4

6∨8∨7∨5
8∨7∨6

The process stops once it generates a clause with only one literal of the current
decision level, which is precisely the first UIP (in our example, the literal 8 in
the clause 8 ∨ 7 ∨ 6). Some SAT solvers, such as Siege, also learn some of the
intermediate clauses in such resolution derivations [Ryan 2004].

2.5. CORRECTNESS OF DPLL WITH LEARNING. In this section, we show how the
DPLL system with learning can be used as a decision procedure for the satisfiability
of CNF formulas.

Deciding the satisfiability of an input formula F will be done by generating an
arbitrary derivation of the form ∅ ‖ F =⇒L · · · =⇒L Sn such that Sn is final with
respect to the Basic DPLL system. Note that final states with respect to the DPLL
system with Learning do not always exist, since the same clause could be learned
and forgotten infinitely many times.

For all rules their applicability is easy to check and, as we will show in
Theorem 2.11, if infinite subderivations with only Learn and Forget steps are avoided,
one always reaches a state that is final with respect to the Basic DPLL system. This
state S is moreover easily recognizable as final, because it is either FailState or of
form M ‖ F ′ where F ′ has no conflicting clauses and all of its literals are defined
in M . Furthermore, similarly to the Classical DPLL system and as proved below in
Theorem 2.12; in the first case, F is unsatisfiable, in the second case, it is satisfied
by M .

We emphasize that these formal results apply to any procedure modeled by
the DPLL system with learning, and can moreover be extended to DPLL Modulo
Theories. This generalizes the less formal correctness proof for the concrete pseudo
code of the Chaff algorithm given in Zhang and Malik [2003], which has the same
underlying proof idea.

The starting point for our results is the next lemma, which lists a few properties
that are invariant for all the states derived in the DPLL system with learning from
initial states of the form ∅ ‖ F .

LEMMA 2.7. If ∅ ‖ F=⇒L
∗M ‖ G, then the following hold.

(1) All the atoms in M and all the atoms in G are atoms of F.
(2) M contains no literal more than once and is indeed an assignment, that is, it

contains no pair of literals of the form p and ¬p.
(3) G is logically equivalent to F.
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number of times it becomes a unit or a conflicting clause [Goldberg and Novikov
2002].

To model lemma learning and removal we consider the following extension of
the Basic DPLL system.

Definition 2.5. The DPLL system with learning, denoted by L , consists of the
four transition rules of the Basic DPLL system and the two additional rules:

Learn :

M ‖ F =⇒ M ‖ F, C if
{

each atom of C occurs in F or in M
F |= C.

Forget :
M ‖ F, C =⇒ M ‖ F if

{
F |= C.

In any application step of Learn, the clause C is said to be learned if it did not
already belong to F . Similarly, it is said to be forgotten by Forget.

Observe that the Learn rule allows one to add to the current formula F an arbitrary
clause C entailed by F , as long as all the atoms of C occur in F or M . This models
not only conflict-driven lemma learning but also any other techniques that produce
consequences of F , such as limited forms of resolution (see the following example).

Similarly, the Forget rule can be used in principle to remove from F any clause
that is entailed by the rest of F , not just those previously added to the clause set by
Learn. The applicability of the two rules in their full scope, however, is limited in
practice by the relative cost of determining such entailments in general.

The six rules of the DPLL system with learning model the high-level conceptual
structure of DPLL implementations. These rules will allow us to formally reason
about properties such as correctness or termination.

Example 2.6. We now show how the Backjump rule can be guided by means of
a conflict graph for finding backjump clauses. In this example we assume a strategy
that is followed in most SAT solvers: (i) Decide is applied only if no other Basic
DPLL rule is applicable (Theorem 5.2 of Section 5 shows that this is not needed,
but here we require it for simplicity) and (ii) after each application of Backjump, the
backjump clause is learned.

Consider a state of the form M ‖ F where, among other clauses, F contains:

9∨6∨7∨8 8∨7∨5 6∨8∨4 4∨1 4∨5∨2 5∨7∨3 1∨2∨3

and M is of the form: . . . 6 . . . 7 . . . 9d 8 5 4 1 2 3.
It is easy to see that this state can be reached after the last decision 9d by six

applications of UnitPropagate. For example, 8 is implied by 9, 6, and 7 because of
the clause 9∨6∨7∨8. A typical DPLL implementation will save the sequence of
propagated literals and remember for each one of them the clause that caused its
propagation. Now, in the state M ‖ F above the clause 1∨2∨3 is conflicting, since
M contains 1, 2 and 3. Using the saved information, the DPLL implementation can
trace back the reasons for this conflicting clause. For example, the saved data will
show that 3 was implied by 5 and 7, due to the clause 5∨7∨3. The literal 5 was in
turn implied by 8 and 7, and so on.

This way, working backwards from the conflicting clause and in the opposite
order in which each literal was propagated, it is possible to build the following

F = . . .

M =
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number of times it becomes a unit or a conflicting clause [Goldberg and Novikov
2002].

To model lemma learning and removal we consider the following extension of
the Basic DPLL system.

Definition 2.5. The DPLL system with learning, denoted by L , consists of the
four transition rules of the Basic DPLL system and the two additional rules:

Learn :

M ‖ F =⇒ M ‖ F, C if
{

each atom of C occurs in F or in M
F |= C.

Forget :
M ‖ F, C =⇒ M ‖ F if

{
F |= C.

In any application step of Learn, the clause C is said to be learned if it did not
already belong to F . Similarly, it is said to be forgotten by Forget.

Observe that the Learn rule allows one to add to the current formula F an arbitrary
clause C entailed by F , as long as all the atoms of C occur in F or M . This models
not only conflict-driven lemma learning but also any other techniques that produce
consequences of F , such as limited forms of resolution (see the following example).

Similarly, the Forget rule can be used in principle to remove from F any clause
that is entailed by the rest of F , not just those previously added to the clause set by
Learn. The applicability of the two rules in their full scope, however, is limited in
practice by the relative cost of determining such entailments in general.

The six rules of the DPLL system with learning model the high-level conceptual
structure of DPLL implementations. These rules will allow us to formally reason
about properties such as correctness or termination.

Example 2.6. We now show how the Backjump rule can be guided by means of
a conflict graph for finding backjump clauses. In this example we assume a strategy
that is followed in most SAT solvers: (i) Decide is applied only if no other Basic
DPLL rule is applicable (Theorem 5.2 of Section 5 shows that this is not needed,
but here we require it for simplicity) and (ii) after each application of Backjump, the
backjump clause is learned.

Consider a state of the form M ‖ F where, among other clauses, F contains:

9∨6∨7∨8 8∨7∨5 6∨8∨4 4∨1 4∨5∨2 5∨7∨3 1∨2∨3

and M is of the form: . . . 6 . . . 7 . . . 9d 8 5 4 1 2 3.
It is easy to see that this state can be reached after the last decision 9d by six

applications of UnitPropagate. For example, 8 is implied by 9, 6, and 7 because of
the clause 9∨6∨7∨8. A typical DPLL implementation will save the sequence of
propagated literals and remember for each one of them the clause that caused its
propagation. Now, in the state M ‖ F above the clause 1∨2∨3 is conflicting, since
M contains 1, 2 and 3. Using the saved information, the DPLL implementation can
trace back the reasons for this conflicting clause. For example, the saved data will
show that 3 was implied by 5 and 7, due to the clause 5∨7∨3. The literal 5 was in
turn implied by 8 and 7, and so on.

This way, working backwards from the conflicting clause and in the opposite
order in which each literal was propagated, it is possible to build the following

M ||FConsider where

Example (Backward Conflict Resolution)

until on literal left of the 
current decision level

in reverse order of

20Wednesday, October 



Conflict Driven Clause Learning
Solving SAT and SAT Modulo Theories 947

The construction of the backjump clause can also be seen as a derivation in
the resolution calculus, constructed according to the following backwards conflict
resolution process. In our example, the clause 8∨7∨6 is obtained by successive
resolution steps on the conflicting clause, resolving away the literals 3, 2, 1, 4 and
5, in the reverse order their negations were propagated, with the respective clauses
that caused the propagations:

8∨7∨5
6∨8∨4

4∨1
4∨5∨2

5∨7∨3 1∨2∨3
5∨7∨1∨2

4∨5∨7∨1
5∨7∨4

6∨8∨7∨5
8∨7∨6

The process stops once it generates a clause with only one literal of the current
decision level, which is precisely the first UIP (in our example, the literal 8 in
the clause 8 ∨ 7 ∨ 6). Some SAT solvers, such as Siege, also learn some of the
intermediate clauses in such resolution derivations [Ryan 2004].

2.5. CORRECTNESS OF DPLL WITH LEARNING. In this section, we show how the
DPLL system with learning can be used as a decision procedure for the satisfiability
of CNF formulas.

Deciding the satisfiability of an input formula F will be done by generating an
arbitrary derivation of the form ∅ ‖ F =⇒L · · · =⇒L Sn such that Sn is final with
respect to the Basic DPLL system. Note that final states with respect to the DPLL
system with Learning do not always exist, since the same clause could be learned
and forgotten infinitely many times.

For all rules their applicability is easy to check and, as we will show in
Theorem 2.11, if infinite subderivations with only Learn and Forget steps are avoided,
one always reaches a state that is final with respect to the Basic DPLL system. This
state S is moreover easily recognizable as final, because it is either FailState or of
form M ‖ F ′ where F ′ has no conflicting clauses and all of its literals are defined
in M . Furthermore, similarly to the Classical DPLL system and as proved below in
Theorem 2.12; in the first case, F is unsatisfiable, in the second case, it is satisfied
by M .

We emphasize that these formal results apply to any procedure modeled by
the DPLL system with learning, and can moreover be extended to DPLL Modulo
Theories. This generalizes the less formal correctness proof for the concrete pseudo
code of the Chaff algorithm given in Zhang and Malik [2003], which has the same
underlying proof idea.

The starting point for our results is the next lemma, which lists a few properties
that are invariant for all the states derived in the DPLL system with learning from
initial states of the form ∅ ‖ F .

LEMMA 2.7. If ∅ ‖ F=⇒L
∗M ‖ G, then the following hold.

(1) All the atoms in M and all the atoms in G are atoms of F.
(2) M contains no literal more than once and is indeed an assignment, that is, it

contains no pair of literals of the form p and ¬p.
(3) G is logically equivalent to F.
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number of times it becomes a unit or a conflicting clause [Goldberg and Novikov
2002].

To model lemma learning and removal we consider the following extension of
the Basic DPLL system.

Definition 2.5. The DPLL system with learning, denoted by L , consists of the
four transition rules of the Basic DPLL system and the two additional rules:

Learn :

M ‖ F =⇒ M ‖ F, C if
{

each atom of C occurs in F or in M
F |= C.

Forget :
M ‖ F, C =⇒ M ‖ F if

{
F |= C.

In any application step of Learn, the clause C is said to be learned if it did not
already belong to F . Similarly, it is said to be forgotten by Forget.

Observe that the Learn rule allows one to add to the current formula F an arbitrary
clause C entailed by F , as long as all the atoms of C occur in F or M . This models
not only conflict-driven lemma learning but also any other techniques that produce
consequences of F , such as limited forms of resolution (see the following example).

Similarly, the Forget rule can be used in principle to remove from F any clause
that is entailed by the rest of F , not just those previously added to the clause set by
Learn. The applicability of the two rules in their full scope, however, is limited in
practice by the relative cost of determining such entailments in general.

The six rules of the DPLL system with learning model the high-level conceptual
structure of DPLL implementations. These rules will allow us to formally reason
about properties such as correctness or termination.

Example 2.6. We now show how the Backjump rule can be guided by means of
a conflict graph for finding backjump clauses. In this example we assume a strategy
that is followed in most SAT solvers: (i) Decide is applied only if no other Basic
DPLL rule is applicable (Theorem 5.2 of Section 5 shows that this is not needed,
but here we require it for simplicity) and (ii) after each application of Backjump, the
backjump clause is learned.

Consider a state of the form M ‖ F where, among other clauses, F contains:

9∨6∨7∨8 8∨7∨5 6∨8∨4 4∨1 4∨5∨2 5∨7∨3 1∨2∨3

and M is of the form: . . . 6 . . . 7 . . . 9d 8 5 4 1 2 3.
It is easy to see that this state can be reached after the last decision 9d by six

applications of UnitPropagate. For example, 8 is implied by 9, 6, and 7 because of
the clause 9∨6∨7∨8. A typical DPLL implementation will save the sequence of
propagated literals and remember for each one of them the clause that caused its
propagation. Now, in the state M ‖ F above the clause 1∨2∨3 is conflicting, since
M contains 1, 2 and 3. Using the saved information, the DPLL implementation can
trace back the reasons for this conflicting clause. For example, the saved data will
show that 3 was implied by 5 and 7, due to the clause 5∨7∨3. The literal 5 was in
turn implied by 8 and 7, and so on.

This way, working backwards from the conflicting clause and in the opposite
order in which each literal was propagated, it is possible to build the following

F = . . .

M =
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number of times it becomes a unit or a conflicting clause [Goldberg and Novikov
2002].

To model lemma learning and removal we consider the following extension of
the Basic DPLL system.

Definition 2.5. The DPLL system with learning, denoted by L , consists of the
four transition rules of the Basic DPLL system and the two additional rules:

Learn :

M ‖ F =⇒ M ‖ F, C if
{

each atom of C occurs in F or in M
F |= C.

Forget :
M ‖ F, C =⇒ M ‖ F if

{
F |= C.

In any application step of Learn, the clause C is said to be learned if it did not
already belong to F . Similarly, it is said to be forgotten by Forget.

Observe that the Learn rule allows one to add to the current formula F an arbitrary
clause C entailed by F , as long as all the atoms of C occur in F or M . This models
not only conflict-driven lemma learning but also any other techniques that produce
consequences of F , such as limited forms of resolution (see the following example).

Similarly, the Forget rule can be used in principle to remove from F any clause
that is entailed by the rest of F , not just those previously added to the clause set by
Learn. The applicability of the two rules in their full scope, however, is limited in
practice by the relative cost of determining such entailments in general.

The six rules of the DPLL system with learning model the high-level conceptual
structure of DPLL implementations. These rules will allow us to formally reason
about properties such as correctness or termination.

Example 2.6. We now show how the Backjump rule can be guided by means of
a conflict graph for finding backjump clauses. In this example we assume a strategy
that is followed in most SAT solvers: (i) Decide is applied only if no other Basic
DPLL rule is applicable (Theorem 5.2 of Section 5 shows that this is not needed,
but here we require it for simplicity) and (ii) after each application of Backjump, the
backjump clause is learned.

Consider a state of the form M ‖ F where, among other clauses, F contains:

9∨6∨7∨8 8∨7∨5 6∨8∨4 4∨1 4∨5∨2 5∨7∨3 1∨2∨3

and M is of the form: . . . 6 . . . 7 . . . 9d 8 5 4 1 2 3.
It is easy to see that this state can be reached after the last decision 9d by six

applications of UnitPropagate. For example, 8 is implied by 9, 6, and 7 because of
the clause 9∨6∨7∨8. A typical DPLL implementation will save the sequence of
propagated literals and remember for each one of them the clause that caused its
propagation. Now, in the state M ‖ F above the clause 1∨2∨3 is conflicting, since
M contains 1, 2 and 3. Using the saved information, the DPLL implementation can
trace back the reasons for this conflicting clause. For example, the saved data will
show that 3 was implied by 5 and 7, due to the clause 5∨7∨3. The literal 5 was in
turn implied by 8 and 7, and so on.

This way, working backwards from the conflicting clause and in the opposite
order in which each literal was propagated, it is possible to build the following

M ||FConsider where

We can learn 6 _ 8 _ 7

Example (Backward Conflict Resolution)

until on literal left of the 
current decision level

in reverse order of
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number of times it becomes a unit or a conflicting clause [Goldberg and Novikov
2002].

To model lemma learning and removal we consider the following extension of
the Basic DPLL system.

Definition 2.5. The DPLL system with learning, denoted by L , consists of the
four transition rules of the Basic DPLL system and the two additional rules:

Learn :

M ‖ F =⇒ M ‖ F, C if
{

each atom of C occurs in F or in M
F |= C.

Forget :
M ‖ F, C =⇒ M ‖ F if

{
F |= C.

In any application step of Learn, the clause C is said to be learned if it did not
already belong to F . Similarly, it is said to be forgotten by Forget.

Observe that the Learn rule allows one to add to the current formula F an arbitrary
clause C entailed by F , as long as all the atoms of C occur in F or M . This models
not only conflict-driven lemma learning but also any other techniques that produce
consequences of F , such as limited forms of resolution (see the following example).

Similarly, the Forget rule can be used in principle to remove from F any clause
that is entailed by the rest of F , not just those previously added to the clause set by
Learn. The applicability of the two rules in their full scope, however, is limited in
practice by the relative cost of determining such entailments in general.

The six rules of the DPLL system with learning model the high-level conceptual
structure of DPLL implementations. These rules will allow us to formally reason
about properties such as correctness or termination.

Example 2.6. We now show how the Backjump rule can be guided by means of
a conflict graph for finding backjump clauses. In this example we assume a strategy
that is followed in most SAT solvers: (i) Decide is applied only if no other Basic
DPLL rule is applicable (Theorem 5.2 of Section 5 shows that this is not needed,
but here we require it for simplicity) and (ii) after each application of Backjump, the
backjump clause is learned.

Consider a state of the form M ‖ F where, among other clauses, F contains:

9∨6∨7∨8 8∨7∨5 6∨8∨4 4∨1 4∨5∨2 5∨7∨3 1∨2∨3

and M is of the form: . . . 6 . . . 7 . . . 9d 8 5 4 1 2 3.
It is easy to see that this state can be reached after the last decision 9d by six

applications of UnitPropagate. For example, 8 is implied by 9, 6, and 7 because of
the clause 9∨6∨7∨8. A typical DPLL implementation will save the sequence of
propagated literals and remember for each one of them the clause that caused its
propagation. Now, in the state M ‖ F above the clause 1∨2∨3 is conflicting, since
M contains 1, 2 and 3. Using the saved information, the DPLL implementation can
trace back the reasons for this conflicting clause. For example, the saved data will
show that 3 was implied by 5 and 7, due to the clause 5∨7∨3. The literal 5 was in
turn implied by 8 and 7, and so on.

This way, working backwards from the conflicting clause and in the opposite
order in which each literal was propagated, it is possible to build the following

  DPLL System With Learning
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number of times it becomes a unit or a conflicting clause [Goldberg and Novikov
2002].

To model lemma learning and removal we consider the following extension of
the Basic DPLL system.

Definition 2.5. The DPLL system with learning, denoted by L , consists of the
four transition rules of the Basic DPLL system and the two additional rules:

Learn :

M ‖ F =⇒ M ‖ F, C if
{

each atom of C occurs in F or in M
F |= C.

Forget :
M ‖ F, C =⇒ M ‖ F if

{
F |= C.

In any application step of Learn, the clause C is said to be learned if it did not
already belong to F . Similarly, it is said to be forgotten by Forget.

Observe that the Learn rule allows one to add to the current formula F an arbitrary
clause C entailed by F , as long as all the atoms of C occur in F or M . This models
not only conflict-driven lemma learning but also any other techniques that produce
consequences of F , such as limited forms of resolution (see the following example).

Similarly, the Forget rule can be used in principle to remove from F any clause
that is entailed by the rest of F , not just those previously added to the clause set by
Learn. The applicability of the two rules in their full scope, however, is limited in
practice by the relative cost of determining such entailments in general.

The six rules of the DPLL system with learning model the high-level conceptual
structure of DPLL implementations. These rules will allow us to formally reason
about properties such as correctness or termination.

Example 2.6. We now show how the Backjump rule can be guided by means of
a conflict graph for finding backjump clauses. In this example we assume a strategy
that is followed in most SAT solvers: (i) Decide is applied only if no other Basic
DPLL rule is applicable (Theorem 5.2 of Section 5 shows that this is not needed,
but here we require it for simplicity) and (ii) after each application of Backjump, the
backjump clause is learned.

Consider a state of the form M ‖ F where, among other clauses, F contains:

9∨6∨7∨8 8∨7∨5 6∨8∨4 4∨1 4∨5∨2 5∨7∨3 1∨2∨3

and M is of the form: . . . 6 . . . 7 . . . 9d 8 5 4 1 2 3.
It is easy to see that this state can be reached after the last decision 9d by six

applications of UnitPropagate. For example, 8 is implied by 9, 6, and 7 because of
the clause 9∨6∨7∨8. A typical DPLL implementation will save the sequence of
propagated literals and remember for each one of them the clause that caused its
propagation. Now, in the state M ‖ F above the clause 1∨2∨3 is conflicting, since
M contains 1, 2 and 3. Using the saved information, the DPLL implementation can
trace back the reasons for this conflicting clause. For example, the saved data will
show that 3 was implied by 5 and 7, due to the clause 5∨7∨3. The literal 5 was in
turn implied by 8 and 7, and so on.

This way, working backwards from the conflicting clause and in the opposite
order in which each literal was propagated, it is possible to build the following
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number of times it becomes a unit or a conflicting clause [Goldberg and Novikov
2002].

To model lemma learning and removal we consider the following extension of
the Basic DPLL system.

Definition 2.5. The DPLL system with learning, denoted by L , consists of the
four transition rules of the Basic DPLL system and the two additional rules:

Learn :

M ‖ F =⇒ M ‖ F, C if
{

each atom of C occurs in F or in M
F |= C.

Forget :
M ‖ F, C =⇒ M ‖ F if

{
F |= C.

In any application step of Learn, the clause C is said to be learned if it did not
already belong to F . Similarly, it is said to be forgotten by Forget.

Observe that the Learn rule allows one to add to the current formula F an arbitrary
clause C entailed by F , as long as all the atoms of C occur in F or M . This models
not only conflict-driven lemma learning but also any other techniques that produce
consequences of F , such as limited forms of resolution (see the following example).

Similarly, the Forget rule can be used in principle to remove from F any clause
that is entailed by the rest of F , not just those previously added to the clause set by
Learn. The applicability of the two rules in their full scope, however, is limited in
practice by the relative cost of determining such entailments in general.

The six rules of the DPLL system with learning model the high-level conceptual
structure of DPLL implementations. These rules will allow us to formally reason
about properties such as correctness or termination.

Example 2.6. We now show how the Backjump rule can be guided by means of
a conflict graph for finding backjump clauses. In this example we assume a strategy
that is followed in most SAT solvers: (i) Decide is applied only if no other Basic
DPLL rule is applicable (Theorem 5.2 of Section 5 shows that this is not needed,
but here we require it for simplicity) and (ii) after each application of Backjump, the
backjump clause is learned.

Consider a state of the form M ‖ F where, among other clauses, F contains:

9∨6∨7∨8 8∨7∨5 6∨8∨4 4∨1 4∨5∨2 5∨7∨3 1∨2∨3

and M is of the form: . . . 6 . . . 7 . . . 9d 8 5 4 1 2 3.
It is easy to see that this state can be reached after the last decision 9d by six

applications of UnitPropagate. For example, 8 is implied by 9, 6, and 7 because of
the clause 9∨6∨7∨8. A typical DPLL implementation will save the sequence of
propagated literals and remember for each one of them the clause that caused its
propagation. Now, in the state M ‖ F above the clause 1∨2∨3 is conflicting, since
M contains 1, 2 and 3. Using the saved information, the DPLL implementation can
trace back the reasons for this conflicting clause. For example, the saved data will
show that 3 was implied by 5 and 7, due to the clause 5∨7∨3. The literal 5 was in
turn implied by 8 and 7, and so on.

This way, working backwards from the conflicting clause and in the opposite
order in which each literal was propagated, it is possible to build the following
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We are now ready to prove that DPLL with learning provides a decision procedure
for the satisfiability of CNF formulas.

THEOREM 2.12. If ∅ ‖ F =⇒L
∗ S where S is final with respect to Basic DPLL,

then

(1) S is FailState if, and only if, F is unsatisfiable.
(2) If S is of the form M ‖ F ′ then M is a model of F.

PROOF. For Property 1, if S is FailState it is because there is some state M ‖ F ′

such that ∅ ‖ F=⇒L
∗ M ‖ F ′=⇒LFailState. By the definition of the Fail rule, there is

no decision literal in M and there is a clause C in F ′ such that M |= ¬C . Since F and
F ′ are equivalent by Lemma 2.7(3), we have that F |= C . However, if M |= ¬C ,
by Lemma 2.7(4), then also F |= ¬C , which implies that F is unsatisfiable. For
the right-to-left implication, if S is not FailState it has to be of the form M ‖ F ′.
But then, by Lemma 2.9(3), M is a model of F and hence F is satisfiable.

For Property 2, if S is M ‖ F ′, then, again by Lemma 2.9(3), M is a model
of F .

Note that the previous theorem does not guarantee confluence in the sense of
rewrite systems, say. With unsatisfiable formulas, the only possible final (with
respect to Basic DPLL) state for a sequence is FailState. If, on the other hand, the
formula is satisfiable, different states that are final with respect to Basic DPLL may
be reachable. However, all of them will be of the form M ‖ F ′, with M a model of
the original formula.

Although Theorem 2.12 was given for the relation =⇒L, it also holds for =⇒B,
since the existence of Learn or Forget is not required in the proof.

THEOREM 2.13. If ∅ ‖ F =⇒∗
B S where S is final with respect to Basic DPLL,

then

(1) S is FailState if, and only if, F is unsatisfiable.
(2) If S is of the form M ‖ F ′, then M is a model of F.

2.6. ABOUT PRACTICAL IMPLEMENTATIONS AND RESTARTS. State-of-the art
SAT-solvers [Moskewicz et al. 2001; Goldberg and Novikov 2002; Eén and
Sörensson 2003; Ryan 2004] essentially apply Abstract DPLL with Learning us-
ing efficient implementation techniques for UnitPropagate (such as the two-watched
literal scheme for unit propagation [Moskewicz et al. 2001]), and good heuristics
for selecting the decision literal when applying the Decide rule. As said, conflict
analysis procedures for applying Backjump and the possibility of applying learning
by other forms of resolution have also been well studied.

In addition, modern DPLL implementations restart the DPLL procedure when-
ever the search is not making enough progress according to some measure. The
rationale behind this idea is that upon each restart, the additional knowledge of the
search space compiled into the newly learned lemmas will lead the heuristics for
Decide to behave differently, and possibly cause the procedure to explore the search
space in a more compact way. The combination of learning and restarts has been
shown to be powerful not only in practice, but also in theory. Essentially, any Basic
DPLL derivation to FailState is equivalent to a tree-like refutation by resolution.
But for some classes of problems tree-like proofs are always exponentially larger
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number of times it becomes a unit or a conflicting clause [Goldberg and Novikov
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DPLL rule is applicable (Theorem 5.2 of Section 5 shows that this is not needed,
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the clause 9∨6∨7∨8. A typical DPLL implementation will save the sequence of
propagated literals and remember for each one of them the clause that caused its
propagation. Now, in the state M ‖ F above the clause 1∨2∨3 is conflicting, since
M contains 1, 2 and 3. Using the saved information, the DPLL implementation can
trace back the reasons for this conflicting clause. For example, the saved data will
show that 3 was implied by 5 and 7, due to the clause 5∨7∨3. The literal 5 was in
turn implied by 8 and 7, and so on.

This way, working backwards from the conflicting clause and in the opposite
order in which each literal was propagated, it is possible to build the following
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We are now ready to prove that DPLL with learning provides a decision procedure
for the satisfiability of CNF formulas.
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∗ S where S is final with respect to Basic DPLL,

then
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Note that the previous theorem does not guarantee confluence in the sense of
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formula is satisfiable, different states that are final with respect to Basic DPLL may
be reachable. However, all of them will be of the form M ‖ F ′, with M a model of
the original formula.

Although Theorem 2.12 was given for the relation =⇒L, it also holds for =⇒B,
since the existence of Learn or Forget is not required in the proof.

THEOREM 2.13. If ∅ ‖ F =⇒∗
B S where S is final with respect to Basic DPLL,

then

(1) S is FailState if, and only if, F is unsatisfiable.
(2) If S is of the form M ‖ F ′, then M is a model of F.

2.6. ABOUT PRACTICAL IMPLEMENTATIONS AND RESTARTS. State-of-the art
SAT-solvers [Moskewicz et al. 2001; Goldberg and Novikov 2002; Eén and
Sörensson 2003; Ryan 2004] essentially apply Abstract DPLL with Learning us-
ing efficient implementation techniques for UnitPropagate (such as the two-watched
literal scheme for unit propagation [Moskewicz et al. 2001]), and good heuristics
for selecting the decision literal when applying the Decide rule. As said, conflict
analysis procedures for applying Backjump and the possibility of applying learning
by other forms of resolution have also been well studied.

In addition, modern DPLL implementations restart the DPLL procedure when-
ever the search is not making enough progress according to some measure. The
rationale behind this idea is that upon each restart, the additional knowledge of the
search space compiled into the newly learned lemmas will lead the heuristics for
Decide to behave differently, and possibly cause the procedure to explore the search
space in a more compact way. The combination of learning and restarts has been
shown to be powerful not only in practice, but also in theory. Essentially, any Basic
DPLL derivation to FailState is equivalent to a tree-like refutation by resolution.
But for some classes of problems tree-like proofs are always exponentially larger
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(i) there is some i with 0 ≤ i ≤ p, p′ such that

m(M0) = m(M ′
0), . . . , m(Mi−1) = m(M ′

i−1), m(Mi ) > m(M ′
i ) or

(ii) m(M0) = m(M ′
0), . . . , m(Mp) = m(M ′

p) and m(M) > m(M ′).

Note that, in case (ii), we have p′ > p, and all decision levels up to p coincide
in number of literals. Comparing the number of missing literals in sequences is
clearly a strict ordering (i.e., it is an irreflexive and transitive relation) and it is
also well-founded, and hence this also holds for its lexicographic extension on
tuples of sequences of bounded length. It is easy to see that all Basic DPLL rules
are decreasing with respect to $ if FailState is added as an additional minimal
element. The rules UnitPropagate and Backjump decrease by case (i) of the definition
and Decide decreases by case (ii).

It is nice to see in this proof that, in contrast to the classical, depth-first DPLL
procedure, progress in backjumping DPLL procedures is not measured by the num-
ber of decision literals that have been tried with both truth values, but by the number
of defined literals that are added to earlier decision levels. The Backjump rule makes
progress in this sense by increasing by one the number of defined literals in the
decision level it backjumps to. The lower this decision level is (i.e., the higher up
in the depth-first search tree), the more progress is made with respect to $.

As an immediate consequence of this theorem, we obtain the termination of
the DPLL system with learning if infinite subderivations with only Learn and Forget
steps are avoided. The reason is that the other steps (the Basic DPLL ones) decrease
the first components of the states with respect to the well-founded ordering, while
the Learn and Forget steps do not modify that component.

THEOREM 2.11. Every derivation ∅ ‖ F=⇒LS1=⇒L · · · by the DPLL system
with Learning is finite if it contains no infinite subderivations consisting of only
Learn and Forget steps.

Note that this condition is very weak and easily enforced. Learn is typically
only applied together with Backjump in order to learn the corresponding backjump
clause. The theorem entails that such a strategy eventually reaches a state where
only Learn and/or Forget apply, that is, a state that is final with respect to the Basic
DPLL system. As already mentioned, by Lemma 2.9, this state is moreover easily
recognizable because it is FailState or else it has the form M ‖ G with all literals
of G defined in M and no conflicting clause.

Actually, we could have alternatively defined a state M ‖ G to be final if M is a
partial assignment satisfying all clauses of G, hence allowing some literals of G to
remain undefined. Then the correctness argument would have been exactly the same
but without the use of Lemma 2.9—which now is needed mostly to show that the
current definition of a final state M ‖ G is a sufficient condition for M to be a model
of G. However, in typical DPLL implementations, checking each time whether a
partial assignment is a model of the current formula G is more expensive, because
of the necessary additional bookkeeping, than just extending a partial model of G to
a total one, which can be done with no search. But note that things may be different
in the SMT case (see a brief discussion at the end of Section 3), or when the goal
is to enumerate all models (perhaps in some compact representation) of the initial
formula F .
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than the smallest general, that is, DAG-like, resolution ones [Bonet et al. 2000].
The good news is that DPLL with learning and restarts becomes again equivalent
to general resolution with respect to such notions of proof complexity [Beame et al.
2003].

In our formalism, restarts can be simply modeled by the following rule:

Definition 2.14. The Restart rule is:

M ‖ F =⇒ ∅ ‖ F.

Adding the Restart rule to DPLL with Learning, it is obvious that all results of this
section hold as long as one can ensure that a final state with respect to Basic DPLL
is eventually reached. This is usually done in practice by periodically increasing
the minimal number of Basic DPLL steps between each pair of restart steps. This
is formalized below.

Definition 2.15. Consider a derivation by the DPLL system with learning ex-
tended with the Restart rule. We say that Restart has increasing periodicity in the
derivation if, for each subderivation Si =⇒ · · · =⇒ Sj =⇒ · · · =⇒ Sk where the
steps producing Si , Sj , and Sk are the only Restart steps, the number of Basic DPLL
steps in Si =⇒ · · · =⇒ Sj is strictly smaller than in Sj =⇒ · · · =⇒ Sk .

THEOREM 2.16. Any derivation ∅ ‖ F =⇒ S1 =⇒ · · · by the transition sys-
tem L extended with the Restart rule is finite if it contains no infinite subderivations
consisting of only Learn and Forget steps, and Restart has increasing periodicity in
it.

PROOF. By contradiction, assume Der is an infinite derivation fulfilling the
requirements. Let $ be the well-founded ordering on (the first components of)
states defined in the proof of Theorem 2.10. In a subderivation of Der without
Restart steps, at each step either this first component decreases with respect to
$ (by the Basic DPLL steps) or it remains equal (by the Learn and Forget steps).
Therefore, since there is no infinite subderivation consisting of only Learn and Forget
steps, there must be infinitely many Restart steps in Der. Also, if between two states
there is at least one Basic DPLL step and no Restart step, these states do not have the
same first component. Therefore, if n denotes the (fixed, finite) number of different
first components of states that exist for the given finite set of propositional symbols,
there cannot be any subderivations with more than n Basic DPLL steps between
two Restart steps. This contradicts the fact that there are infinitely many Restart
steps if Restart has increasing periodicity in Der .

In conclusion, in this section, we have formally described a large family of
practical implementations of DPLL with learning and restarts, and proved that they
provide a decision procedure for propositional satisfiability.

3. Abstract DPLL Modulo Theories

For many applications, encoding the problems into propositional logic is not the
right choice. Frequently, a better alternative is to express the problems in a richer
non-propositional logic, considering satisfiability with respect to a background
theory T .

Not enough progress - restart

Newly learned clauses might 
help guide the search.
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steps in Si =⇒ · · · =⇒ Sj is strictly smaller than in Sj =⇒ · · · =⇒ Sk .

THEOREM 2.16. Any derivation ∅ ‖ F =⇒ S1 =⇒ · · · by the transition sys-
tem L extended with the Restart rule is finite if it contains no infinite subderivations
consisting of only Learn and Forget steps, and Restart has increasing periodicity in
it.

PROOF. By contradiction, assume Der is an infinite derivation fulfilling the
requirements. Let $ be the well-founded ordering on (the first components of)
states defined in the proof of Theorem 2.10. In a subderivation of Der without
Restart steps, at each step either this first component decreases with respect to
$ (by the Basic DPLL steps) or it remains equal (by the Learn and Forget steps).
Therefore, since there is no infinite subderivation consisting of only Learn and Forget
steps, there must be infinitely many Restart steps in Der. Also, if between two states
there is at least one Basic DPLL step and no Restart step, these states do not have the
same first component. Therefore, if n denotes the (fixed, finite) number of different
first components of states that exist for the given finite set of propositional symbols,
there cannot be any subderivations with more than n Basic DPLL steps between
two Restart steps. This contradicts the fact that there are infinitely many Restart
steps if Restart has increasing periodicity in Der .

In conclusion, in this section, we have formally described a large family of
practical implementations of DPLL with learning and restarts, and proved that they
provide a decision procedure for propositional satisfiability.

3. Abstract DPLL Modulo Theories

For many applications, encoding the problems into propositional logic is not the
right choice. Frequently, a better alternative is to express the problems in a richer
non-propositional logic, considering satisfiability with respect to a background
theory T .
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For many applications, encoding the problems into propositional logic is not the
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3.3. ABSTRACT DPLL MODULO THEORIES. In this section, we formalize the
different enhancements of the lazy approach to Satisfiability Modulo Theories.
We do this by adapting the Abstract DPLL framework for the propositional case
presented in the previous section. One significant difference is that here we deal
with ground first-order literals instead of propositional ones. Except for that, the
rules Decide, Fail, UnitPropagate, and Restart remain unchanged: they will still regard
all literals as syntactical items as in the propositional case. Only Learn, Forget and
Backjump are slightly modified to work modulo theories: in these rules, entailment
between formulas now becomes entailment in T . In addition, atoms of T -learned
clauses can now also belong to M , and not only to F ; this is required for Property 3.9
below, needed to recover from T -inconsistent states. Note that the theory version
of Backjump below uses both the propositional notion of satisfiability (|=) and the
first-order notion of entailment modulo theory (|=T ).

Definition 3.2. The rules T -Learn, T -Forget and T -Backjump are:

T -Learn :

M ‖ F =⇒ M ‖ F, C if
{

each atom of C occurs in F or in M
F |=T C

T -Forget :

M ‖ F, C =⇒ M ‖ F if
{

F |=T C

T -Backjump :

M ld N ‖ F, C =⇒ M l ′ ‖ F, C if






M ld N |= ¬C, and there is
some clause C ′ ∨ l ′ such that:

F, C |=T C ′ ∨ l ′ and M |= ¬C ′,
l ′ is undefined in M , and
l ′ or ¬l ′ occurs in F or in M ld N .

3.3.1. Modeling the Naive Lazy Approach. Using these rules, it is easy to model
the basic lazy approach (without any of the refinements of incremental T -solvers,
on-line SAT solvers or theory propagation). Each time a state M ‖ F is reached that
is final with respect to Decide, Fail, UnitPropagate, and T -Backjump, that is, final in a
similar sense as in the previous section, M can be T -consistent or not. If it is, then
M is indeed a T -model of F , as we will prove below. If M is not T -consistent,
then there exists a subset {l1, . . . , ln} of M such that ∅ |=T ¬l1∨ · · · ∨¬ln . By one
T -Learn step, the theory lemma ¬l1∨ · · ·∨¬ln can be learned and then Restart can be
applied. As we will prove below, if these learned theory lemmas are never removed
by the T -Forget rule, this strategy is terminating under similar requirements as those
in the previous section, namely, the absence of infinite subderivations consisting
of only Learn and Forget steps and the increasing periodicity of Restart steps. Then,
the strategy is also sound and complete as stated in the previous section: the initial
formula is T -unsatisfiable if, and only if, FailState is reached; moreover, if FailState
is not reached then a T -model has been found.

3.3.2. Modeling the Lazy Approach with an Incremental T -Solver. Assume a
state M ‖ F has been reached where M is T -inconsistent. Note that in practice this
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is detected by the incremental T -solver, and that this state need not be final now.
Then, as in the naive lazy approach, there exists a subset {l1, . . . , ln} of M such
that ∅ |=T ¬l1∨ · · · ∨¬ln . This theory lemma is then learned, producing the state
M ‖ F, ¬l1∨ · · · ∨¬ln . As in the previous case, Restart can then be applied and the
same results hold.

3.3.3. Modeling the Lazy Approach with an Incremental T -Solver and an on-
Line SAT Solver. As in the previous case, if a subset {l1, . . . , ln} of M is detected
such that ∅ |=T ¬l1 ∨ · · · ∨¬ln , the theory lemma is learned, reaching the state
M ‖ F, ¬l1∨ · · ·∨¬ln . But now, since in addition we consider an online SAT solver,
instead of completely restarting, the procedure repairs the T -inconsistency of the
partial assignment by exploiting the fact that the recently learned theory lemma
is a conflicting clause. As we show later, and similarly to what happened in the
propositional case, if there is no decision literal in M then Fail applies, otherwise
T -Backjump applies. Our results below prove that, even if the theory lemma is always
forgotten immediately after backjumping, this approach is terminating, sound, and
complete under similar conditions as the ones of the previous section.

3.3.4. Modeling the Previous Refinements and Theory Propagation. This re-
quires the following additional rule:

Definition 3.3. The TheoryPropagate rule is:

M ‖ F =⇒ M l ‖ F if






M |=T l
l or ¬l occurs in F
l is undefined in M .

The purpose of this rule is to prune the search by assigning a truth value to literals
that are (propositionally) undefined by the current assignment M but T -entailed by
it, rather than letting the Decide rule guess a value for them. As said, this sort of
propagation can lead to dramatic improvements in performance. Below we prove
that the correctness results mentioned for the previous three lazy approaches also
hold in combination with arbitrary applications of this rule.

3.3.5. Modeling the Previous Refinements and Exhaustive Theory Propagation.
Exhaustive theory propagation is modeled simply by assuming that TheoryPropagate
is applied with a higher priority than Decide. The correctness of this approach
follows immediately from the correctness of the previous one which had arbitrary
applications of TheoryPropagate.

3.4. CORRECTNESS OF ABSTRACT DPLL MODULO THEORIES. Up to now, we
have seen several different application strategies of (subsets) of the given rules,
which lead to different SMT procedures. In this subsection we give a simple and
uniform proof showing that all the approaches described in the previous subsection
are indeed decision procedures for the SMT problem. The proofs are structured in
the same way as the ones given in Section 2.5 for the propositional case, and hence
here we focus on the variations and extensions that are needed.

Definition 3.4. The Basic DPLL Modulo Theories system consists of the rules
Decide, Fail, UnitPropagate, TheoryPropagate, and T -Backjump.
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M ‖ F, ¬l1∨ · · ·∨¬ln . But now, since in addition we consider an online SAT solver,
instead of completely restarting, the procedure repairs the T -inconsistency of the
partial assignment by exploiting the fact that the recently learned theory lemma
is a conflicting clause. As we show later, and similarly to what happened in the
propositional case, if there is no decision literal in M then Fail applies, otherwise
T -Backjump applies. Our results below prove that, even if the theory lemma is always
forgotten immediately after backjumping, this approach is terminating, sound, and
complete under similar conditions as the ones of the previous section.
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that are (propositionally) undefined by the current assignment M but T -entailed by
it, rather than letting the Decide rule guess a value for them. As said, this sort of
propagation can lead to dramatic improvements in performance. Below we prove
that the correctness results mentioned for the previous three lazy approaches also
hold in combination with arbitrary applications of this rule.

3.3.5. Modeling the Previous Refinements and Exhaustive Theory Propagation.
Exhaustive theory propagation is modeled simply by assuming that TheoryPropagate
is applied with a higher priority than Decide. The correctness of this approach
follows immediately from the correctness of the previous one which had arbitrary
applications of TheoryPropagate.
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have seen several different application strategies of (subsets) of the given rules,
which lead to different SMT procedures. In this subsection we give a simple and
uniform proof showing that all the approaches described in the previous subsection
are indeed decision procedures for the SMT problem. The proofs are structured in
the same way as the ones given in Section 2.5 for the propositional case, and hence
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M ‖ F, ¬l1∨ · · · ∨¬ln . As in the previous case, Restart can then be applied and the
same results hold.

3.3.3. Modeling the Lazy Approach with an Incremental T -Solver and an on-
Line SAT Solver. As in the previous case, if a subset {l1, . . . , ln} of M is detected
such that ∅ |=T ¬l1 ∨ · · · ∨¬ln , the theory lemma is learned, reaching the state
M ‖ F, ¬l1∨ · · ·∨¬ln . But now, since in addition we consider an online SAT solver,
instead of completely restarting, the procedure repairs the T -inconsistency of the
partial assignment by exploiting the fact that the recently learned theory lemma
is a conflicting clause. As we show later, and similarly to what happened in the
propositional case, if there is no decision literal in M then Fail applies, otherwise
T -Backjump applies. Our results below prove that, even if the theory lemma is always
forgotten immediately after backjumping, this approach is terminating, sound, and
complete under similar conditions as the ones of the previous section.

3.3.4. Modeling the Previous Refinements and Theory Propagation. This re-
quires the following additional rule:

Definition 3.3. The TheoryPropagate rule is:

M ‖ F =⇒ M l ‖ F if






M |=T l
l or ¬l occurs in F
l is undefined in M .

The purpose of this rule is to prune the search by assigning a truth value to literals
that are (propositionally) undefined by the current assignment M but T -entailed by
it, rather than letting the Decide rule guess a value for them. As said, this sort of
propagation can lead to dramatic improvements in performance. Below we prove
that the correctness results mentioned for the previous three lazy approaches also
hold in combination with arbitrary applications of this rule.

3.3.5. Modeling the Previous Refinements and Exhaustive Theory Propagation.
Exhaustive theory propagation is modeled simply by assuming that TheoryPropagate
is applied with a higher priority than Decide. The correctness of this approach
follows immediately from the correctness of the previous one which had arbitrary
applications of TheoryPropagate.

3.4. CORRECTNESS OF ABSTRACT DPLL MODULO THEORIES. Up to now, we
have seen several different application strategies of (subsets) of the given rules,
which lead to different SMT procedures. In this subsection we give a simple and
uniform proof showing that all the approaches described in the previous subsection
are indeed decision procedures for the SMT problem. The proofs are structured in
the same way as the ones given in Section 2.5 for the propositional case, and hence
here we focus on the variations and extensions that are needed.

Definition 3.4. The Basic DPLL Modulo Theories system consists of the rules
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3.3. ABSTRACT DPLL MODULO THEORIES. In this section, we formalize the
different enhancements of the lazy approach to Satisfiability Modulo Theories.
We do this by adapting the Abstract DPLL framework for the propositional case
presented in the previous section. One significant difference is that here we deal
with ground first-order literals instead of propositional ones. Except for that, the
rules Decide, Fail, UnitPropagate, and Restart remain unchanged: they will still regard
all literals as syntactical items as in the propositional case. Only Learn, Forget and
Backjump are slightly modified to work modulo theories: in these rules, entailment
between formulas now becomes entailment in T . In addition, atoms of T -learned
clauses can now also belong to M , and not only to F ; this is required for Property 3.9
below, needed to recover from T -inconsistent states. Note that the theory version
of Backjump below uses both the propositional notion of satisfiability (|=) and the
first-order notion of entailment modulo theory (|=T ).

Definition 3.2. The rules T -Learn, T -Forget and T -Backjump are:

T -Learn :

M ‖ F =⇒ M ‖ F, C if
{

each atom of C occurs in F or in M
F |=T C

T -Forget :

M ‖ F, C =⇒ M ‖ F if
{

F |=T C

T -Backjump :

M ld N ‖ F, C =⇒ M l ′ ‖ F, C if






M ld N |= ¬C, and there is
some clause C ′ ∨ l ′ such that:

F, C |=T C ′ ∨ l ′ and M |= ¬C ′,
l ′ is undefined in M , and
l ′ or ¬l ′ occurs in F or in M ld N .

3.3.1. Modeling the Naive Lazy Approach. Using these rules, it is easy to model
the basic lazy approach (without any of the refinements of incremental T -solvers,
on-line SAT solvers or theory propagation). Each time a state M ‖ F is reached that
is final with respect to Decide, Fail, UnitPropagate, and T -Backjump, that is, final in a
similar sense as in the previous section, M can be T -consistent or not. If it is, then
M is indeed a T -model of F , as we will prove below. If M is not T -consistent,
then there exists a subset {l1, . . . , ln} of M such that ∅ |=T ¬l1∨ · · · ∨¬ln . By one
T -Learn step, the theory lemma ¬l1∨ · · ·∨¬ln can be learned and then Restart can be
applied. As we will prove below, if these learned theory lemmas are never removed
by the T -Forget rule, this strategy is terminating under similar requirements as those
in the previous section, namely, the absence of infinite subderivations consisting
of only Learn and Forget steps and the increasing periodicity of Restart steps. Then,
the strategy is also sound and complete as stated in the previous section: the initial
formula is T -unsatisfiable if, and only if, FailState is reached; moreover, if FailState
is not reached then a T -model has been found.

3.3.2. Modeling the Lazy Approach with an Incremental T -Solver. Assume a
state M ‖ F has been reached where M is T -inconsistent. Note that in practice this
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is detected by the incremental T -solver, and that this state need not be final now.
Then, as in the naive lazy approach, there exists a subset {l1, . . . , ln} of M such
that ∅ |=T ¬l1∨ · · · ∨¬ln . This theory lemma is then learned, producing the state
M ‖ F, ¬l1∨ · · · ∨¬ln . As in the previous case, Restart can then be applied and the
same results hold.

3.3.3. Modeling the Lazy Approach with an Incremental T -Solver and an on-
Line SAT Solver. As in the previous case, if a subset {l1, . . . , ln} of M is detected
such that ∅ |=T ¬l1 ∨ · · · ∨¬ln , the theory lemma is learned, reaching the state
M ‖ F, ¬l1∨ · · ·∨¬ln . But now, since in addition we consider an online SAT solver,
instead of completely restarting, the procedure repairs the T -inconsistency of the
partial assignment by exploiting the fact that the recently learned theory lemma
is a conflicting clause. As we show later, and similarly to what happened in the
propositional case, if there is no decision literal in M then Fail applies, otherwise
T -Backjump applies. Our results below prove that, even if the theory lemma is always
forgotten immediately after backjumping, this approach is terminating, sound, and
complete under similar conditions as the ones of the previous section.

3.3.4. Modeling the Previous Refinements and Theory Propagation. This re-
quires the following additional rule:

Definition 3.3. The TheoryPropagate rule is:

M ‖ F =⇒ M l ‖ F if






M |=T l
l or ¬l occurs in F
l is undefined in M .

The purpose of this rule is to prune the search by assigning a truth value to literals
that are (propositionally) undefined by the current assignment M but T -entailed by
it, rather than letting the Decide rule guess a value for them. As said, this sort of
propagation can lead to dramatic improvements in performance. Below we prove
that the correctness results mentioned for the previous three lazy approaches also
hold in combination with arbitrary applications of this rule.

3.3.5. Modeling the Previous Refinements and Exhaustive Theory Propagation.
Exhaustive theory propagation is modeled simply by assuming that TheoryPropagate
is applied with a higher priority than Decide. The correctness of this approach
follows immediately from the correctness of the previous one which had arbitrary
applications of TheoryPropagate.

3.4. CORRECTNESS OF ABSTRACT DPLL MODULO THEORIES. Up to now, we
have seen several different application strategies of (subsets) of the given rules,
which lead to different SMT procedures. In this subsection we give a simple and
uniform proof showing that all the approaches described in the previous subsection
are indeed decision procedures for the SMT problem. The proofs are structured in
the same way as the ones given in Section 2.5 for the propositional case, and hence
here we focus on the variations and extensions that are needed.

Definition 3.4. The Basic DPLL Modulo Theories system consists of the rules
Decide, Fail, UnitPropagate, TheoryPropagate, and T -Backjump.
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Definition 3.5. The Full DPLL Modulo Theories system, denoted by FT, con-
sists of the rules of Basic DPLL Modulo Theories and the rules T -Learn, T -Forget,
and Restart.

As before, a decision procedure will be obtained by generating a derivation using
the given rules with a particular strategy. However, here the aim of a derivation is
to compute a state S to which the main theorem of this section, Theorem 3.10, can
be applied, that is, a state S such that: (i) S is final with respect to the rules of Basic
DPLL Modulo Theories and (ii) if S is of the form M ‖ F then M is T -consistent.

Property 3.9 below provides a very general class of strategies in which such
a state S is always reached, without violating the requirements of termination of
Theorem 3.7 (also given below). Such a state S can be recognized in a similar way
as in the propositional case: it is either FailState or it is of the form M ‖ F where
all the literals of F are defined in M , there are no conflicting clauses, and M is
T -consistent.

The following lemma states invariants similar to the ones of Lemma 2.7 of the
previous section.

LEMMA 3.6. If ∅ ‖ F =⇒∗
FT M ‖ G, then the following hold:

(1) All the atoms in M and all the atoms in G are atoms of F.
(2) M contains no literal more than once and is indeed an assignment, that is, it

contains no pair of literals of the form p and ¬p.
(3) G is T -equivalent to F.
(4) If M is of the form M0 l1 M1 · · · ln Mn, where l1, . . . , ln are all the decision

literals of M, then F, l1, . . . , li |=T Mi for all i in 0 · · · n.

PROOF. As for Lemma 2.7, all rules preserve the properties. The new rule
TheoryPropagate preserves them like UnitPropagate; the other rules as for their propo-
sitional versions.

THEOREM 3.7 (TERMINATION). Let Der be a derivation of the form:
∅ ‖ F = S0 =⇒FT S1 =⇒FT · · ·
Then Der is finite if the following two conditions hold:

(1) Der has no infinite subderivations consisting of only T -Learn and T -Forget steps.
(2) For every subderivation of Der of the form:

Si−1 =⇒FT Si =⇒FT · · · =⇒FT Sj =⇒FT · · · =⇒FT Sk
where the only three Restart steps are the ones producing Si , S j , and Sk, either:
—there are more Basic DPLL Modulo Theories steps in Sj =⇒FT · · · =⇒FT Sk

than in Si =⇒FT · · · =⇒FT Sj , or
—a clause is learned 2 in S j =⇒FT · · · =⇒FT Sk that is not forgotten in Der.

PROOF. The proof is a slight extension of the one of Theorem 2.16. The only
new aspect is that some Restart steps are applied with non-increasing periodicity.
But since for each one of them a new clause has been learned that is never forgotten
in Der , there can only be finitely many of them. From this, a contradiction follows
as in Theorem 2.16.

2 See Definition 2.5.

960 R. NIEUWENHUIS ET AL.

LEMMA 3.8. If ∅ ‖ F =⇒∗
FT M ‖ F ′ and there is some conflicting clause in

M ‖ F ′, that is, M |= ¬C for some clause C in F ′, then either Fail or T -Backjump
applies to M ‖ F ′.

PROOF. As in Lemma 2.8.

PROPERTY 3.9. If ∅ ‖ F =⇒∗
FT M ‖ F ′ and M is T -inconsistent, then either

there is a conflicting clause in M ‖ F ′, or else T -Learn applies to M ‖ F ′, generating
a conflicting clause.

PROOF. If M is T -inconsistent, then there exists a subset {l1, . . . , ln} of M such
that ∅ |=T ¬l1∨ · · · ∨¬ln . Hence, the conflicting clause ¬l1∨ · · · ∨¬ln is either in
M ‖ F ′, or else it can be learned by one T -Learn step.

Lemma 3.8 and Property 3.9 show that a rule of Basic DPLL modulo theories
is always applicable to a state of the form M ‖ F , or to its successor after a single
T -Learn step, whenever a literal of F is undefined in M , or F contains a conflicting
clause, or M is T -inconsistent. Together with Theorem 3.7 (Termination), this
shows how to compute a state to which the following main theorem is applicable.

THEOREM 3.10. Let Der be a derivation ∅ ‖ F =⇒∗
FT S , where (i) S is final

with respect to Basic DPLL Modulo Theories, and (ii) if S is of the form M ‖ F ′

then M is T -consistent. Then

(1) S is FailState if, and only if, F is T -unsatisfiable.
(2) If S is of the form M ‖ F ′, then M is a T -model of F.

PROOF. The first result follows from Lemmas 3.6(3), 3.6(4), as in
Theorem 2.12. The second part is proved as in Lemma 2.9 of the previous
section, but using Lemma 3.8 and Lemma 3.6(3), instead of Lemma 2.8 and
Lemma 2.7(3).

The previous theorem shows that a large family of practical approaches provide
a decision procedure for satisfiability modulo theories. Note that the results of this
section are independent from the theory T under consideration, the only (obviously
necessary) requirement being the decidability of the T -consistency of conjunctions
of ground literals.

We conclude this section by observing that, as in the propositional case, our
definition of final state for Abstract DPLL Modulo Theories forces the assignment
M in a state of the form M ‖ G to be total. We remarked in the previous section
that the alternative definition of final state where M can be partial as long as it
satisfies G is inefficient in practice in the SAT case. With theories, however, this is
not always true. Depending on the theory T and the available T -solver, it may be
considerably more expensive to insist on extending a satisfying partial assignment
to a total one than to check periodically whether the current assignment has become
a model of the current formula. The reason is that by Theorem 3.10 one can stop the
search with a final state M ‖ G only if M is also T -consistent, and T -consistency
checks can have a high cost, especially when the T -satisfiability of conjunction
of literals is NP-hard. We have maintained the same definition of final state for
both Abstract DPLL and Abstract DPLL Modulo Theories mainly for simplicity,
to make the lifting of the former to the latter clearer. We stress though that as in

Sound and Complete

35Wednesday, October 



Solving SAT and SAT Modulo Theories 959

Definition 3.5. The Full DPLL Modulo Theories system, denoted by FT, con-
sists of the rules of Basic DPLL Modulo Theories and the rules T -Learn, T -Forget,
and Restart.

As before, a decision procedure will be obtained by generating a derivation using
the given rules with a particular strategy. However, here the aim of a derivation is
to compute a state S to which the main theorem of this section, Theorem 3.10, can
be applied, that is, a state S such that: (i) S is final with respect to the rules of Basic
DPLL Modulo Theories and (ii) if S is of the form M ‖ F then M is T -consistent.

Property 3.9 below provides a very general class of strategies in which such
a state S is always reached, without violating the requirements of termination of
Theorem 3.7 (also given below). Such a state S can be recognized in a similar way
as in the propositional case: it is either FailState or it is of the form M ‖ F where
all the literals of F are defined in M , there are no conflicting clauses, and M is
T -consistent.

The following lemma states invariants similar to the ones of Lemma 2.7 of the
previous section.

LEMMA 3.6. If ∅ ‖ F =⇒∗
FT M ‖ G, then the following hold:

(1) All the atoms in M and all the atoms in G are atoms of F.
(2) M contains no literal more than once and is indeed an assignment, that is, it

contains no pair of literals of the form p and ¬p.
(3) G is T -equivalent to F.
(4) If M is of the form M0 l1 M1 · · · ln Mn, where l1, . . . , ln are all the decision

literals of M, then F, l1, . . . , li |=T Mi for all i in 0 · · · n.

PROOF. As for Lemma 2.7, all rules preserve the properties. The new rule
TheoryPropagate preserves them like UnitPropagate; the other rules as for their propo-
sitional versions.

THEOREM 3.7 (TERMINATION). Let Der be a derivation of the form:
∅ ‖ F = S0 =⇒FT S1 =⇒FT · · ·
Then Der is finite if the following two conditions hold:

(1) Der has no infinite subderivations consisting of only T -Learn and T -Forget steps.
(2) For every subderivation of Der of the form:

Si−1 =⇒FT Si =⇒FT · · · =⇒FT Sj =⇒FT · · · =⇒FT Sk
where the only three Restart steps are the ones producing Si , S j , and Sk, either:
—there are more Basic DPLL Modulo Theories steps in Sj =⇒FT · · · =⇒FT Sk

than in Si =⇒FT · · · =⇒FT Sj , or
—a clause is learned 2 in S j =⇒FT · · · =⇒FT Sk that is not forgotten in Der.

PROOF. The proof is a slight extension of the one of Theorem 2.16. The only
new aspect is that some Restart steps are applied with non-increasing periodicity.
But since for each one of them a new clause has been learned that is never forgotten
in Der , there can only be finitely many of them. From this, a contradiction follows
as in Theorem 2.16.

2 See Definition 2.5.

Full DPLL Modulo Theories 
system

Increasing Periodicity

Do not revisit failed search

Terminates
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Abstract DPLL Engine

DPLL(T)
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DPLL(T) Solver

DPLL(X) engine parameterized by 
a theory solver

SolverT theory solver for 
conjunction of formulas
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DPLL(T) Solver

SolverT + DPLL(X) = DPLL(T)

DPLL(X) engine parameterized by 
a theory solver

SolverT theory solver for 
conjunction of formulas

DPLL(T) SMT solver
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DPLL(T) Architecture

Interface of SolverT

unmarkLastLits: Int ⟶ unit

markLitTrue: Literal ⟶ unit

isConsistent: Assignment ⟶ Strength ⟶ bool

explainInCons: Assignment ⟶ Literal set

explainTProp: Assignment ⟶ Literal ⟶ Literal set

entails: Assignment ⟶ Literal set ⟶ Literal set

M : Assignment

l : Literal

{l1, . . . , ln} ✓ MFinds and returns s.t.; ✏T ¬l1 _ · · · _ ¬ln

{l1, . . . , ln} ✓ M l1, . . . , ln ✏T l
Finds and returns

for a given literal s.t.

{ l | M ✏T l & l 2 L }Returns
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