Presentation of —m>

by

Ramunas Gutkovas

SMT Reading Group
Uppsala
2012-10-31

Solving SAT and SAT Modulo Theories: From an Abstract
Davis—Putnam-Logemann-Loveland Procedure to DPLL(7)

ROBERT NIEUWENHUIS AND ALBERT OLIVERAS

Technical University of Catalonia, Barcelona, Spain

AND
CESARE TINELLI

The University of lowa, lowa City, lowa

Abstract. We first introduce Abstract DPLL, a rule-based formulation of the Davis—Putnam-—
Logemann—Loveland (DPLL) procedure for propositional satisfiability. This abstract framework al-
lows one to cleanly express practical DPLL algorithms and to formally reason about them in a simple
way. Its properties, such as soundness, completeness or termination, immediately carry over to the
modern DPLL implementations with features such as backjumping or clause learning.

We then extend the framework to Satisfiability Modulo background Theories (SMT) and use it to
model several variants of the so-called lazy approach for SMT. In particular, we use it to introduce a
few variants of a new, efficient and modular approach for SMT based on a general DPLL(X) engine,
whose parameter X can be instantiated with a specialized solver Solver, for a given theory T, thus
producing a DPLL(T") system. We describe the high-level design of DPLL(X) and its cooperation
with Solver, , discuss the role of theory propagation, and describe different DPLL(T') strategies for
some theories arising in industrial applications.

Our extensive experimental evidence, summarized in this article, shows that DPLL(T') systems
can significantly outperform the other state-of-the-art tools, frequently even in orders of magnitude,
and have better scaling properties.

Categories and Subject Descriptors: B.6.3 [Logic Design]: Design Aids—Verification; F.4.1 [Math-
ematical Logic and Formal Languages]: Mathematical Logic—Computational logic; verification;
1.2.3 [Artificial Intelligence]: Deduction and Theorem Proving—Deduction (e.g., natural, rule-
based)

General Terms: Theory, Verification
Additional Key Words and Phrases: SAT solvers, Satisfiability Modulo Theories

Wednesdav. October

"

Background for Abstract DPLL
VR —— e ———
Modern SAT () solvers based on DPLL

use many extensions and combinations
thereot

Original DPLL [Davis et al. ‘o2]

L T re— —

Problem: these extensions lack
formal treatment

Wednesdav. October

Background for Abstract DPLL
VR —— e ———
Modern SAT () solvers based on DPLL

use many extensions and combinations
thereot

Original DPLL [Davis et al. ‘o2]

——————

+ lemma learning

. | + back- |
+ restarts aCrJUP LIS

- ~ 4+ background theoriles

| — R—

Problem: these extensions lack
formal treatment

Wednesdav. October

Abstract DPLL 3
R — ——————
Solution: Abstract DPLL
[NOT ‘06]

“ ... a uniform, declarative j
framework for describing DPLL-
based solvers, both for
propositional satisfiability
and for satisfiability modulo
theories.

g T R

W ——— —— ——————E
(emphasis 1s mine)

Wednesdav. October

Abstract
DPI.T.

Notions and Classical DPLL
R —— T ———

é

Formal Preliminaries (1/3)

Propositional Case
R — R

D < P set of propositions (atoms)

(1n examples this set will be i1dentified with natural numbers)

[is a literal whenever [is P or 1P
=l = if [= D then =D else P negation op. on literal
(j:::ll‘V'---\/[n clause is a set of literals
}7:::(717---7(jnz formula 1s a set of clauses

J' is in CNF

Wednesdav. October

Formal Preliminaries (?2/R)

i _ P atom
Propositional Case ...
e ——— C=hV--Vie §
F=0C,...,Cp

M = lllg 50 ¢ ln assignment 1s a consistent sequen'c;..c;f l:ij:e.r:ls
M is consistent if there is no ps.t. P € M and P € M
| is defined in M it l e M or—l e M
M:Cif there 1is ZECS-t-lEM
conflict \[E —(if for every | € (implies =] € M
M E F if for every () € F' implies M E ('
M is a model of F

['is satisfiable

}whenever for some M M |: F

F E F’ if for every M E F' implies M E F’

Wednesdav. October

Abstract DPLL System (. r-=

l literal

Transition System C=05V--
 RERe—— — 1 =C1,.
M—lllg.

Transition system <F, :>> where —¢& I'x I’

State § ¢ [' in case of ADPLL is one of

FairlState
M| F

Transition S — S/

FFinal state S wrt ——> whenever S #

Reflexive-transitive closure —.* of —>

Decision literal |9 in)\J — N]¢N’

\V ln clause

Cm CNF

.. ln model

m

Wednesdav. October

Classical DPLL system > 'l

p atom
l literal
C:ll\/"-\/lnclause
UnitPropagate : F=0C,...,Ch cnr
. M &= =C M:lllzln model
M|F,Cvl = MI|F,CVI 'f{lisundeﬁnedinM."" ——

Pureliteral:
[occurs 1n some clause of F

M || F — M I || F if { —/ occurs in no clause of F
[1s undefined in M.

Decide:

M| F Y M| F . [or —[occurs 1n a clause of F

i
[1s undefined in M.
Fail :
: [M E=-C
M| F, C —> FailState if . .
- M contains no decision literals.

Backtrack:

(M I9N = —C
N contains no decision literals.

MI@N|F,C — M~-I|F,C if

Wednesdav. October

<

Classical DPLL system > 'l

P atom

l literal

C:ll\/---\/lnclause%‘

UnitPropagate : F=C,....,Ch cnr
M :—IC M:lllgln model

k
3

y

M|F,Cvl =— MI|F,CVI lf{lisundeﬁnedinM.'—» —

" No order (strategy) of

- - ;
rule application ¢s in no clause of F

= "m
D L]

1in some clause of F

M| F Y M| F . [or —[occurs 1n a clause of F
i
[1s undefined in M.
Fail :
. . | ME—-C
M| F, C —> FailState if . .

- M contains no decision literals.

Backtrack:

(M I9N = —C
N contains no decision literals.

MION|F,C = M-l|F,C if

Wednesdav. October

&

Classical DPLL system > !

—C e

P atom 1
l literal :
C:ll\/'--\/lnclausei
UnitPropagate : F=0C,...,C, v :

M = —C M = l1l2 l model
M || F V[MI|F if PR ——
I, C — Sl @i {llsundeﬁnede
No order (St]lfatGCIJY) ot “in some clause of F
rule application s in no clause of F
prescribed. ~ fined in M.
e ‘w
D X

q ! [or =/ occurs in a clause of F
M || F — M [° || F if

- These rules produce models which .,
| are total, i.e, every atom of the ﬁ

M| F,C .
| formula appears 1n the model.
Backtrack: SRR m——

MION|F,C — M-I|F,C if{

I

MISN k= —=C
N contains no decision literals.

Wednesdav. October 8

Classical DPLL Example @

Strategy: apply Decide 1f other rules don’t apply

M F
N —

Wednesdav. October

Classical DPLL Example f
DR —— ————

Strategy: apply Decide 1f other rules don’t apply

M F

@ | 1v2, 2v3, 1v3v4, 2v3v4, 1vd = (Decide)

Wednesdav. October

Classical DPLL Example
WS re——— —— N

Strategy: apply Decide 1f other rules don’t apply

1 is undefined in 0

M F

. 2v3, 1v3v4, 2v3v4, 1vd —((Decide)

Wednesdav. October

Classical DPLL Example
R ——— T

Strategy: apply Decide 1f other rules don’t apply

M F
e N - — —
1) 2, 2v3, 1v3v4d, 2v3v4, 1v4d = (Decide)
19 || 1v2, 2v3, 1v3v4, 2v3v4, 1vd = (UnitPropagate)

Wednesdav. October

Classical DPLL Example
DR —— TR

Strategy: apply Decide 1f other rules don’t apply

2 is undefined in 1¢ and 1% E —1

3v4, 2v3v4, 1vd —; (Decide)
3 V3

=

—| (—
<
N
\®)
<
\.UJ
— |

<
[
&
<
=
—|
< <

v4, 1v4 = (UnitPropagate)

Wednesdav. October

Classical DPLL Example
DR —— TR

Strategy: apply Decide 1f other rules don’t apply

@ |I\1v2, 2v3, 1v3v4, 2v3v4, 1v4d = (Decide)
19 || 1v2) 2v3, 1v3v4, 2v3v4, 1vd = (UnitPropagate)
192 || 1v2, 2v3, 1v3v4, 2v3v4, 1v4d — (UnitPropagate)

Wednesdav. October

Classical DPLL Example

Strategy: apply Decide 1f other rules don’t apply

3 is undefined in 192 and 192 £ —2

@ |I\1v2, 2v3, 1v3v4, 2v3v4, 1v4d = (Decide)
19 || 1v2) 2v3, 1v3v4, 2v3v4, 1vd = (UnitPropagate)
192 || 1v2, 2V3) 1v3v4, 2v3v4, 1vd — (UnitPropagate)

Wednesdav. October

Classical DPLL

w—-—-—-
Strategy:
M F
—— — —
B I\1v2, 2v3, 1v3v4,
19 1v2) 2v3, 1v3v4,
192 || 1v2, 2V3) 1v3v4,
1923 || 1v2, 2v3, 1v3v4,

1v4
1v4
1v4
1v4

Example

w
apply Decide 1f other rules don’t apply

— 1 (Decide)

—>1 (UnitPropagate)
— 1 (UnitPropagate)
—1 (UnitPropagate)

Wednesdav. October

Classical DPLL Example

Strategy: apply Decide 1f other rules don’t apply

4 is undefinﬁgd in 1923 and 1923 = =(1 Vv 3)

@I\ 1v2, 2v3, 1v3v4, 2v3v4d, 1v4 = (Decide)

19 || 1v2) 2v3, 1v3v4, 2v3v4, 1vd = (UnitPropagate)
192 || 1v2, 2V3) 1v3v4, 2v3v4, 1vd — (UnitPropagate)
1923 || 1v2, 2Vv3, 1v3u4, 2v3v4d, 1v4d —> 1 (UnitPropagate)

Wednesdav. October

Classical DPLL Example

Strategy: apply Decide 1f other rules don’t apply

I

@ |I\1v2, 2v3, 1v3v4, 2v3v4, 1v4d = (Decide)
19 1v2) 2v3, 1v3v4, 2v3v4, 1v4 = (UnitPropagate)
192 || 1v2, 2V3) 1v3v4, 2v3v4, 1vd — (UnitPropagate)
1923 || 1v2, 2v3, 1v3u4,) 2v3v4d, 1v4 = (UnitPropagate)
19234 | 1v2, 2v3, 1v3v4, 2v3v4, 1v4 = (Backtrack)

Wednesdav. October

Classical DPLL Example
e — T —————————

Strategy: apply Decide 1f other rules don’t apply

19234 £ —(2 v 3 Vv 4)

I

@ |I\1v2, 2v3, 1v3v4, 2v3v4, 1v4d = (Decide)
19 1v2) 2v3, 1v3v4, 2v3v4, 1v4 = (UnitPropagate)
192 || 1v2, 2V3) 1v3v4, 2v3v4, 1vd — (UnitPropagate)
1923 || 1v2, 2v3, 1v3u4,) 2v3v4d, 1v4 = (UnitPropagate)
19234 | 1v2, 2v3, 1v3v4, 2v3v4, 1v4 = (Backtrack)

Wednesdav. October

Classical DPLL

Strategy:
M F
—— — —
B I\1v2, 2v3, 1v3v4,
19 1v2) 2v3, 1v3v4,
192 || 1v2, 2Vv3) 1v3v4,
1923 || 1v2, 2Vv3, 1v3u4,
19234 || 1v2, 2Vv3, 1v3v4,
1] 1v2, 2v3, 1v3v4,

1v4
1v4
1v4

1v4
1v4
1v4

Example

T —————————
apply Decide 1f other rules don’t apply

— 1 (Decide)
—>1 (UnitPropagate)
— 1 (UnitPropagate)
—1 (UnitPropagate)
— 1 (Backtrack)
— 1 (UnitPropagate)

Wednesdav. October

Classical DPLL Example
AR ——— T ———

Strategy: apply Decide 1f other rules don’t apply

I

@ |I\1v2, 2v3, 1v3v4, 2v3v4, 1v4d = (Decide)
19 1v2) 2v3, 1v3v4, 2v3v4, 1v4 = (UnitPropagate)
192 || 1v2, 2V3) 1v3v4, 2v3v4, 1vd — (UnitPropagate)
1923 || 1v2, 2v3, 1v3u4,) 2v3v4d, 1v4 = (UnitPropagate)
19234 | 1v2, 2v3, 1v3v4, 2v3v4, 1v4 = (Backtrack)
1 1v2, 2v3, 1v3v4, 2v3v4, 1V4) = (UnitPropagate)
14 1v2, 2v3, 1v3v4, 2v3v4, 1v4 = (Decide)

Wednesdav. October

Classical DPLL

Strategy:

M F

—— — —
B I\1v2, 2v3, 1v3v4,
19 1v2) 2v3, 1v3v4,
192 || 1v2, 2V3) 1v3v4,
1923 || 1v2, 2Vv3, 1v3u4,
19234 || 1v2, 2Vv3, 1v3v4,
1] 1v2, 2v3, 1v3v4,
14 || 1v2, 2Vv3, 1v3v4,
143 | Tv2, 2v3, Tv3v4,

A J

1v4
1v4
1v4

1v4
1v4
1v4
1v4
1v4

Example
W
apply Decide 1f other rules don’t apply

— 1 (Decide)
—>1 (UnitPropagate)
— 1 (UnitPropagate)
—1 (UnitPropagate)
—=1 (Backtrack)
— 1 (UnitPropagate)
— 1 (Decide)

—1 (UnitPropagate)

Wednesdav. October

Classical DPLL Example
D —— T AE——m—

Strategy: apply Decide 1f other rules don’t apply

I

@ |I\1v2, 2v3, 1v3v4, 2v3v4, 1v4d = (Decide)
19 | 1v2) 2v3, 1v3v4, 2v3v4, 1v4 == (UnitPropagate)
192 || 1v2, 2V3) 1v3v4, 2v3v4, 1vd — (UnitPropagate)
1923 || 1v2, 2Vv3, 1v3uv4,) 2v3v4d, 1vd = (UnitPropagate)
19234 || 1v2, 2Vv3, 1v3v4, 2v3v4, 1v4 ==((Backtrack)
1 1v2, 2v3, 1v3v4, 2v3v4, 1V4) = (UnitPropagate)
14 | 1v2, 2v3, 1v3v4, 2M3Vv4, 1v4d = (Decide)
143 | Tv2, (2v3, Tv3v4, 2v3vd, 1v4 = (UnitPropagate)
14372 | Tv2, 2v3, Tv3v4, 2V3V4, Ivd =£q

Wednesdav. October

Classical DPLL

Strategy:

M F

—— — —
B I\1v2, 2v3, 1v3v4,
19 1v2) 2v3, 1v3v4,
192 || 1v2, 2V3) 1v3v4,
1923 || 1v2, 2Vv3, 1v3u4,
19234 || 1v2, 2Vv3, 1v3v4,
1] 1v2, 2v3, 1v3v4,
14 || 1v2, 2Vv3, 1v3v4,
143 | Tv2, (2v3, Tv3va,
T43%2 | Tv2, 2v3, Tv3v4,

FFinal state wrt —(

1v4
1v4
1v4

1v4
1v4
1v4
1v4

1v4
1v4

Example
—-m
apply Decide 1f other rules don’t apply

— 1 (Decide)
—>1 (UnitPropagate)
— 1 (UnitPropagate)
—1 (UnitPropagate)
—=1 (Backtrack)
— 1 (UnitPropagate)
— 1 (Decide)

—1 (UnitPropagate)

4

and thus M — F

Wednesdav. October

FExtensions
1o DPLL

Abstract DPLL + Backjump +
Learning + Restart
— T E—————————

Non Chronological B

R ——
(Informal) Example 2.3.

B 1Vv2,

19 || 1v2,

192 || 1v2,

19239 || 1v2,
192394 || 1v2,
19239459 || 1v2,
192394596 | 1v2,

|
<

A J

|
<

Y

|
<

A J

|
<

|
<

Y J

|
<
N A D A A A O

A J

|
<

acktracking
“'-—‘-M

——p (Decide)
—p (UnitPropagate)
——p (Decide)
—p (UnitPropagate)
——p (Decide)
—p (UnitPropagate)

Wednesdav. October

11

Non Chronological Backtracking

W ———

(Informal) Example 2.3.

0

ld

182

19 2 30

19 239 4
19 2 39 4 59

1923943596

@2

1\V?2]

1v2,
1v?2,
1v2,
1Vv?2,
1v2,

3v4,
3v4,
(34,
3V4,
3v4,
3v4,
3v4,

Ly

() o ol & A A

A J

|
<

A J

|
<

Y

|
<

A J

A J

| W
< <

——-—-——Mj

——p (Decide)
—p (UnitPropagate)
——p (Decide)
—p (UnitPropagate)
——p (Decide)
—p (UnitPropagate)

Wednesdav. October

11

Non Chronological Backtracking

e ———

(Informal) Example 2.3.

0

ld

182

19 2 30

19 239 4
19 2 39 4 59

1d23d45.d6

))
|
|)
1

neg:

@2

1\V?2]

1v2,
1v?2,
1v2,
1Vv?2,
1v2,

3v4,
3v4,
(34,
3V4,
3v4,
3v4,
3v4,

Ly

() D Al N N O

A J

|
<

A J

|
<

Y

|
<

A J

A J

| W
< <

—p (Backtrack)

LA _ _ _
1923945 || 1v2, 3v4, 5v6, 6Vv5Vv2

w

——p (Decide)
—p (UnitPropagate)
——p (Decide)
—p (UnitPropagate)
——p (Decide)
—p (UnitPropagate)

Wednesdav. October

11

Non Chronological Backtracking

(Informal) Example 2.3.

) @2 3v4, 5v6, 6v5v2 —g (Decide)
19 | 1Vv2) 3v4, 5v6, 6Vv5v2 —p (UnitPropagate)
1d3 1v2, @/4, 5v6, 6Vv5v2 —g (Decide)
192 39\] 1v2, 3Vv4) 5v6, 6V5V2 —3 (UnitPropagate)
192394 (516, 6V5v2 =3 (Decide)
19 2 39 4 59 5V6) 6Vv5Vv2 =g (UnitPropagate)
192394596 5v6, 6V5Vv2

—p (Backtrack)

1d23d45|| 1v2, 3v4, 5v6, 6Vv5Vv2

Wednesdav. October

11

Non Chronological Backtracking

(Informal) Example 2.3.

" @2 3v4, 5V6, 6V5V2Z —>p (Decide)
19 | 1Vv2) 3v4, 5v6, 6Vv5v2 —p (UnitPropagate)
1d3 1v2, @/4, 5v6, 6Vv5v2 —g (Decide)
192 39\] 1v2, 3Vv4) 5v6, 6V5V2 —3 (UnitPropagate)
192394 INIv2, 3v4, (516, 6V5v2 = (Decide)
19 2 39 4 59 V2, 3Vv4, 5V6) 6Vv5v2 =g (UnitPropagate)

N WU

&?

<
<
)

1923943596

—p (Backtrack)

1d23d45|| 1v2, 3v4, 5v6, 6Vv5Vv2

Wednesdav. October

11

Non Chronological Backtracking

m— S ——————
(Informal) Example 2.3.

) @2 3v4, 5v6, 6Vv5v2 —p (Decide)

19 | 1Vv2) 3v4, 5v6, 6Vv5v2 —p (UnitPropagate)
1d3 1v2, @/4, 5v6, 6Vv5v2 —g (Decide)

192 39\] 1v2, 3Vv4) 5v6, 6V5V2 —3 (UnitPropagate)
192394 INIv2, 3v4, (516, 6V5v2 = (Decide)

19239459 | N2, 3v4, 5V6) 6Vv5v2 =g (UnitPropagate)

| |
<
<

<
(=)
N%
<
)

1923943596

—p (Backtrack)

1d23d45|| 1v2, 3v4, 5v6, 6Vv5Vv2

Wednesdav. October

11

Non Chronological Backtracking

(Informal) Example 2.3.

" @2 3v4, 5v6, 6V5v2 =g (Decide)
19 | 1Vv2) 3v4, 5v6, 6Vv5v2 —p (UnitPropagate)

1d3 1v2, @/4, 5v6, 6Vv5v2 —g (Decide)
192 39\] 1v2, 3Vv4) 5v6, 6V5V2 —3 (UnitPropagate)

192394 INIv2, 3v4, (516, 6V5v2 = (Decide)
19239459 || N2, 3Vv4, 5V6) 6Vv5v2 ==p (UnitPropagate)

N WU

<
(=)
&
<
)

1923943596

1995 || 1v2, 3v4, 5Vv6, 6Vv5Vv2

Wednesdav. October

11

Non Chronological Backtracking

R ——— ————

(Informal) Example 2.3. 5 and]

are incompatible

¢

= = Or consequently

0 @2 3v4, 5v6, 6V5Vv2 5 and 9
19 || 1V2) 3v4, 5v6, 6Vv5Vv2 are incompatible
193) Tv2, B4, 5v6, 6VHVE s
O 2 T - DON2=HV2
19239\ 1v2, 3v4) 5v6, 6Vv5Vv2 N
192394 \Iv2, 3v4, @6, 6v5v2 —>g (Decide)
19 2 39 4 59 V2, 3v4, 5V6) 6v5v2 —p (UnitPropagate)

N WU

<
(=)
&
<
)

1923943596

1995 || 1v2, 3v4, 5Vv6, 6Vv5Vv2

Wednesdav. October

12

Basic DPLL system > B

\

W= Conflict Driven Backtracking

w——-_.
Definition 2.4.

l literal ‘
C:Zl\/---\/lnclause':
F:Ch...,cm CNF

UnitPropagate + Decide + Fail M =hlz...ly moce

Backjump : + .

e .

— — (', and there 1s

some clause C’ Vv I’ such that:

MI@N|F,C — MI|F,C if F.C

— C'v!l and M &= —C’,

" is undefined in M, and
I’ or —=I' occursin F orin M [9 N.

() conflict clause

/ /
(j V[backjump clause
unit clause wrt }\/

satisfiable under the same models as F,C

Backtracks further than
s

backtrack 3
--——--M

Wednesdav. October

<«

Basic DPLL system —pg |

D atom S . i
ZC uerat COnflict Driven Backtracklng rﬂ
=1 V--- *—-—-- -
,Cm CNF

F=0C,,...
M =1lqly...1, model } MI9N = —(C, and there 15
— some clause C’ Vv [’ such that:

MISN|F,C = MI|F,C if F.C=C'VvI and M = —C’,
[’ 1s undefined in M, and
I’ or —=I' occursin F orin M [9 N.

Sanity Check: Modeling Backtrack with Backjump I

!

R ———

Wednesdav. October 14

P

Basic DPLL system —pg |

D atom

C:ll\/---ﬂ————'—'
FZOl,-..,CmCNF
M:lllgln model ";'

MISN|F,C = MI|F,C if

|wes Conflict Driven Backtracking ﬂ

M 19 N &= —C, and there is

some clause C’ v I’ such that:
F.C=C'vIl and M = —=C’,
[’ 1s undefined in M, and
I’ or —=I' occursin F orin M [9 N.

Sanity Check: Modeling Backtrack with Backjump

Suppose

R ———

Wednesdav. October

|
|

<

i Basic DPLL system "B |
e Conflict Driven Backtracking =

C=1V-- ﬂ-————-—
FzC’l,...,C’m CNF
M =1yl5...l, model g ‘MJdN::ﬂC,Mﬂﬂwth
P - some clause C’ Vv I’ such that:
MISN|F,C = MI|F,C if F.C=C'vI and M = —C',
[’ 1s undefined in M, and
I’ or —=I' occursin F orin M [9 N.

Sanity Check: Modeling Backtrack with Backjump |
Suppose }

M N ‘
,_/\ﬂ . |
Mol{M; ... 18 M, || F,C

Take C’\/l’:ﬂll\/---\/ﬂln

e L ol

SR ———

Wednesdav. October 14

<

i Basic DPLL system ——p |
 nes Conflict Dr_:l.ven Backtracking ¥

C=1V-- ﬂ———-—
FzC’l,...,C’m CNF
M =lily...l, moder | ‘MJdN::ﬂC,Mﬂﬂwth
| - some clause C’ Vv I’ such that:
MISN|F,C = MI|F,C if F.C=C'vI and M = —C',
[’ 1s undefined in M, and
I’ or —=I' occursin F orin M [9 N.

Sanity Check: Modeling Backtrack with Backjump I

Suppose
M N
d
Mol$My ... 18 °M, || F,C

Take C,\/l/:—lll\/“°\/_lln
Have Mlzﬂ(_lll\/“'\/_lln_l) — MFEIL,..., [,

‘A&"q-"r"-w-.

SR ——

Wednesdav. October 14

<

- Basic DPLL system —pRp !

ZC s Conflict Driven Backtracking :
— \VERE W‘———~ .
F:él,...,CmCNF]
M =1ly...l, moder MI9N = —(C, and there 15
| et some clause C’ Vv I’ such that:
MISN|F,C = MI|F,C if F.C=C'vI and M = —C',
[’ 1s undefined in M, and

" or =!I’ occursin F orin M 19 N.

Sanity Check: Modeling Backtrack with Backjump
Suppose }

M N
f
MOldMl n HFC (
Take C,\/l/:—lll\/“°\/_lln g
HaveMbﬂ(—lll\/...\/—lln_l) — M:h""7ln—1 ;
And F,C,ly,...,l;, is unsat <— F.CF -1 V- ---V-l,

—

Wednesdawv. October | 14

D aton Basic DPLL system >R 3

ZC s Conflict Dr:Lven Backtracklng :
=1V - - R ——
F:él,...CmCNF]
M =1ly...l, moder ‘MJdN::ﬂC,MMﬂwmh;
| —— some clause C’ Vv I’ such that:
MISN|F,C = MI|F,C if F.C=C'vI and M = —C',
[’ 1s undefined in M, and

" or =!I’ occursin F orin M 19 N.

Sanity Check: Modeling Backtrack with Backjump l

Suppose
M A Thus

/_/\ﬂ A f
Mol{M,y .. 18 "M, ||F,C = MyliM;...=l, || F,C |

3,.

TakeC’\/l’:ﬂll\/---\/ﬂln :
Have Mlzﬁ(_lll \/"°\/_Iln_1) — MFEIL,..., [, .
and F,C,ly,...,l,, is unsat <= F.CFE-l{V---V=l,

Wednesdawv. October 7

<

- Basic DPLL system > B

| literal Conflict Driven Backtracking ﬂ
C’:ll\/...W—-—--- _

F=0C,...
M =1yl5...l, model [MT”VIﬂCJWMMEE
".—-»~ ‘G-...J . . - -

Backjump 1s a backtracking mechanism. /

LEMMA 2.8. Assumethat@ || F=—={ M || F"andthat M = —C for some clause

C in F'. Then either Fail or Backjump applies to M || F'.
C

This follows by a bit more generalized construction of the
presented one.

MR ML ([F. G =

Take Cl\/l/:—lll\/“°\/_lln
Have M|:ﬁ(_ll1\/°°°\/_lln_1) — MFEIL,..., [,

And F,C,l1,...,l, is unsat <= F,CFE-l1 V- ---Vl,
R ——

Wednesdav. October 14

wilth Back:uma

Sound and Complete
WS ===

THEOREM 2.13. If 0 || F =>§ S where S is final with respect to Basic DPLL,
then

(1) S is FailState if, and only if, F is unsatisfiable.

(2) If S is of the form M || F', then M is a model of F. As F' = F %

Wednesdav. October 15

Basic DPLL system
with Backjump -
P

Terminates 3

a—— ————

THEOREM 2.10. There are no infinite derivations of the form O || F —g
Sl —>pg .

Wednesdav. October 16

Basic DPLL system =B !

wilth Back:umﬁ

Termlnates 3
- RR—-— T————

THEOREM 2.10. There are no infinite derivations of the form 0 || F —p
S1 =R -

Why?
*— w
Usual DPLL - Abstract DPLL -
PR —— WRRer—-— “—————

S

A
/ \1 u Unc:lsealin ethe,
ANFaN A u

Wednesdav. October 17

Basic DPLL system =7 B 3

DR ————
wilth Back:uma

Terminates
PR ———

THEOREM 2.10. There are no infinite derivations of the form 0 || F —p
S1 =R -

Why? 3
PR — ——
Usual DPLL - Abstract DPLL -

u Under the,
— same ! g
 ay

Wednesdav. October 17

Basic DPLL system —/—p

w1th BackJ B
Terminates :

w-- e ?

THEOREM 2.10. There are no infinite derivations of the form 0 || F —p

Sl :>B
Search Progress -
— EL,n.,

progress at decision level 1 i q
E Myl¢Mily .. 1M, || F
number of literals at dl 1

For M||F = M'||F’

AfWLFﬂis more progressed than.ﬂf“fp

1f there 1s a least more progressed decision
level, or the model 1s more progressed.

Wednesdav. October

", |

Basic DPLL system i

Ve ————
wlth Back um
w
Terminates 3
—— ~—————

THEOREM 2.10. There are no infinite derivations of the form 0 || F —p

S1 =R -
Search Progress -
PR — 2"'-.

progress at decision level 1 i q
E Myl¢Mily .. 1M, || F
number of literals at dl 1

Rules progress

For M||F = search up to the

)

M’HF’is more progressed Number of atoms of f

if there is a leas the formula.
level, or the model WMEBTE Drogressed.

Wednesdav. October

<

Conflict Driven Clause Learning !
——-ExamBle (Conflict Graph)¥=—=

Considerﬂ4”f7where
F=...9v6v7v8 8Vv7v5 6Vv8v4 4v1l 4viv2 5v7v3 1v2v3

M=...6...7...99854123.

No outgoingg

No 1ncomin ‘-iarrows
gi_ ..ol

Unique 3 "“"‘E . |

Implication T~

Point ;fQ“~
i
O

(=

P

Wednesdav. October 19

e

Conflict Driven Clause lLearning
——-ExamEle (Conflict Graph)s ==

Considerﬂ4”f7where
F=...9v6v7v8 8Vv7v5 6Vv8v4 4v1l 4viv2 5v7v3 1v2v3

M=...6...7..199854123.

No outgoingi

' ' Arrows
NoO lncomlng b ‘-
Unique ’y ? — ‘i
ImPllCatlon —~ | a\\ﬂﬂ @/
Point ‘x\\\\
P

N J

@<@/

Wednesdav. October 19

e

Conflict Driven Clause lLearning
wmmmese=Example (Conflict Graph)s ===

Considerﬂ4”f7where

F=...9v6v7v8 8Vv7Vv5 6v8v4d 4v1l 4vi5v2 5v7v3 1v2v3
M=..6...7..199854123. .
No outg01ng1
. . ArTOWS
No lncoming ¢ 'n- "“"

Unique P ‘ A3
Impllcatlonﬁfﬂi:“fk} t’“mhﬁﬁﬁhic>/f///'
Point e
* O/ \

i's.,

We can learn V8V 7T

Wednesdav. October 19

<

Conflict Driven Clause Learning
tExample (Backward Conflict Resolution)}

“m
Consider M||F where
F=...9v6v7v8 8Vv7v5 6Vv8v4 4v1 4v5v2 5v7v3 1v2v3
M=...6...7... §§4if:i_///in reverse order of
S5v7v3d 1v2v3
4v5v2 S5v7IvI1v2
4v1 4v5v7vl
6\Vv8Vv4 S5v7Vv4
8Vv7Vv5 6V8V7V5
8V7V6
“\\\\‘ Auntil on literal left of the.

current decision level

Wednesdav. October 20

<

Conflict Driven Clause Learning
tExample (Backward Conflict Resolution)}

M
Consider M||F where
F=...9v6v7v8 8Vv7v5 6Vv8v4 4v1 4v5v2 5v7v3 1v2v3
M=...6...7... §§4if:i_///in reverse order of
S5v7v3d 1v2v3
4v5v2 S5v7IvI1v2
4v1 4v5v7vl
6\Vv8Vv4 S5v7Vv4
8Vv7Vv5 6V8V7V5
8V7V6
“\\\\‘ Auntil on literal left of the-

current decision level

We can learn gV 8&vV7

Wednesdav. October 20

DPLL System With Learning > T
Definition 2.5.

Basic DPLL
.|.

Learn:

| each atom of C occurs in F or in M
M| F — M || F, C if

F =C.

Forget:
M|F,C = M| F if { F=C.

Wednesdav. October 21

DPLL System With Learning > T
R e —— e ——

Learn:

__ [each atom of C occurs in F or in M
M || F — M| F, C if

F =C.

Forget:
M|F,C = M| F if { F =C.

l -
Sound and Complete

THEOREM 2.12. If0 || F ={ S where S is final with respect to Basic DPLL,
then

(1) S is FailState if, and only if, F' is unsatisfiable.
(2) If S is of the form M || F' then M is a model of F .

Wednesdav. October 22

DPLL System With Learning > T

Learn:

__ [each atom of C occurs in F or in M
M || F — M| F, C if

F =C.

Forget:
M|F,C = M| F if { F =C.

| - | 1 1
Sound_gnd ComE ete

THEOREM 2.12. If O || F ={ S where S is final with respect to Basic DPLL,
then

(1) S is FailState if, and only if, F is unsatisfiable.
(2) If S is of the form M || F' then M is a model of F .

Decidable 1
| m— —
THEOREM 2.11. Every derivation 0 || F—1.S1=—=1 - - - by the DPLL system
with Learning is finite if it contains no infinite subderivations consisting of only

Learn and Forget steps.

Wednesdav. October

<

Restarts {

Smeee— ——
Not enough progress - restart:
R — | "-———-w

Newly learned clauses might <
help guide the search.
RS ——— - ‘——w

Definition 2.14. The Restart rule 1s:

M|F = 0| F.

Wednesdav. October

24

Restarts

R r——— e

Definition 2.14. The Restart rule 1s:

M|F = 0| F.

Definition 2.135.

Si=— ...—=> 5= ... = 5

m n

where T, T number of applications of Restart

increased periodicity if M < n

Wednesdav. October

25

Restarts
DR —— T
Definition 2.14. The Restart rule 1s:

M|F — 0| F.
Definition 2.135.

Si=— ...—=> 5, = ... =5}
N —— N ——

m n

where T1l, Tl number of applications of Basic DPLL

increased periodicity if M < N

Abstract DPLL + Restart terminates when considering -«
paths with increasing periodicity of Restart

THEOREM 2.16. Anyderivation @ || F — S| = --- by the transition sys-
tem L extended with the Restartrule is finite if it contains no infinite subderivations
consisting of only Learn and Forget steps, and Restart has increasing periodicity in
if.

Wednesdav. October 26

oM

Abstract DPLL Modulo Theories

W——-—

—-——-—-M

Wednesdav. October

27

Formal Preliminaries 4

R —————

First-Order Case
— T ———

|’ ground quantifier free formula in CNF

‘[’ theory is

a set of closed first-order formulas

' T-satisfiable (T-consistent) if /' A\ [’ is first-order satisfiable

M is T-model of I if M E F '

entails [

It 1is assumed #:Tw decidable

= F/ if F/\—.F/ T-inconsistent

Wednesdav. October

28

SMT
R —

Eager SMT -
| —

Encode

{ Formula [— e

Techni

ques

“'—-M

SAT
Solver

.":Jh. \

Wednesdav. October

29

SMT Techniques
VR ——— ——————

Fager SMT -
W= T— SAT

;fPropositionalg%%u»,Wi
« Formula l

(Verx Na:Lve) Lazz SMT -

i\‘r D | TheOry ~ v |
Solver 1s there

to DNF 111/\°°°

;'Formula‘ufﬁ.;,

Wednesdav. October 30

Naive Lazy SMT
D e — R

Theory T
Conversion /

CNF with Theory |

3i

c
ﬂ

=1

\

]\

Lemma

ﬁ Consistent |

Wednesdav. October

Naive Lazy SMT
e ——— B
| Theory Formula |

Theory D
Conversion /

;l

YCNF with Theory

Append Clause

[SAT

=1

\

h
‘- s N " — ———aim e e i V.
~
.

No | | Consistent !

]\

Wednesdav. October

Lazy SMT based on DPLL
 RER—— ————

Incremental T-solver

R ———— e————
Checks Theory Consistency every time a
literal 1s added to the assignment.

On-line SAT Solver

PR ——
Whenever an assignment 1s Theory

Inconsistent, backtracks to the point
where the theory 1s still consistent.

(Exhaustive) Theory Erogagatlon
w——-—-

The assignment may be extended with the
literals which are entailed by the
theory.

Wednesdav. October 32

Abstract DPLL modulo Theories
DT — —_—

T-Learn:
| each atom of C occurs in F or in M
M || F — M || F, C 1
FE=rcC
T-Forget:
M| F, C — M| F if { Fl=rC
T-Backjump:

M 19 N &= —C, and there is

some clause C’ Vv [’ such that:
MIN|F,C = MI|F,C if{ F, CkrC Vvl and M =—C/,
!’ is undefined in M, and
I’ or =/’ occurs in F orin M [° N.

Definition 3.3.

TheoryPropagate
yrropag M =g

M| F = MI | F if { [or—loccursin F
[1s undefined in M.

Wednesdav. October

Modeling Lazy SMT with

Abstract DPLL

Naive Lazy Approach ————
PSR Y E‘E—--i

MHF 1s final wrt Decide, Fail, UnitPropagate, T-Backjump

If M/ is T-incosistent
There is {lly---yln} g M s.t. @IZT _Ill \/\/ln
M||F =7 _1earn M||F,=l1V---V —l,
—restart @HFa _'ll ViV _'ln

Incremental-

AR — ——
Same as above, except 1t applies for any
T-inconsistent state.

Incremental + Online-

VR —— ——————
Does not restart, but uses the fact that learned
lemma clause 1s conflicting to apply T-backjump.

Wednesdav. October 34

Basic and Full DPLL Modulo

Theories system

Definition 3.4. The Basic DPLL Modulo Theories system consists of the rules
Decide, Fail, UnitPropagate, TheoryPropagate, and T -Backjump.

Definition 3.5. The Full DPLL Modulo Theories system, denoted by FT, con-

sists of the rules of Basic DPLL Modulo Theories and the rules T-Learn, T-Forget,
and Restart.

Sound and Complete -

w—-
THEOREM 3.10. Let Der be aderivation O ||F =g S ,where (i) is final

with respect to Basic DPLL Modulo Theories, and (ii) if S is of the form M || F’
then M is T -consistent. Then

(1) S is FailState if, and only if, F is T -unsatisfiable.
(2) If S is of the form M || F’, then M is a T -model of F .

Wednesdav. October

35

Full DPLL Modulo Theories °

system

N . —————————
Te:mlnates ‘

DR — TE———————

THEOREM 3.7 (TERMINATION). Let Der be a derivation of the form:
D F = So =—¥Fr S1 =—Fr -
Then Der is finite if the following two conditions hold.:

(1) Der has no infinite subderivations consisting of only T -Learn and T -Forget steps.

(2) For every subderivation of Der of the form.:
Si—1 =FT Si =>FT *** =>FT O =FT ' ' * —FT %
where the only three Restart steps are the ones producing S;, S j, and Sy, either:
—there are more Basic DPLL Modulo Theories stepsin §S; =>fr - - - ==FT Sk
than in §; =1 -+ =FT S;, OF

—a clause is learned? in S i ==FT '+ ==FT Sk that is not forgotten in ID

Increasing Periodicity*
PRI ——— |

—

Do not revisit failed search -
VSR ——- S

Wednesdav. October 36

DPL L

i

Abstract DPLL Engine

w—-—-_

-‘w

Wednesdav. October

37

DPLL (T) Solver
W r—— R

DPLL (X) engine parameterized by
a theory solver

Solverr theory solver for
conjunction of formulas

Wednesdav. October

38

DPLL (T) Solver

I RE——— —————

DPLL (X) engine parameterized by
a theory solver

Solverr theory solver for
conjunction of formulas

Solverr + DPLL(X) = DPLL(T) -
RS —— e

DPLL (T) SMT solver

Wednesdav. October

38

DPLL (T) Architecture

Interface of Solverr -
RS — ——————

- ' - : L1 1 4
markLitTrue: Literal — unit [1tera

M : Assignment
unmarkLastLits: Int — unit R —

isConsistent: Assignment — Strength — bool

explainInCons: Assignment — Literal set

Finds and returns {lla- . 7ln} g Ms.t.@|:T —|l1 VRIS \/_Il,n

explainTProp: Assignment — Literal — Literal set

FFinds and returns

{117,,,7ln} g Mfor a given literal s.t. ll;---yln :Tl

entails: Assignment — Literal set — Literal set

Returns{l‘M:Tl&lEL}

Wednesdav. October 39

Quest
10ns”?

