
Advancing Concurrent
System Verification

Type Based Approach and Tools

Ramūnas Gutkovas

2014 October 20
Licentiate Seminar

Uppsala University

Supported by ProFuN

Testing shows the presence, not the absence of bugs!
- E. W. Dijkstra

Toyota Prius

to correct a software “glitch” in ABS
In 2010, Toyota recalled 400,000 vehicles

Formal Verification

Show the absence of
bugs!

Background

Wireless Sensor Network
ProFuN project

Wireless Sensor Network
ProFuN project

Wireless Sensor Network
ProFuN project

Psi-calculi

Psi-calculi?
Just add

data and logic!• A family of languages, known as process
calculi, for modelling concurrent systems

• A framework for mobile process calculi  
(“pi-calculus extensions”) for applications

• Straightforward semantics, reusable theory
(holds in all psi-calculi)

• Correct: machine-checked proofs! (Isabelle
with Nominal Package)

Syntax

M N.P

M(�ex)N.P

case �1 : P1 [] · · · [] �n : Pn

(|�|)assertion

(�a)P P |Q !P0the usual:

subjects

object

pattern

condition
like guarded
commands,
if-then-else

: T (terms)M,N

' : C (conditions)
: A (assertions)

output

input

Parameters:

“facts”

Cook a psi-calculus
Define terms T (e.g. data terms, channels)

conditions C (e.g. for if-then-else)

assertions A (statements about e.g. terms)

can be practically anything

'
M,N

Cook a psi-calculus
Define terms T, conditions C, assertions A

 '
M,N

Define substitution on these
Define operators:
.$: T⇥T ! C
⌦ : A⇥A ! A
1 : A

`✓ A⇥C

Channel equivalence
Composition
Unit assertion
Entailment

(p
ra

cti
ca

lly
 an

yth
ing

)

(satisfy axioms)
[ea := fM]

�̇ : T⇥T ! C
�̇ : T⇥T ! C

Broadcast Output Connectivity
Broadcast Input Connectivity

Example

init(1)123.0 |
init(2)(�x)x.0 |

init(3)(�y)y.case y = 3 : P |
(|1 � 2, 1 � 3|)

M ::= init(M) | a | i 2 N

 ::= M � M 0, | ✏

M 2 T

' 2 C
 2 A

' ::= M = M 0 | M � M 0

Example

init(1)123.0 |
init(2)(�x)x.0 |

init(3)(�y)y.case y = 3 : P |
(|1 � 2, 1 � 3|)

M ::= init(M) | a | i 2 N

 ::= M � M 0, | ✏

M 2 T

' 2 C
 2 A

' ::= M = M 0 | M � M 0

0 |
0 |

case 123 = 3 : P [y := 123] |
(|1 � 2, 1 � 3|)

↵

Transition relation ~ semantics

action/behaviour

Example

init(1)123.0 |
init(2)(�x)x.0 |

init(3)(�y)y.case y = 3 : P |
(|1 � 2, 1 � 3|)

M ::= init(M) | a | i 2 N

 ::= M � M 0, | ✏

M 2 T

' 2 C
 2 A

' ::= M = M 0 | M � M 0

0 |
0 |

case 123 = 3 : P [y := 123] |
(|1 � 2, 1 � 3|)

↵

 ,M � M 0 ` init(M) � init(M 0)

 ` M = M 0 if M = M 0

User defined logic

Advancing Concurrent
System Verification

• A tool factory the Psi-Calculi Workbench for
concurrent system verification

• Session types for broadcast communication and
unreliable systems

• More expressivity: generalised pattern-matching
and sorts for psi-calculi

99999

The Psi-Calculi Workbench: a Generic Tool for Applied Process
Calculi

Submitted to Special Issue on Application of Concurrency to System Design

Johannes Borgstr

¨

om, Ram¯unas Gutkovas, Ioana Rodhe and Bj

¨

orn Victor, Uppsala
University

Psi-calculi is a parametric framework for extensions of the pi-calculus with arbitrary data, and logic. All
instances of the framework inherit machine-checked proofs of the meta-theory such as compositionality and
bisimulation congruence. We present a generic analysis tool for psi-calculus instances, enabling symbolic
execution and (bi)simulation checking for both unicast and broadcast communication. The tool also provides
a library for implementing new psi-calculus instances. We provide examples from traditional communication
protocols and wireless sensor networks. We also describe the theoretical foundations of the tool, including
an improved symbolic operational semantics, with additional support for scoped broadcast communication.

Categories and Subject Descriptors: C.2.2 [Computer-Communication Networks]: Network Protocols—
Protocol Verification; D.2.2 [Software Engineering]: Design tools and techniques; I.1.4 [Symbolic and

Algebraic Manipulation]: Applications

General Terms: Design, Theory, Verification

Additional Key Words and Phrases: Wireless sensor networks, process calculi, symbolic semantics

ACM Reference Format:

Johannes Borgström, Ramūnas Gutkovas, Ioana Rodhe and Björn Victor, 2014. The Psi-Calculi Workbench:
a Generic Tool for Applied Process Calculi. ACM Trans. Embedd. Comput. Syst. 999, 9999, Article 99999
(Month 2014), 25 pages.
DOI:http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION
The development of concurrent systems is greatly helped by the use of precise and
formal models of the system. There are many different formalisms for concurrent sys-
tems, often in specialised versions for particular application areas. For each formalism,
tool support is necessary for constructing and reasoning about models of non-trivial
systems. This paper describes such tool support for a generic semantic framework for
process calculi with mobility. Thus, instead of developing a separate tool for each sep-
arate process calculus, we develop one single generic tool for a whole family of process
calculi.

Psi-calculi [Bengtson et al. 2011] is a parametric semantic framework based on the
pi-calculus [Milner et al. 1992a], adding the possibility to tailor the data language and
logic for each application. The framework provides a variety of features, such as lexi-
cally scoped local names for resources, communication channels as data, both unicast

This work has been supported by the ProFun project. Author’s addresses: Uppsala University, Dept. of IT,
Box 337, 751 05 Uppsala, Sweden.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c� 2014 ACM 1539-9087/2014/00-ART99999 $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Embedded Computing Systems, Vol. 999, No. 9999, Article 99999, Publication date: Month 2014.

Alastair F. Donaldson, Vasco Vasconcelos (Eds.): Proceedings
of the 7th Workshop on Programming Language Approaches
to Concurrency and Communication-cEntric Software (PLACES 2014)
EPTCS 155, 2014, pp. 25–31, doi:10.4204/EPTCS.155.4

Session Types for Broadcasting

Dimitrios Kouzapas
University of Glasgow

dimitrios.kouzapas@glasgow.ac.uk

Ramūnas Gutkovas
Uppsala University

ramunas.gutkovas@it.uu.se

Simon J. Gay
University of Glasgow

simon.gay@glasgow.ac.uk

Up to now session types have been used under the assumptions of point to point communication,
to ensure the linearity of session endpoints, and reliable communication, to ensure send/receive du-
ality. In this paper we define a session type theory for broadcast communication semantics that by
definition do not assume point to point and reliable communication. Our session framework lies
on top of the parametric framework of broadcasting ψ-calculi, giving insights on developing session
types within a parametric framework. Our session type theory enjoys the properties of soundness and
safety. We further believe that the solutions proposed will eventually provide a deeper understanding
of how session types principles should be applied in the general case of communication semantics.

1 Introduction

Session types [5, 7, 6] allow communication protocols to be specified as types and verified by type-
checking. Up to now, session type systems have assumed reliable, point to point message passing com-
munication. Reliability is important to maintain send/receive duality, and point to point communication
is required to ensure session endpoint linearity.

In this paper we propose a session type system for unreliable broadcast communication. Developing
such a system was challenging for two reasons: (i) we needed to extend binary session types to handle
unreliability as well as extending the notion of session endpoint linearity, and (ii) the reactive control
flow of a broadcasting system drove us to consider typing patterns of communication interaction rather
than communication prefixes. The key ideas are (i) to break the symmetry between the s+ and s− end-
points of channel s, allowing s+ (uniquely owned) to broadcast and gather, and s− to be shared; (ii) to
implement (and type) the gather operation as an iterated receive. We retain the standard binary session
type constructors.

We use ψ-calculi [1] as the underlying process framework, and specifically we use the extension
of the ψ-calculi family with broadcast semantics [2]. ψ-calculi provide a parametric process calculus
framework for extending the semantics of the π-calculus with arbitrary data structures and logical as-
sertions. Expressing our work in the ψ-calculi framework allows us to avoid defining a new operational
semantics, instead defining the semantics of our broadcast session calculus by translation into a broadcast
ψ-calculus. Establishing a link between session types and ψ-calculi is therefore another contribution of
our work.
Intuition through Demonstration. We demonstrate the overall intuition by means of an example.

For the purpose of the demonstration we imply a set of semantics, which we believe are self explanatory.
Assume types S =!T ;?T ;end, S =?T ; !T ;end for some data type T , and typings s+ : S, s− : S, a : ⟨S⟩,
v : T . The session type prefix !T means broadcast when used by s+, and single destination send when
used by s−. Dually, ?T means gather when used by s+, and single origin receive when used by s−.
Session Initiation through broadcast, creating an arbitrary number of receiving endpoints:
as−.P0 | ax.P1 | ax.P2 | ax.P3 −→ P0 | P1{s−/x} | P2{s−/x} | ax.P3

A SORTED SEMANTIC FRAMEWORK
FOR APPLIED PROCESS CALCULI

JOHANNES BORGSTRÖM, RAMŪNAS GUTKOVAS, JOACHIM PARROW, BJÖRN VICTOR,
AND JOHANNES ÅMAN POHJOLA

Abstract. Applied process calculi include advanced programming constructs such as
type systems, communication with pattern matching, encryption primitives, concurrent
constraints, nondeterminism, process creation, and dynamic connection topologies. Several
such formalisms, e.g. the applied pi calculus, are extensions of the the pi-calculus; a growing
number is geared towards particular applications or computational paradigms.

Our goal is a unified framework to represent di↵erent process calculi and notions of
computation. To this end, we extend our previous work on psi-calculi with novel abstract
patterns and pattern matching, and add sorts to the data term language, giving su�cient
criteria for subject reduction to hold. Our framework can accommodate several existing
process calculi; the resulting transition systems are isomorphic to the originals up to
strong bisimulation. We also demonstrate di↵erent notions of computation on data terms,
including cryptographic primitives and a lambda-calculus with erratic choice. Finally, we
prove standard congruence and structural properties of bisimulation; substantial parts of
the proof have been machine-checked using Nominal Isabelle.

1. Introduction

There is today a growing number of high-level constructs in the area of concurrency. Ex-
amples include type systems, communication with pattern matching, encryption primitives,
concurrent constraints, nondeterminism, and dynamic connection topologies. Combinations
of such constructs are included in a variety of application oriented process calculi. For each
such calculus its internal consistency, in terms of congruence results and algebraic laws,
must be established independently. Our aim is a framework where many such calculi fit
and where such results are derived once and for all, eliminating the need for individual
proofs about each calculus.

Our e↵ort in this direction is the framework of psi-calculi [BJPV11], which provides
machine-checked proofs that important meta-theoretical properties, such as compositional-
ity of bisimulation, hold in all instances of the framework. We claim that the theoretical
development is more robust than that of other calculi of comparable complexity, since we
use a structural operational semantics given by a single inductive definition, and since we
have checked most results in the theorem prover Nominal Isabelle [Urb08].

LOGICAL METHODS
IN COMPUTER SCIENCE DOI:10.2168/LMCS-???

c� J Borgström, R Gutkovas, J Parrow, B Victor, and J Åman Pohjola
Creative Commons

1

Type Based Approach and Tools

The Psi-Calculi Workbench: a
Generic Tool for Applied Process

Calculi

Session Types for
Broadcasting

A Sorted Semantic
Framework for Applied

Process Calculi

ACSD’13
To appear in TECS PLACES’14 TGC’14

Submitted to LMCS

Contributions

Tools

mCRL2

Mobility Workbench

Concurrency Workbench

PAT3

ABC SBC PiET
ProVerif

Petruchio

Tool is essential for verifying non-trivial systems!

Many tools

But specialised!

Psi-Calculi Workbench

• Tool factory: define your own tool!

• Based on the parametric psi-calculi framework

Features
Parametric On

Unicast

Wireless
Broadcast

Communication
Primitives

Data Structures

Logics

Logical Assertions

e.g., Names, Bits, Vectors, ADTs, Trees, ...

e.g., EUF, FOL, Equational Theory, ...

e.g., Knows a secret, Connectivity,
Constraints...

Pwb Functionality

P ⇠ Q

Symbolic Execution

Symbolic Behavioral Equivalence Checking

 . P
↵�!
C

P 0

Symbolic Constraints

Supporting library

Parametric Architecture

Psi Calculi Core

Symbolic Execution

Symbolic Equivalence Checker

Command Interpreter

Pwb

Supporting library

Parametric Architecture

Psi Calculi Core

Symbolic Execution

Symbolic Equivalence Checker

Command Interpreter

Pwb

Data Logics Assertions

Execution Constraint Solver

Equivalence Constraint Solver

ParserPretty Printer

User Supplied

Data Collection in Wireless
Sensor Networks

✰

✰
1.Routing tree
2.Data collection

Specification in Pwb

Sink(nodeId, sinkChan) <=
 '"init(nodeId)"! <sinkChan> .
 ! "data(sinkChan)"(x). ProcData<x> ;

Node(nodeId, nodeChan, datum) <=
 "init(nodeId)"? (chan) .
 '"init(nodeId)"! <nodeChan> .
 '"data(chan)"<datum> .
 ! "data(nodeChan)"(x).
 '"data(chan)"<x> ; 1 2

Sink

Node Node

Node Behavior Node Connectivity for
Broadcasting

0

 (new sinkChan) Sink<0, sinkChan> |
 (new chan1) Node<1, chan1, datum1> |
 (new chan2) Node<2, chan2, datum2>

System

(0,1), (0,2), (1,2)

graph represented as edge list

Example Transition

 (!("data(sinkChan)"(gnb). ProcData<gnb>)) |
 (((new chan1)(
 '"init(1)"!<chan1>.
 '"data(sinkChan)"<datum1>.
 !("data(chan1)"(gnb).
 '"data(sinkChan)"<gnb>))) |
 ((new chan2)(
 '"init(2)"!<chan2>.
 '"data(sinkChan)"<datum2>.
 !("data(chan2)"(gnb).
 '"data(sinkChan)"<gnb>))))

0

1 2

Sink

Node Node

 (new sinkChan) Sink<0, sinkChan> |
 (new chan1) Node<1, chan1, datum1> |
 (new chan2) Node<2, chan2, datum2>

"init(0)"!(new sinkChan)sinkChan

sinkChan sinkChan

broadcasts
can unicast

true

Example Summary

• Executable model of an aggregation-tree building
protocol

• Connectivity graph expressed as an assertion
(possible to add and remove edges at runtime)

• Mix of wireless broadcast and reliable unicast
communication

Session Types

CheqEqSrv =?[int].?[int].![bool].end

SrvImp(c) = c(x).c(y).case x = y : c true.0 [] x 6= y : cfalse.0

Specification of process that checks equality over a channel of type

Possible implementation

Session Types

CheqEqSrv =?[int].?[int].![bool].end

SrvImp(c) = c(x).c(y).case x = y : c true.0 [] x 6= y : cfalse.0

Specification of process that checks equality over a channel of type

Possible implementation

Clt =![int].![int].?[bool].end

CltImp(k) = k1.k2.k(b).0

Duals!

Session Types

CheqEqSrv =?[int].?[int].![bool].end

SrvImp(c) = c(x).c(y).case x = y : c true.0 [] x 6= y : cfalse.0

Specification of process that checks equality over a channel of type

Possible implementation

Clt =![int].![int].?[bool].end

CltImp(k) = k1.k2.k(b).0
c+ : CheqEqSrv
c� : Clt = CheqEqSrv

(⌫c)(SrvImp(c+) | CltImp(c�))

System

Session Types

• Structured Description of a protocol

• Specifies direction and data carried over channel

• Abstract specification

• Safety: progress, session fidelity

Broadcast Session Types

• First Application of session types to Unreliable and
Broadcast communication systems

• Types for scatter & gather communication pattern

Scatter & Gather

X X X X
Y Y Y Y

c

+
x.c

+(y).P

c

�(x).c�y.Qi

c+ :![int].?[int].T

Type

•Runtime tracking of session state
•Extended notion of duality

Unreliability

(⌫c)(c+(x).c+(y).0 | c

�1.c�2.0)

(⌫c)(c+(x).c+(y).0 | c

�2.0)

c+ :?[int].?[int].end

c� :![int].![int].end

Process no longer consistent with the type!

P ./ R
Let process recover

Results

• We are the first to introduce session types to
unreliable and broadcast systems

• Well-typed processes always transition to well-
typed processes

• Well-typed process does not reduce to an error

Crypto Example

(⌫k)(Menc(a, k).P) | M(�x, y)enc(x, y).Q)

! (⌫k)(P | Q[x := a, y := k])

enc(M,K)Term for encryption

text key

(⌫k)(Menc(a, k).P | M(�x)enc(x, k).Q)

! (⌫k)(P | Q[x := a])
Knowledge of the key

We need a way to control what are pattern variables

Computation

Useful computation to have as part of substitution

However, the substitutions are not allowed to lose names

dec(enc(a, b), b)[b := k] ! a

k does not appear in the result

M [x̃ := L̃] x̃ ✓ n(M)

All names of L̃
must be in if

dec(enc(M,K),K) ! M

Generalised Pattern Matching

i.e. name swappings must respect sorting. An intuition is that for
any member T it holds that (a b) · T is T with a replaced by b

and b replaced by a. The support of a term, written n(T), is intu-
itively the set of names affected by name swappings on T . We write
S#T for S \ n(T) = ;. A function f is equivariant if n(f) = ;,
i.e. if (a b)(f(T)) = f((a b)T) always. A nominal data type is
a nominal set together with some functions on it, for instance a
substitution function.

2.1 Psi-calculi
Sorted psi-calculi is an extension of the original psi-calculi frame-
work. A sorted psi-calculus is defined by four nominal datatypes.
Three of these, the data terms, conditions and assertions, are present
in the original psi-calculi; see [5] for further explanations of these.

Definition 1 (Original psi-calculus parameters). The psi-calculus
parameters from the original psi-calculus include the three nominal
data types:

T the (data) terms, ranged over by M, N

C the conditions, ranged over by '
A the assertions, ranged over by

and the four equivariant operators:
.$: T⇥T ! C Channel Equivalence
⌦ : A⇥A ! A Composition
1 : A Unit
` ✓ A⇥C Entailment

The binary functions above will be used in infix form. Thus, if
M and N are terms then M

.$ N is a condition, pronounced “M
and N are channel equivalent” and if and 0 are assertions then
so is ⌦ 0. Also we write ` ', “ entails '”, for (,') 2 `.

We say that two assertions are equivalent, written '

0,
if they entail the same conditions, i.e. for all ' we have that
 ` ' ,

0 ` '. We impose certain requisites on the sets and
operators. In brief, channel equivalence must be symmetric and
transitive, ⌦ must be compositional with respect to ' (i.e. 1 '
 2 =) ⌦ 1 ' ⌦ 2), and the assertions with (⌦,1) form
an abelian monoid modulo '. For details see [5].

2.2 New parameters for generalized pattern-matching
To the parameters of the original psi-calculi we add patterns X, Y ,
that are used in input prefixes, a pattern-matching function MATCH,
which is used when the input takes place, and a function VARS
which yields the possible combinations of binding names in the
pattern.

Definition 2 (Psi-calculus parameters for pattern-matching). The
psi-calculus parameters for pattern-matching include the nominal
data type

X the (input) patterns, ranged over by X, Y

and the two equivariant operators

MATCH : T⇥N ⇤ ⇥X ! P(T⇤) Pattern matching
VARS : X ! P(P(N)) Pattern variables

Intuitively, if e
L 2 MATCH(N, ex, X) then an output of the

term N matches an input with the pattern X , binding ex, and the
receiving agent continues after substituting e

L for ex.
The VARS operator gives the possible sets of names in a pattern

which are bound by an input prefix. For example, an input prefix
with a pairing pattern hx, yi may bind both x and y, only one of
them, or none, so VARS(hx, yi) = {{x, y}, {x}, {y}, {}}. This
way, we can let the input prefix c(�x)hx, yi only match pairs where
the second argument is the name y. To model a calculus where
input patterns cannot be selective in this way, we may instead define

VARS(hx, yi) = {{x, y}}. This ensures that input prefixes that use
the pattern hx, yi must be of the form M(�x, y)hx, yi, where both
x and y are bound.

Note that the four data types T, C, A and X are not required to
be disjoint. In most of the examples in this paper X is a subset of
T.

2.3 New parameters for sorting
To the parameters defined above we add a sorting function and four
sort compatibility predicates.

Definition 3 (Psi-calculus parameters for sorting). The psi-calculus
parameters for sorting include the sorting function

SORT : N [T [X ! S Term and pattern sorting

and the four compatibility predicates

/ ✓ S ⇥ S Can be used to receive
/ ✓ S ⇥ S Can be used to send
⌃ ✓ S ⇥ S Can be substituted by
S

⌫

✓ S Can be bound by name restriction

The SORT operator gives the sort of a name, term or pattern; on
names we require that SORT(a) = s

iff a 2 N
s

. The sort compatibility predicates are used to restrict
where terms and names of certain sorts may appear in processes.
Terms of sort s can be used to send values of sort t if s / t. Dually,
a term of sort s can be used to receive with a pattern of sort t if
s / t. A name a can be used in a restriction (⌫a) if SORT(a) 2 S

⌫

.
In order to substitute the term M for the name a, we require that
SORT(a) ⌃ SORT(M).

2.4 Substitution and Matching
We require that each datatype is equipped with an equivariant sub-
stitution function, which intuitively substitutes terms for names.
The requisites on substitution differ from the original psi-calculi
as indicated in the Introduction (cf. also Example 6 below). Sub-
stitutions must preserve or refine sorts, and bound pattern variables
must not be removed by substitutions.

We define a preorder  on S as s1  s2 if s1 can be used as
a channel or message whenever s2 can be: formally s1  s2 iff
8t 2 S.(s2 / t) s1 / t) ^ (s2 / t) s1 / t) ^ (t / s2)
t / s1) ^ (t / s2) t / s1).

Definition 4 (Substitution). If ea is a sequence of pair-wise differ-
ent names and e

N is an equally long sequence of terms such that
SORT(a

i

) ⌃ SORT(N
i

) for all i, we say that [ea := e
N] is a substitu-

tion. Substitutions are ranged over by �.
If T is an element of a data type among T,A,C,X, we require

that T� is an element of the same data type, and that if (ea e
b) is

a (bijective) name swapping such that e
b#T, ea then T [ea := e

N] =
((ea e

b).T)[eb := e
N] (alpha-renaming of substituted variables).

For terms M 2 T, we additionally require that SORT(M�) 
SORT(M).

For patterns X 2 X, we additionally require that if ex 2
VARS(X) and ex#� then SORT(X�)  SORT(X) and ex 2
VARS(X�).

Matching must also be invariant under renaming of pattern
variables, and the substitution resulting from a match must not
contain any names that are not from the matched term or the
pattern.

Definition 5 (Generalized pattern matching). For the function
MATCH we require that if e

N 2 MATCH(M, ex, X) and ex 2
VARS(X) are pair-wise different then it must hold that [ex := e

N]
is a substitution, that n(e

N) ✓ n(M) [(n(X) \ ex), and that for

short description of paper 3 2012/6/13

i.e. name swappings must respect sorting. An intuition is that for
any member T it holds that (a b) · T is T with a replaced by b

and b replaced by a. The support of a term, written n(T), is intu-
itively the set of names affected by name swappings on T . We write
S#T for S \ n(T) = ;. A function f is equivariant if n(f) = ;,
i.e. if (a b)(f(T)) = f((a b)T) always. A nominal data type is
a nominal set together with some functions on it, for instance a
substitution function.

2.1 Psi-calculi
Sorted psi-calculi is an extension of the original psi-calculi frame-
work. A sorted psi-calculus is defined by four nominal datatypes.
Three of these, the data terms, conditions and assertions, are present
in the original psi-calculi; see [5] for further explanations of these.

Definition 1 (Original psi-calculus parameters). The psi-calculus
parameters from the original psi-calculus include the three nominal
data types:

T the (data) terms, ranged over by M, N

C the conditions, ranged over by '
A the assertions, ranged over by

and the four equivariant operators:
.$: T⇥T ! C Channel Equivalence
⌦ : A⇥A ! A Composition
1 : A Unit
` ✓ A⇥C Entailment

The binary functions above will be used in infix form. Thus, if
M and N are terms then M

.$ N is a condition, pronounced “M
and N are channel equivalent” and if and 0 are assertions then
so is ⌦ 0. Also we write ` ', “ entails '”, for (,') 2 `.

We say that two assertions are equivalent, written '

0,
if they entail the same conditions, i.e. for all ' we have that
 ` ' ,

0 ` '. We impose certain requisites on the sets and
operators. In brief, channel equivalence must be symmetric and
transitive, ⌦ must be compositional with respect to ' (i.e. 1 '
 2 =) ⌦ 1 ' ⌦ 2), and the assertions with (⌦,1) form
an abelian monoid modulo '. For details see [5].

2.2 New parameters for generalized pattern-matching
To the parameters of the original psi-calculi we add patterns X, Y ,
that are used in input prefixes, a pattern-matching function MATCH,
which is used when the input takes place, and a function VARS
which yields the possible combinations of binding names in the
pattern.

Definition 2 (Psi-calculus parameters for pattern-matching). The
psi-calculus parameters for pattern-matching include the nominal
data type

X the (input) patterns, ranged over by X, Y

and the two equivariant operators

MATCH : T⇥N ⇤ ⇥X ! P(T⇤) Pattern matching
VARS : X ! P(P(N)) Pattern variables

Intuitively, if e
L 2 MATCH(N, ex, X) then an output of the

term N matches an input with the pattern X , binding ex, and the
receiving agent continues after substituting e

L for ex.
The VARS operator gives the possible sets of names in a pattern

which are bound by an input prefix. For example, an input prefix
with a pairing pattern hx, yi may bind both x and y, only one of
them, or none, so VARS(hx, yi) = {{x, y}, {x}, {y}, {}}. This
way, we can let the input prefix c(�x)hx, yi only match pairs where
the second argument is the name y. To model a calculus where
input patterns cannot be selective in this way, we may instead define

VARS(hx, yi) = {{x, y}}. This ensures that input prefixes that use
the pattern hx, yi must be of the form M(�x, y)hx, yi, where both
x and y are bound.

Note that the four data types T, C, A and X are not required to
be disjoint. In most of the examples in this paper X is a subset of
T.

2.3 New parameters for sorting
To the parameters defined above we add a sorting function and four
sort compatibility predicates.

Definition 3 (Psi-calculus parameters for sorting). The psi-calculus
parameters for sorting include the sorting function

SORT : N [T [X ! S Term and pattern sorting

and the four compatibility predicates

/ ✓ S ⇥ S Can be used to receive
/ ✓ S ⇥ S Can be used to send
⌃ ✓ S ⇥ S Can be substituted by
S

⌫

✓ S Can be bound by name restriction

The SORT operator gives the sort of a name, term or pattern; on
names we require that SORT(a) = s

iff a 2 N
s

. The sort compatibility predicates are used to restrict
where terms and names of certain sorts may appear in processes.
Terms of sort s can be used to send values of sort t if s / t. Dually,
a term of sort s can be used to receive with a pattern of sort t if
s / t. A name a can be used in a restriction (⌫a) if SORT(a) 2 S

⌫

.
In order to substitute the term M for the name a, we require that
SORT(a) ⌃ SORT(M).

2.4 Substitution and Matching
We require that each datatype is equipped with an equivariant sub-
stitution function, which intuitively substitutes terms for names.
The requisites on substitution differ from the original psi-calculi
as indicated in the Introduction (cf. also Example 6 below). Sub-
stitutions must preserve or refine sorts, and bound pattern variables
must not be removed by substitutions.

We define a preorder  on S as s1  s2 if s1 can be used as
a channel or message whenever s2 can be: formally s1  s2 iff
8t 2 S.(s2 / t) s1 / t) ^ (s2 / t) s1 / t) ^ (t / s2)
t / s1) ^ (t / s2) t / s1).

Definition 4 (Substitution). If ea is a sequence of pair-wise differ-
ent names and e

N is an equally long sequence of terms such that
SORT(a

i

) ⌃ SORT(N
i

) for all i, we say that [ea := e
N] is a substitu-

tion. Substitutions are ranged over by �.
If T is an element of a data type among T,A,C,X, we require

that T� is an element of the same data type, and that if (ea e
b) is

a (bijective) name swapping such that e
b#T, ea then T [ea := e

N] =
((ea e

b).T)[eb := e
N] (alpha-renaming of substituted variables).

For terms M 2 T, we additionally require that SORT(M�) 
SORT(M).

For patterns X 2 X, we additionally require that if ex 2
VARS(X) and ex#� then SORT(X�)  SORT(X) and ex 2
VARS(X�).

Matching must also be invariant under renaming of pattern
variables, and the substitution resulting from a match must not
contain any names that are not from the matched term or the
pattern.

Definition 5 (Generalized pattern matching). For the function
MATCH we require that if e

N 2 MATCH(M, ex, X) and ex 2
VARS(X) are pair-wise different then it must hold that [ex := e

N]
is a substitution, that n(e

N) ✓ n(M) [(n(X) \ ex), and that for

short description of paper 3 2012/6/13

i.e. name swappings must respect sorting. An intuition is that for
any member T it holds that (a b) · T is T with a replaced by b

and b replaced by a. The support of a term, written n(T), is intu-
itively the set of names affected by name swappings on T . We write
S#T for S \ n(T) = ;. A function f is equivariant if n(f) = ;,
i.e. if (a b)(f(T)) = f((a b)T) always. A nominal data type is
a nominal set together with some functions on it, for instance a
substitution function.

2.1 Psi-calculi
Sorted psi-calculi is an extension of the original psi-calculi frame-
work. A sorted psi-calculus is defined by four nominal datatypes.
Three of these, the data terms, conditions and assertions, are present
in the original psi-calculi; see [5] for further explanations of these.

Definition 1 (Original psi-calculus parameters). The psi-calculus
parameters from the original psi-calculus include the three nominal
data types:

T the (data) terms, ranged over by M, N

C the conditions, ranged over by '
A the assertions, ranged over by

and the four equivariant operators:
.$: T⇥T ! C Channel Equivalence
⌦ : A⇥A ! A Composition
1 : A Unit
` ✓ A⇥C Entailment

The binary functions above will be used in infix form. Thus, if
M and N are terms then M

.$ N is a condition, pronounced “M
and N are channel equivalent” and if and 0 are assertions then
so is ⌦ 0. Also we write ` ', “ entails '”, for (,') 2 `.

We say that two assertions are equivalent, written '

0,
if they entail the same conditions, i.e. for all ' we have that
 ` ' ,

0 ` '. We impose certain requisites on the sets and
operators. In brief, channel equivalence must be symmetric and
transitive, ⌦ must be compositional with respect to ' (i.e. 1 '
 2 =) ⌦ 1 ' ⌦ 2), and the assertions with (⌦,1) form
an abelian monoid modulo '. For details see [5].

2.2 New parameters for generalized pattern-matching
To the parameters of the original psi-calculi we add patterns X, Y ,
that are used in input prefixes, a pattern-matching function MATCH,
which is used when the input takes place, and a function VARS
which yields the possible combinations of binding names in the
pattern.

Definition 2 (Psi-calculus parameters for pattern-matching). The
psi-calculus parameters for pattern-matching include the nominal
data type

X the (input) patterns, ranged over by X, Y

and the two equivariant operators

MATCH : T⇥N ⇤ ⇥X ! P(T⇤) Pattern matching
VARS : X ! P(P(N)) Pattern variables

Intuitively, if e
L 2 MATCH(N, ex, X) then an output of the

term N matches an input with the pattern X , binding ex, and the
receiving agent continues after substituting e

L for ex.
The VARS operator gives the possible sets of names in a pattern

which are bound by an input prefix. For example, an input prefix
with a pairing pattern hx, yi may bind both x and y, only one of
them, or none, so VARS(hx, yi) = {{x, y}, {x}, {y}, {}}. This
way, we can let the input prefix c(�x)hx, yi only match pairs where
the second argument is the name y. To model a calculus where
input patterns cannot be selective in this way, we may instead define

VARS(hx, yi) = {{x, y}}. This ensures that input prefixes that use
the pattern hx, yi must be of the form M(�x, y)hx, yi, where both
x and y are bound.

Note that the four data types T, C, A and X are not required to
be disjoint. In most of the examples in this paper X is a subset of
T.

2.3 New parameters for sorting
To the parameters defined above we add a sorting function and four
sort compatibility predicates.

Definition 3 (Psi-calculus parameters for sorting). The psi-calculus
parameters for sorting include the sorting function

SORT : N [T [X ! S Term and pattern sorting

and the four compatibility predicates

/ ✓ S ⇥ S Can be used to receive
/ ✓ S ⇥ S Can be used to send
⌃ ✓ S ⇥ S Can be substituted by
S

⌫

✓ S Can be bound by name restriction

The SORT operator gives the sort of a name, term or pattern; on
names we require that SORT(a) = s

iff a 2 N
s

. The sort compatibility predicates are used to restrict
where terms and names of certain sorts may appear in processes.
Terms of sort s can be used to send values of sort t if s / t. Dually,
a term of sort s can be used to receive with a pattern of sort t if
s / t. A name a can be used in a restriction (⌫a) if SORT(a) 2 S

⌫

.
In order to substitute the term M for the name a, we require that
SORT(a) ⌃ SORT(M).

2.4 Substitution and Matching
We require that each datatype is equipped with an equivariant sub-
stitution function, which intuitively substitutes terms for names.
The requisites on substitution differ from the original psi-calculi
as indicated in the Introduction (cf. also Example 6 below). Sub-
stitutions must preserve or refine sorts, and bound pattern variables
must not be removed by substitutions.

We define a preorder  on S as s1  s2 if s1 can be used as
a channel or message whenever s2 can be: formally s1  s2 iff
8t 2 S.(s2 / t) s1 / t) ^ (s2 / t) s1 / t) ^ (t / s2)
t / s1) ^ (t / s2) t / s1).

Definition 4 (Substitution). If ea is a sequence of pair-wise differ-
ent names and e

N is an equally long sequence of terms such that
SORT(a

i

) ⌃ SORT(N
i

) for all i, we say that [ea := e
N] is a substitu-

tion. Substitutions are ranged over by �.
If T is an element of a data type among T,A,C,X, we require

that T� is an element of the same data type, and that if (ea e
b) is

a (bijective) name swapping such that e
b#T, ea then T [ea := e

N] =
((ea e

b).T)[eb := e
N] (alpha-renaming of substituted variables).

For terms M 2 T, we additionally require that SORT(M�) 
SORT(M).

For patterns X 2 X, we additionally require that if ex 2
VARS(X) and ex#� then SORT(X�)  SORT(X) and ex 2
VARS(X�).

Matching must also be invariant under renaming of pattern
variables, and the substitution resulting from a match must not
contain any names that are not from the matched term or the
pattern.

Definition 5 (Generalized pattern matching). For the function
MATCH we require that if e

N 2 MATCH(M, ex, X) and ex 2
VARS(X) are pair-wise different then it must hold that [ex := e

N]
is a substitution, that n(e

N) ✓ n(M) [(n(X) \ ex), and that for

short description of paper 3 2012/6/13

Ex:

Signifies which names are patterns

x̃ 2 vars(X)

M(�x̃)X.P

well-formed if

VARS(enc(m, k)) = {{m}} M(�m)enc(m, k).P

M(�m, k)enc(m, k).P

User defined pattern matchin.
Relaxes requirement on the substitution.

Results

• Previous Psi results hold: compositional semantics,
behavioural equivalence is a congruence

• well-formedness of processes is preserved by
transitions

P ! P 0

well-formed well-formed

did not break psi

Polyadic communication
a(x1, . . . , xn).P

ab1, . . . , bn.Q|
! P{b1, . . . , bn/x1, . . . , xn} | Q

Should be easy to express in Psi

T = N ⇤

(a, b, c)[a := (c, d)] = ((c, d), b, c) 62 N ⇤

Let’s take sequences of names

Substitution needs to be a total function

Polyadic pi-calculus

Junk

Solution
T = T⇤ [N((c, d), b, c)

T = N ⇤ [{error}(a, b, c)[a := (c, d)] = error

Allow substitution to be a partial function

Allow

Set to error

Better yet! Type to disallow ‘bad’ substitutions
from arising.

Sorts

i.e. name swappings must respect sorting. An intuition is that for
any member T it holds that (a b) · T is T with a replaced by b

and b replaced by a. The support of a term, written n(T), is intu-
itively the set of names affected by name swappings on T . We write
S#T for S \ n(T) = ;. A function f is equivariant if n(f) = ;,
i.e. if (a b)(f(T)) = f((a b)T) always. A nominal data type is
a nominal set together with some functions on it, for instance a
substitution function.

2.1 Psi-calculi
Sorted psi-calculi is an extension of the original psi-calculi frame-
work. A sorted psi-calculus is defined by four nominal datatypes.
Three of these, the data terms, conditions and assertions, are present
in the original psi-calculi; see [5] for further explanations of these.

Definition 1 (Original psi-calculus parameters). The psi-calculus
parameters from the original psi-calculus include the three nominal
data types:

T the (data) terms, ranged over by M, N

C the conditions, ranged over by '
A the assertions, ranged over by

and the four equivariant operators:
.$: T⇥T ! C Channel Equivalence
⌦ : A⇥A ! A Composition
1 : A Unit
` ✓ A⇥C Entailment

The binary functions above will be used in infix form. Thus, if
M and N are terms then M

.$ N is a condition, pronounced “M
and N are channel equivalent” and if and 0 are assertions then
so is ⌦ 0. Also we write ` ', “ entails '”, for (,') 2 `.

We say that two assertions are equivalent, written '

0,
if they entail the same conditions, i.e. for all ' we have that
 ` ' ,

0 ` '. We impose certain requisites on the sets and
operators. In brief, channel equivalence must be symmetric and
transitive, ⌦ must be compositional with respect to ' (i.e. 1 '
 2 =) ⌦ 1 ' ⌦ 2), and the assertions with (⌦,1) form
an abelian monoid modulo '. For details see [5].

2.2 New parameters for generalized pattern-matching
To the parameters of the original psi-calculi we add patterns X, Y ,
that are used in input prefixes, a pattern-matching function MATCH,
which is used when the input takes place, and a function VARS
which yields the possible combinations of binding names in the
pattern.

Definition 2 (Psi-calculus parameters for pattern-matching). The
psi-calculus parameters for pattern-matching include the nominal
data type

X the (input) patterns, ranged over by X, Y

and the two equivariant operators

MATCH : T⇥N ⇤ ⇥X ! P(T⇤) Pattern matching
VARS : X ! P(P(N)) Pattern variables

Intuitively, if e
L 2 MATCH(N, ex, X) then an output of the

term N matches an input with the pattern X , binding ex, and the
receiving agent continues after substituting e

L for ex.
The VARS operator gives the possible sets of names in a pattern

which are bound by an input prefix. For example, an input prefix
with a pairing pattern hx, yi may bind both x and y, only one of
them, or none, so VARS(hx, yi) = {{x, y}, {x}, {y}, {}}. This
way, we can let the input prefix c(�x)hx, yi only match pairs where
the second argument is the name y. To model a calculus where
input patterns cannot be selective in this way, we may instead define

VARS(hx, yi) = {{x, y}}. This ensures that input prefixes that use
the pattern hx, yi must be of the form M(�x, y)hx, yi, where both
x and y are bound.

Note that the four data types T, C, A and X are not required to
be disjoint. In most of the examples in this paper X is a subset of
T.

2.3 New parameters for sorting
To the parameters defined above we add a sorting function and four
sort compatibility predicates.

Definition 3 (Psi-calculus parameters for sorting). The psi-calculus
parameters for sorting include the sorting function

SORT : N [T [X ! S Term and pattern sorting

and the four compatibility predicates

/ ✓ S ⇥ S Can be used to receive
/ ✓ S ⇥ S Can be used to send
⌃ ✓ S ⇥ S Can be substituted by
S

⌫

✓ S Can be bound by name restriction

The SORT operator gives the sort of a name, term or pattern; on
names we require that SORT(a) = s

iff a 2 N
s

. The sort compatibility predicates are used to restrict
where terms and names of certain sorts may appear in processes.
Terms of sort s can be used to send values of sort t if s / t. Dually,
a term of sort s can be used to receive with a pattern of sort t if
s / t. A name a can be used in a restriction (⌫a) if SORT(a) 2 S

⌫

.
In order to substitute the term M for the name a, we require that
SORT(a) ⌃ SORT(M).

2.4 Substitution and Matching
We require that each datatype is equipped with an equivariant sub-
stitution function, which intuitively substitutes terms for names.
The requisites on substitution differ from the original psi-calculi
as indicated in the Introduction (cf. also Example 6 below). Sub-
stitutions must preserve or refine sorts, and bound pattern variables
must not be removed by substitutions.

We define a preorder  on S as s1  s2 if s1 can be used as
a channel or message whenever s2 can be: formally s1  s2 iff
8t 2 S.(s2 / t) s1 / t) ^ (s2 / t) s1 / t) ^ (t / s2)
t / s1) ^ (t / s2) t / s1).

Definition 4 (Substitution). If ea is a sequence of pair-wise differ-
ent names and e

N is an equally long sequence of terms such that
SORT(a

i

) ⌃ SORT(N
i

) for all i, we say that [ea := e
N] is a substitu-

tion. Substitutions are ranged over by �.
If T is an element of a data type among T,A,C,X, we require

that T� is an element of the same data type, and that if (ea e
b) is

a (bijective) name swapping such that e
b#T, ea then T [ea := e

N] =
((ea e

b).T)[eb := e
N] (alpha-renaming of substituted variables).

For terms M 2 T, we additionally require that SORT(M�) 
SORT(M).

For patterns X 2 X, we additionally require that if ex 2
VARS(X) and ex#� then SORT(X�)  SORT(X) and ex 2
VARS(X�).

Matching must also be invariant under renaming of pattern
variables, and the substitution resulting from a match must not
contain any names that are not from the matched term or the
pattern.

Definition 5 (Generalized pattern matching). For the function
MATCH we require that if e

N 2 MATCH(M, ex, X) and ex 2
VARS(X) are pair-wise different then it must hold that [ex := e

N]
is a substitution, that n(e

N) ✓ n(M) [(n(X) \ ex), and that for

short description of paper 3 2012/6/13

is well-sorted iff

substitution

i.e. name swappings must respect sorting. An intuition is that for
any member T it holds that (a b) · T is T with a replaced by b

and b replaced by a. The support of a term, written n(T), is intu-
itively the set of names affected by name swappings on T . We write
S#T for S \ n(T) = ;. A function f is equivariant if n(f) = ;,
i.e. if (a b)(f(T)) = f((a b)T) always. A nominal data type is
a nominal set together with some functions on it, for instance a
substitution function.

2.1 Psi-calculi
Sorted psi-calculi is an extension of the original psi-calculi frame-
work. A sorted psi-calculus is defined by four nominal datatypes.
Three of these, the data terms, conditions and assertions, are present
in the original psi-calculi; see [5] for further explanations of these.

Definition 1 (Original psi-calculus parameters). The psi-calculus
parameters from the original psi-calculus include the three nominal
data types:

T the (data) terms, ranged over by M, N

C the conditions, ranged over by '
A the assertions, ranged over by

and the four equivariant operators:
.$: T⇥T ! C Channel Equivalence
⌦ : A⇥A ! A Composition
1 : A Unit
` ✓ A⇥C Entailment

The binary functions above will be used in infix form. Thus, if
M and N are terms then M

.$ N is a condition, pronounced “M
and N are channel equivalent” and if and 0 are assertions then
so is ⌦ 0. Also we write ` ', “ entails '”, for (,') 2 `.

We say that two assertions are equivalent, written '

0,
if they entail the same conditions, i.e. for all ' we have that
 ` ' ,

0 ` '. We impose certain requisites on the sets and
operators. In brief, channel equivalence must be symmetric and
transitive, ⌦ must be compositional with respect to ' (i.e. 1 '
 2 =) ⌦ 1 ' ⌦ 2), and the assertions with (⌦,1) form
an abelian monoid modulo '. For details see [5].

2.2 New parameters for generalized pattern-matching
To the parameters of the original psi-calculi we add patterns X, Y ,
that are used in input prefixes, a pattern-matching function MATCH,
which is used when the input takes place, and a function VARS
which yields the possible combinations of binding names in the
pattern.

Definition 2 (Psi-calculus parameters for pattern-matching). The
psi-calculus parameters for pattern-matching include the nominal
data type

X the (input) patterns, ranged over by X, Y

and the two equivariant operators

MATCH : T⇥N ⇤ ⇥X ! P(T⇤) Pattern matching
VARS : X ! P(P(N)) Pattern variables

Intuitively, if e
L 2 MATCH(N, ex, X) then an output of the

term N matches an input with the pattern X , binding ex, and the
receiving agent continues after substituting e

L for ex.
The VARS operator gives the possible sets of names in a pattern

which are bound by an input prefix. For example, an input prefix
with a pairing pattern hx, yi may bind both x and y, only one of
them, or none, so VARS(hx, yi) = {{x, y}, {x}, {y}, {}}. This
way, we can let the input prefix c(�x)hx, yi only match pairs where
the second argument is the name y. To model a calculus where
input patterns cannot be selective in this way, we may instead define

VARS(hx, yi) = {{x, y}}. This ensures that input prefixes that use
the pattern hx, yi must be of the form M(�x, y)hx, yi, where both
x and y are bound.

Note that the four data types T, C, A and X are not required to
be disjoint. In most of the examples in this paper X is a subset of
T.

2.3 New parameters for sorting
To the parameters defined above we add a sorting function and four
sort compatibility predicates.

Definition 3 (Psi-calculus parameters for sorting). The psi-calculus
parameters for sorting include the sorting function

SORT : N [T [X ! S Term and pattern sorting

and the four compatibility predicates

/ ✓ S ⇥ S Can be used to receive
/ ✓ S ⇥ S Can be used to send
⌃ ✓ S ⇥ S Can be substituted by
S

⌫

✓ S Can be bound by name restriction

The SORT operator gives the sort of a name, term or pattern; on
names we require that SORT(a) = s

iff a 2 N
s

. The sort compatibility predicates are used to restrict
where terms and names of certain sorts may appear in processes.
Terms of sort s can be used to send values of sort t if s / t. Dually,
a term of sort s can be used to receive with a pattern of sort t if
s / t. A name a can be used in a restriction (⌫a) if SORT(a) 2 S

⌫

.
In order to substitute the term M for the name a, we require that
SORT(a) ⌃ SORT(M).

2.4 Substitution and Matching
We require that each datatype is equipped with an equivariant sub-
stitution function, which intuitively substitutes terms for names.
The requisites on substitution differ from the original psi-calculi
as indicated in the Introduction (cf. also Example 6 below). Sub-
stitutions must preserve or refine sorts, and bound pattern variables
must not be removed by substitutions.

We define a preorder  on S as s1  s2 if s1 can be used as
a channel or message whenever s2 can be: formally s1  s2 iff
8t 2 S.(s2 / t) s1 / t) ^ (s2 / t) s1 / t) ^ (t / s2)
t / s1) ^ (t / s2) t / s1).

Definition 4 (Substitution). If ea is a sequence of pair-wise differ-
ent names and e

N is an equally long sequence of terms such that
SORT(a

i

) ⌃ SORT(N
i

) for all i, we say that [ea := e
N] is a substitu-

tion. Substitutions are ranged over by �.
If T is an element of a data type among T,A,C,X, we require

that T� is an element of the same data type, and that if (ea e
b) is

a (bijective) name swapping such that e
b#T, ea then T [ea := e

N] =
((ea e

b).T)[eb := e
N] (alpha-renaming of substituted variables).

For terms M 2 T, we additionally require that SORT(M�) 
SORT(M).

For patterns X 2 X, we additionally require that if ex 2
VARS(X) and ex#� then SORT(X�)  SORT(X) and ex 2
VARS(X�).

Matching must also be invariant under renaming of pattern
variables, and the substitution resulting from a match must not
contain any names that are not from the matched term or the
pattern.

Definition 5 (Generalized pattern matching). For the function
MATCH we require that if e

N 2 MATCH(M, ex, X) and ex 2
VARS(X) are pair-wise different then it must hold that [ex := e

N]
is a substitution, that n(e

N) ✓ n(M) [(n(X) \ ex), and that for

short description of paper 3 2012/6/13

i.e. name swappings must respect sorting. An intuition is that for
any member T it holds that (a b) · T is T with a replaced by b

and b replaced by a. The support of a term, written n(T), is intu-
itively the set of names affected by name swappings on T . We write
S#T for S \ n(T) = ;. A function f is equivariant if n(f) = ;,
i.e. if (a b)(f(T)) = f((a b)T) always. A nominal data type is
a nominal set together with some functions on it, for instance a
substitution function.

2.1 Psi-calculi
Sorted psi-calculi is an extension of the original psi-calculi frame-
work. A sorted psi-calculus is defined by four nominal datatypes.
Three of these, the data terms, conditions and assertions, are present
in the original psi-calculi; see [5] for further explanations of these.

Definition 1 (Original psi-calculus parameters). The psi-calculus
parameters from the original psi-calculus include the three nominal
data types:

T the (data) terms, ranged over by M, N

C the conditions, ranged over by '
A the assertions, ranged over by

and the four equivariant operators:
.$: T⇥T ! C Channel Equivalence
⌦ : A⇥A ! A Composition
1 : A Unit
` ✓ A⇥C Entailment

The binary functions above will be used in infix form. Thus, if
M and N are terms then M

.$ N is a condition, pronounced “M
and N are channel equivalent” and if and 0 are assertions then
so is ⌦ 0. Also we write ` ', “ entails '”, for (,') 2 `.

We say that two assertions are equivalent, written '

0,
if they entail the same conditions, i.e. for all ' we have that
 ` ' ,

0 ` '. We impose certain requisites on the sets and
operators. In brief, channel equivalence must be symmetric and
transitive, ⌦ must be compositional with respect to ' (i.e. 1 '
 2 =) ⌦ 1 ' ⌦ 2), and the assertions with (⌦,1) form
an abelian monoid modulo '. For details see [5].

2.2 New parameters for generalized pattern-matching
To the parameters of the original psi-calculi we add patterns X, Y ,
that are used in input prefixes, a pattern-matching function MATCH,
which is used when the input takes place, and a function VARS
which yields the possible combinations of binding names in the
pattern.

Definition 2 (Psi-calculus parameters for pattern-matching). The
psi-calculus parameters for pattern-matching include the nominal
data type

X the (input) patterns, ranged over by X, Y

and the two equivariant operators

MATCH : T⇥N ⇤ ⇥X ! P(T⇤) Pattern matching
VARS : X ! P(P(N)) Pattern variables

Intuitively, if e
L 2 MATCH(N, ex, X) then an output of the

term N matches an input with the pattern X , binding ex, and the
receiving agent continues after substituting e

L for ex.
The VARS operator gives the possible sets of names in a pattern

which are bound by an input prefix. For example, an input prefix
with a pairing pattern hx, yi may bind both x and y, only one of
them, or none, so VARS(hx, yi) = {{x, y}, {x}, {y}, {}}. This
way, we can let the input prefix c(�x)hx, yi only match pairs where
the second argument is the name y. To model a calculus where
input patterns cannot be selective in this way, we may instead define

VARS(hx, yi) = {{x, y}}. This ensures that input prefixes that use
the pattern hx, yi must be of the form M(�x, y)hx, yi, where both
x and y are bound.

Note that the four data types T, C, A and X are not required to
be disjoint. In most of the examples in this paper X is a subset of
T.

2.3 New parameters for sorting
To the parameters defined above we add a sorting function and four
sort compatibility predicates.

Definition 3 (Psi-calculus parameters for sorting). The psi-calculus
parameters for sorting include the sorting function

SORT : N [T [X ! S Term and pattern sorting

and the four compatibility predicates

/ ✓ S ⇥ S Can be used to receive
/ ✓ S ⇥ S Can be used to send
⌃ ✓ S ⇥ S Can be substituted by
S

⌫

✓ S Can be bound by name restriction

The SORT operator gives the sort of a name, term or pattern; on
names we require that SORT(a) = s

iff a 2 N
s

. The sort compatibility predicates are used to restrict
where terms and names of certain sorts may appear in processes.
Terms of sort s can be used to send values of sort t if s / t. Dually,
a term of sort s can be used to receive with a pattern of sort t if
s / t. A name a can be used in a restriction (⌫a) if SORT(a) 2 S

⌫

.
In order to substitute the term M for the name a, we require that
SORT(a) ⌃ SORT(M).

2.4 Substitution and Matching
We require that each datatype is equipped with an equivariant sub-
stitution function, which intuitively substitutes terms for names.
The requisites on substitution differ from the original psi-calculi
as indicated in the Introduction (cf. also Example 6 below). Sub-
stitutions must preserve or refine sorts, and bound pattern variables
must not be removed by substitutions.

We define a preorder  on S as s1  s2 if s1 can be used as
a channel or message whenever s2 can be: formally s1  s2 iff
8t 2 S.(s2 / t) s1 / t) ^ (s2 / t) s1 / t) ^ (t / s2)
t / s1) ^ (t / s2) t / s1).

Definition 4 (Substitution). If ea is a sequence of pair-wise differ-
ent names and e

N is an equally long sequence of terms such that
SORT(a

i

) ⌃ SORT(N
i

) for all i, we say that [ea := e
N] is a substitu-

tion. Substitutions are ranged over by �.
If T is an element of a data type among T,A,C,X, we require

that T� is an element of the same data type, and that if (ea e
b) is

a (bijective) name swapping such that e
b#T, ea then T [ea := e

N] =
((ea e

b).T)[eb := e
N] (alpha-renaming of substituted variables).

For terms M 2 T, we additionally require that SORT(M�) 
SORT(M).

For patterns X 2 X, we additionally require that if ex 2
VARS(X) and ex#� then SORT(X�)  SORT(X) and ex 2
VARS(X�).

Matching must also be invariant under renaming of pattern
variables, and the substitution resulting from a match must not
contain any names that are not from the matched term or the
pattern.

Definition 5 (Generalized pattern matching). For the function
MATCH we require that if e

N 2 MATCH(M, ex, X) and ex 2
VARS(X) are pair-wise different then it must hold that [ex := e

N]
is a substitution, that n(e

N) ✓ n(M) [(n(X) \ ex), and that for

short description of paper 3 2012/6/13

all name swappings (ex ey) we have e
N 2 MATCH(M, ey, (ex ey)X)

(alpha-renaming of matching).

In some cases we can recover the input pattern matching of the
original psi-calculi.

Example 6. Let X = T, with VARS(M) = P(n(M)), and
MATCH(M, ex, N) = {e

L : M = N [ex := e
L]}. This definition is

valid if substitutions do not remove pattern variables, i.e. n(N�) ◆
n(N) \ n(�), and matching is equivariant, i.e. ex ✓ n(N) implies
that n(N [ex := e

L]) ◆ n(e
L).

Equivariance of matching is imposed as a requirement on sub-
stitution on terms in our previous work on psi-calculi, but there
is no requirement that substitutions preserve pattern variables. For
this reason, the original psi semantics does not preserve the well-
formedness of agents (an input prefix M(�ex)N . P is well-formed
when ex ✓ n(N)), although this is assumed by the operational se-
mantics [5]. The semantics of pattern-matching psi-calculi indeed
preserves well-formedness, as shown below in Theorem 13.

In psi-calculi where only trivial pattern matching occurs on in-
put it is natural to restrict the patterns to be names. In such a cal-
culus the input construct always binds a single name, and we may
write M(x) for M(�x)x. This is done e.g. in the symbolic se-
mantics [19]; we here give a formal account of this restriction. The
example uses a failure pattern ? which results from “impossible”
substitutions.

Example 7. For any given values of the other parameters, we
may let X = N [{?} with VARS(X) = {a : X = a} and
let a[ex := e

L] = a if a#ex, otherwise X[ex := e
L] = ?. We

define MATCH(M, a, a) = {M} if SORT(a)⌃SORT(M), otherwise
MATCH(M, ex, X) = ;.

2.5 Agents
Definition 8 (Agents). The agents, ranged over by P, Q, . . ., are
of the following forms.

M N.P Output
M(�ex)X.P Input
case '1 : P1 [] · · · [] '

n

: P

n

Case
(⌫a)P Restriction
P | Q Parallel
!P Replication
(| |) Assertion

In the Input any name in ex binds its occurrences in both X

and P , and in the Restriction a binds in P. An assertion is guarded
if it is a subterm of an Input or Output. An agent is well-formed
if, for all its subterms, in a replication !P there are no unguarded
assertions in P , and in case '1 : P1 [] · · · [] '

n

: P

n

there are no
unguarded assertion in any P

i

. Substitution on agents is defined
inductively on their structure, avoiding name capture.

In comparison to [5] we restrict the syntax of well-formed
agents by imposing requirements on sorts: the subjects and objects
of prefixes must have compatible sorts, and restrictions may only
bind names of a sort in S

⌫

.

Definition 9. In sorted psi-calculi, an agent is well-formed if
additionally the following holds for all its subterms. In an Output
M N.P we require that SORT(M) / SORT(N). In an Input
M(�ex)X.P we require that ex 2 VARS(X) is a tuple of pair-
wise different names and SORT(M) / SORT(X). In a Restriction
(⌫a)P we require that SORT(a) 2 S

⌫

.

The output prefix M N.P sends N on a channel that is con-
nected to M . Dually, M(�ex)X.P receives a message matching
the pattern X from a channel connected to M . A non-deterministic

case statement case '1 : P1 [] · · · [] '
n

: P

n

executes one of the
branches P

i

where the corresponding condition '
i

holds. Restric-
tion (⌫a)P scopes the name a in P ; the scope of a may be extruded
if P communicates a data term containing a. A parallel composi-
tion P | Q denotes P and Q running in parallel; they may pro-
ceed independently or communicate. A replication !P models an
unbounded number of copies of the process P . The assertion (| |)
contributes to the current assertion with the information in . We
often write if ' then P for case ' : P , and nothing or 0 for the
empty case statement case.

Example 10. In Example 7, the pattern ? may never occur in a
well-formed agent: VARS(?) = ;,
so ex 2 VARS(?) is impossible.

2.6 Frames and transitions
A frame F can intuitively be thought of as an assertion with lo-
cal names, written (⌫e

b) where e
b is a sequence of names that

bind into the assertion . We use F, G to range over frames, and
identify alpha-equivalent frames. We overload ⌦ to frame compo-
sition defined by (⌫ e

b1) 1⌦(⌫ e
b2) 2 = (⌫ e

b1
e
b2)(1⌦ 2) where

e
b1# e

b2, 2 and vice versa. We write ⌦F to mean (⌫✏) ⌦F , and
(⌫c)((⌫e

b)) for (⌫ce
b) .

Intuitively a condition is entailed by a frame if it is entailed by
the assertion and does not contain any names bound by the frame,
and two frames are equivalent if they entail the same conditions.
Formally, we define F ` ' to mean that there exists an alpha vari-
ant (⌫e

b) of F such that e
b#' and ` '. We also define F ' G

to mean that for all ' it holds that F ` ' iff G ` '.
The frame F(P) of an agent P is defined inductively as follows:

F(M(�ex)N . P) = F(M N . P) = F(case e' : e
P) = F(!P) = 1

F((| |)) = (⌫✏)
F(P | Q) = F(P)⌦F(Q)
F((⌫b)P) = (⌫b)F(P)

The actions ranged over by ↵,� are of the following three
kinds: Output M (⌫ea) N where ã ✓ n(N), Input M N , and Silent
⌧ . Here we refer to M as the subject and N as the object. We define
bn(M (⌫ã) N) = ã, and bn(↵) = ; if ↵ is an input or ⌧ . We also
define n(⌧) = ; and n(↵) = n(M) [n(N) for the input and
output actions. We write MhNi for M (⌫") N .

Definition 11 (Transitions). A transition is written ⇤ P

↵�! P

0,
meaning that in the environment the well-formed agent P can
do an ↵ to become P

0. The transitions are defined inductively
in Table 1. We write P

↵�! P

0 without an assertion to mean
1 ⇤ P

↵�! P

0.

The operational semantics is the same as for the original psi-
calculi, except for the use of MATCH in rule IN. We identify alpha-
equivalent agents and transitions (see [5] for details). In a transition
the names in bn(↵) bind into both the action object and the deriva-
tive, therefore bn(↵) is in the support of ↵ but not in the support
of the transition. This means that the bound names can be cho-
sen fresh, substituting each occurrence in both the action and the
derivative.

As shown in the introduction, well-formedness is not preserved
by transitions in the original psi-calculi. However, in sorted psi-
calculi the usual well-formedness preservation result holds.

Lemma 12. If P is well-formed, then P� is well-formed.

Proof. By induction on P . The output case uses the sort preserva-
tion property of substitution on terms (Definition 4). The interest-
ing case is input M(�ex)X.Q: assume that Q is well-formed, that
ex 2 VARS(X), that SORT(M) / SORT(X) and that ex#�.

short description of paper 4 2012/6/13

all name swappings (ex ey) we have e
N 2 MATCH(M, ey, (ex ey)X)

(alpha-renaming of matching).

In some cases we can recover the input pattern matching of the
original psi-calculi.

Example 6. Let X = T, with VARS(M) = P(n(M)), and
MATCH(M, ex, N) = {e

L : M = N [ex := e
L]}. This definition is

valid if substitutions do not remove pattern variables, i.e. n(N�) ◆
n(N) \ n(�), and matching is equivariant, i.e. ex ✓ n(N) implies
that n(N [ex := e

L]) ◆ n(e
L).

Equivariance of matching is imposed as a requirement on sub-
stitution on terms in our previous work on psi-calculi, but there
is no requirement that substitutions preserve pattern variables. For
this reason, the original psi semantics does not preserve the well-
formedness of agents (an input prefix M(�ex)N . P is well-formed
when ex ✓ n(N)), although this is assumed by the operational se-
mantics [5]. The semantics of pattern-matching psi-calculi indeed
preserves well-formedness, as shown below in Theorem 13.

In psi-calculi where only trivial pattern matching occurs on in-
put it is natural to restrict the patterns to be names. In such a cal-
culus the input construct always binds a single name, and we may
write M(x) for M(�x)x. This is done e.g. in the symbolic se-
mantics [19]; we here give a formal account of this restriction. The
example uses a failure pattern ? which results from “impossible”
substitutions.

Example 7. For any given values of the other parameters, we
may let X = N [{?} with VARS(X) = {a : X = a} and
let a[ex := e

L] = a if a#ex, otherwise X[ex := e
L] = ?. We

define MATCH(M, a, a) = {M} if SORT(a)⌃SORT(M), otherwise
MATCH(M, ex, X) = ;.

2.5 Agents
Definition 8 (Agents). The agents, ranged over by P, Q, . . ., are
of the following forms.

M N.P Output
M(�ex)X.P Input
case '1 : P1 [] · · · [] '

n

: P

n

Case
(⌫a)P Restriction
P | Q Parallel
!P Replication
(| |) Assertion

In the Input any name in ex binds its occurrences in both X

and P , and in the Restriction a binds in P. An assertion is guarded
if it is a subterm of an Input or Output. An agent is well-formed
if, for all its subterms, in a replication !P there are no unguarded
assertions in P , and in case '1 : P1 [] · · · [] '

n

: P

n

there are no
unguarded assertion in any P

i

. Substitution on agents is defined
inductively on their structure, avoiding name capture.

In comparison to [5] we restrict the syntax of well-formed
agents by imposing requirements on sorts: the subjects and objects
of prefixes must have compatible sorts, and restrictions may only
bind names of a sort in S

⌫

.

Definition 9. In sorted psi-calculi, an agent is well-formed if
additionally the following holds for all its subterms. In an Output
M N.P we require that SORT(M) / SORT(N). In an Input
M(�ex)X.P we require that ex 2 VARS(X) is a tuple of pair-
wise different names and SORT(M) / SORT(X). In a Restriction
(⌫a)P we require that SORT(a) 2 S

⌫

.

The output prefix M N.P sends N on a channel that is con-
nected to M . Dually, M(�ex)X.P receives a message matching
the pattern X from a channel connected to M . A non-deterministic

case statement case '1 : P1 [] · · · [] '
n

: P

n

executes one of the
branches P

i

where the corresponding condition '
i

holds. Restric-
tion (⌫a)P scopes the name a in P ; the scope of a may be extruded
if P communicates a data term containing a. A parallel composi-
tion P | Q denotes P and Q running in parallel; they may pro-
ceed independently or communicate. A replication !P models an
unbounded number of copies of the process P . The assertion (| |)
contributes to the current assertion with the information in . We
often write if ' then P for case ' : P , and nothing or 0 for the
empty case statement case.

Example 10. In Example 7, the pattern ? may never occur in a
well-formed agent: VARS(?) = ;,
so ex 2 VARS(?) is impossible.

2.6 Frames and transitions
A frame F can intuitively be thought of as an assertion with lo-
cal names, written (⌫e

b) where e
b is a sequence of names that

bind into the assertion . We use F, G to range over frames, and
identify alpha-equivalent frames. We overload ⌦ to frame compo-
sition defined by (⌫ e

b1) 1⌦(⌫ e
b2) 2 = (⌫ e

b1
e
b2)(1⌦ 2) where

e
b1# e

b2, 2 and vice versa. We write ⌦F to mean (⌫✏) ⌦F , and
(⌫c)((⌫e

b)) for (⌫ce
b) .

Intuitively a condition is entailed by a frame if it is entailed by
the assertion and does not contain any names bound by the frame,
and two frames are equivalent if they entail the same conditions.
Formally, we define F ` ' to mean that there exists an alpha vari-
ant (⌫e

b) of F such that e
b#' and ` '. We also define F ' G

to mean that for all ' it holds that F ` ' iff G ` '.
The frame F(P) of an agent P is defined inductively as follows:

F(M(�ex)N . P) = F(M N . P) = F(case e' : e
P) = F(!P) = 1

F((| |)) = (⌫✏)
F(P | Q) = F(P)⌦F(Q)
F((⌫b)P) = (⌫b)F(P)

The actions ranged over by ↵,� are of the following three
kinds: Output M (⌫ea) N where ã ✓ n(N), Input M N , and Silent
⌧ . Here we refer to M as the subject and N as the object. We define
bn(M (⌫ã) N) = ã, and bn(↵) = ; if ↵ is an input or ⌧ . We also
define n(⌧) = ; and n(↵) = n(M) [n(N) for the input and
output actions. We write MhNi for M (⌫") N .

Definition 11 (Transitions). A transition is written ⇤ P

↵�! P

0,
meaning that in the environment the well-formed agent P can
do an ↵ to become P

0. The transitions are defined inductively
in Table 1. We write P

↵�! P

0 without an assertion to mean
1 ⇤ P

↵�! P

0.

The operational semantics is the same as for the original psi-
calculi, except for the use of MATCH in rule IN. We identify alpha-
equivalent agents and transitions (see [5] for details). In a transition
the names in bn(↵) bind into both the action object and the deriva-
tive, therefore bn(↵) is in the support of ↵ but not in the support
of the transition. This means that the bound names can be cho-
sen fresh, substituting each occurrence in both the action and the
derivative.

As shown in the introduction, well-formedness is not preserved
by transitions in the original psi-calculi. However, in sorted psi-
calculi the usual well-formedness preservation result holds.

Lemma 12. If P is well-formed, then P� is well-formed.

Proof. By induction on P . The output case uses the sort preserva-
tion property of substitution on terms (Definition 4). The interest-
ing case is input M(�ex)X.Q: assume that Q is well-formed, that
ex 2 VARS(X), that SORT(M) / SORT(X) and that ex#�.

short description of paper 4 2012/6/13

output

all name swappings (ex ey) we have e
N 2 MATCH(M, ey, (ex ey)X)

(alpha-renaming of matching).

In some cases we can recover the input pattern matching of the
original psi-calculi.

Example 6. Let X = T, with VARS(M) = P(n(M)), and
MATCH(M, ex, N) = {e

L : M = N [ex := e
L]}. This definition is

valid if substitutions do not remove pattern variables, i.e. n(N�) ◆
n(N) \ n(�), and matching is equivariant, i.e. ex ✓ n(N) implies
that n(N [ex := e

L]) ◆ n(e
L).

Equivariance of matching is imposed as a requirement on sub-
stitution on terms in our previous work on psi-calculi, but there
is no requirement that substitutions preserve pattern variables. For
this reason, the original psi semantics does not preserve the well-
formedness of agents (an input prefix M(�ex)N . P is well-formed
when ex ✓ n(N)), although this is assumed by the operational se-
mantics [5]. The semantics of pattern-matching psi-calculi indeed
preserves well-formedness, as shown below in Theorem 13.

In psi-calculi where only trivial pattern matching occurs on in-
put it is natural to restrict the patterns to be names. In such a cal-
culus the input construct always binds a single name, and we may
write M(x) for M(�x)x. This is done e.g. in the symbolic se-
mantics [19]; we here give a formal account of this restriction. The
example uses a failure pattern ? which results from “impossible”
substitutions.

Example 7. For any given values of the other parameters, we
may let X = N [{?} with VARS(X) = {a : X = a} and
let a[ex := e

L] = a if a#ex, otherwise X[ex := e
L] = ?. We

define MATCH(M, a, a) = {M} if SORT(a)⌃SORT(M), otherwise
MATCH(M, ex, X) = ;.

2.5 Agents
Definition 8 (Agents). The agents, ranged over by P, Q, . . ., are
of the following forms.

M N.P Output
M(�ex)X.P Input
case '1 : P1 [] · · · [] '

n

: P

n

Case
(⌫a)P Restriction
P | Q Parallel
!P Replication
(| |) Assertion

In the Input any name in ex binds its occurrences in both X

and P , and in the Restriction a binds in P. An assertion is guarded
if it is a subterm of an Input or Output. An agent is well-formed
if, for all its subterms, in a replication !P there are no unguarded
assertions in P , and in case '1 : P1 [] · · · [] '

n

: P

n

there are no
unguarded assertion in any P

i

. Substitution on agents is defined
inductively on their structure, avoiding name capture.

In comparison to [5] we restrict the syntax of well-formed
agents by imposing requirements on sorts: the subjects and objects
of prefixes must have compatible sorts, and restrictions may only
bind names of a sort in S

⌫

.

Definition 9. In sorted psi-calculi, an agent is well-formed if
additionally the following holds for all its subterms. In an Output
M N.P we require that SORT(M) / SORT(N). In an Input
M(�ex)X.P we require that ex 2 VARS(X) is a tuple of pair-
wise different names and SORT(M) / SORT(X). In a Restriction
(⌫a)P we require that SORT(a) 2 S

⌫

.

The output prefix M N.P sends N on a channel that is con-
nected to M . Dually, M(�ex)X.P receives a message matching
the pattern X from a channel connected to M . A non-deterministic

case statement case '1 : P1 [] · · · [] '
n

: P

n

executes one of the
branches P

i

where the corresponding condition '
i

holds. Restric-
tion (⌫a)P scopes the name a in P ; the scope of a may be extruded
if P communicates a data term containing a. A parallel composi-
tion P | Q denotes P and Q running in parallel; they may pro-
ceed independently or communicate. A replication !P models an
unbounded number of copies of the process P . The assertion (| |)
contributes to the current assertion with the information in . We
often write if ' then P for case ' : P , and nothing or 0 for the
empty case statement case.

Example 10. In Example 7, the pattern ? may never occur in a
well-formed agent: VARS(?) = ;,
so ex 2 VARS(?) is impossible.

2.6 Frames and transitions
A frame F can intuitively be thought of as an assertion with lo-
cal names, written (⌫e

b) where e
b is a sequence of names that

bind into the assertion . We use F, G to range over frames, and
identify alpha-equivalent frames. We overload ⌦ to frame compo-
sition defined by (⌫ e

b1) 1⌦(⌫ e
b2) 2 = (⌫ e

b1
e
b2)(1⌦ 2) where

e
b1# e

b2, 2 and vice versa. We write ⌦F to mean (⌫✏) ⌦F , and
(⌫c)((⌫e

b)) for (⌫ce
b) .

Intuitively a condition is entailed by a frame if it is entailed by
the assertion and does not contain any names bound by the frame,
and two frames are equivalent if they entail the same conditions.
Formally, we define F ` ' to mean that there exists an alpha vari-
ant (⌫e

b) of F such that e
b#' and ` '. We also define F ' G

to mean that for all ' it holds that F ` ' iff G ` '.
The frame F(P) of an agent P is defined inductively as follows:

F(M(�ex)N . P) = F(M N . P) = F(case e' : e
P) = F(!P) = 1

F((| |)) = (⌫✏)
F(P | Q) = F(P)⌦F(Q)
F((⌫b)P) = (⌫b)F(P)

The actions ranged over by ↵,� are of the following three
kinds: Output M (⌫ea) N where ã ✓ n(N), Input M N , and Silent
⌧ . Here we refer to M as the subject and N as the object. We define
bn(M (⌫ã) N) = ã, and bn(↵) = ; if ↵ is an input or ⌧ . We also
define n(⌧) = ; and n(↵) = n(M) [n(N) for the input and
output actions. We write MhNi for M (⌫") N .

Definition 11 (Transitions). A transition is written ⇤ P

↵�! P

0,
meaning that in the environment the well-formed agent P can
do an ↵ to become P

0. The transitions are defined inductively
in Table 1. We write P

↵�! P

0 without an assertion to mean
1 ⇤ P

↵�! P

0.

The operational semantics is the same as for the original psi-
calculi, except for the use of MATCH in rule IN. We identify alpha-
equivalent agents and transitions (see [5] for details). In a transition
the names in bn(↵) bind into both the action object and the deriva-
tive, therefore bn(↵) is in the support of ↵ but not in the support
of the transition. This means that the bound names can be cho-
sen fresh, substituting each occurrence in both the action and the
derivative.

As shown in the introduction, well-formedness is not preserved
by transitions in the original psi-calculi. However, in sorted psi-
calculi the usual well-formedness preservation result holds.

Lemma 12. If P is well-formed, then P� is well-formed.

Proof. By induction on P . The output case uses the sort preserva-
tion property of substitution on terms (Definition 4). The interest-
ing case is input M(�ex)X.Q: assume that Q is well-formed, that
ex 2 VARS(X), that SORT(M) / SORT(X) and that ex#�.

short description of paper 4 2012/6/13

all name swappings (ex ey) we have e
N 2 MATCH(M, ey, (ex ey)X)

(alpha-renaming of matching).

In some cases we can recover the input pattern matching of the
original psi-calculi.

Example 6. Let X = T, with VARS(M) = P(n(M)), and
MATCH(M, ex, N) = {e

L : M = N [ex := e
L]}. This definition is

valid if substitutions do not remove pattern variables, i.e. n(N�) ◆
n(N) \ n(�), and matching is equivariant, i.e. ex ✓ n(N) implies
that n(N [ex := e

L]) ◆ n(e
L).

Equivariance of matching is imposed as a requirement on sub-
stitution on terms in our previous work on psi-calculi, but there
is no requirement that substitutions preserve pattern variables. For
this reason, the original psi semantics does not preserve the well-
formedness of agents (an input prefix M(�ex)N . P is well-formed
when ex ✓ n(N)), although this is assumed by the operational se-
mantics [5]. The semantics of pattern-matching psi-calculi indeed
preserves well-formedness, as shown below in Theorem 13.

In psi-calculi where only trivial pattern matching occurs on in-
put it is natural to restrict the patterns to be names. In such a cal-
culus the input construct always binds a single name, and we may
write M(x) for M(�x)x. This is done e.g. in the symbolic se-
mantics [19]; we here give a formal account of this restriction. The
example uses a failure pattern ? which results from “impossible”
substitutions.

Example 7. For any given values of the other parameters, we
may let X = N [{?} with VARS(X) = {a : X = a} and
let a[ex := e

L] = a if a#ex, otherwise X[ex := e
L] = ?. We

define MATCH(M, a, a) = {M} if SORT(a)⌃SORT(M), otherwise
MATCH(M, ex, X) = ;.

2.5 Agents
Definition 8 (Agents). The agents, ranged over by P, Q, . . ., are
of the following forms.

M N.P Output
M(�ex)X.P Input
case '1 : P1 [] · · · [] '

n

: P

n

Case
(⌫a)P Restriction
P | Q Parallel
!P Replication
(| |) Assertion

In the Input any name in ex binds its occurrences in both X

and P , and in the Restriction a binds in P. An assertion is guarded
if it is a subterm of an Input or Output. An agent is well-formed
if, for all its subterms, in a replication !P there are no unguarded
assertions in P , and in case '1 : P1 [] · · · [] '

n

: P

n

there are no
unguarded assertion in any P

i

. Substitution on agents is defined
inductively on their structure, avoiding name capture.

In comparison to [5] we restrict the syntax of well-formed
agents by imposing requirements on sorts: the subjects and objects
of prefixes must have compatible sorts, and restrictions may only
bind names of a sort in S

⌫

.

Definition 9. In sorted psi-calculi, an agent is well-formed if
additionally the following holds for all its subterms. In an Output
M N.P we require that SORT(M) / SORT(N). In an Input
M(�ex)X.P we require that ex 2 VARS(X) is a tuple of pair-
wise different names and SORT(M) / SORT(X). In a Restriction
(⌫a)P we require that SORT(a) 2 S

⌫

.

The output prefix M N.P sends N on a channel that is con-
nected to M . Dually, M(�ex)X.P receives a message matching
the pattern X from a channel connected to M . A non-deterministic

case statement case '1 : P1 [] · · · [] '
n

: P

n

executes one of the
branches P

i

where the corresponding condition '
i

holds. Restric-
tion (⌫a)P scopes the name a in P ; the scope of a may be extruded
if P communicates a data term containing a. A parallel composi-
tion P | Q denotes P and Q running in parallel; they may pro-
ceed independently or communicate. A replication !P models an
unbounded number of copies of the process P . The assertion (| |)
contributes to the current assertion with the information in . We
often write if ' then P for case ' : P , and nothing or 0 for the
empty case statement case.

Example 10. In Example 7, the pattern ? may never occur in a
well-formed agent: VARS(?) = ;,
so ex 2 VARS(?) is impossible.

2.6 Frames and transitions
A frame F can intuitively be thought of as an assertion with lo-
cal names, written (⌫e

b) where e
b is a sequence of names that

bind into the assertion . We use F, G to range over frames, and
identify alpha-equivalent frames. We overload ⌦ to frame compo-
sition defined by (⌫ e

b1) 1⌦(⌫ e
b2) 2 = (⌫ e

b1
e
b2)(1⌦ 2) where

e
b1# e

b2, 2 and vice versa. We write ⌦F to mean (⌫✏) ⌦F , and
(⌫c)((⌫e

b)) for (⌫ce
b) .

Intuitively a condition is entailed by a frame if it is entailed by
the assertion and does not contain any names bound by the frame,
and two frames are equivalent if they entail the same conditions.
Formally, we define F ` ' to mean that there exists an alpha vari-
ant (⌫e

b) of F such that e
b#' and ` '. We also define F ' G

to mean that for all ' it holds that F ` ' iff G ` '.
The frame F(P) of an agent P is defined inductively as follows:

F(M(�ex)N . P) = F(M N . P) = F(case e' : e
P) = F(!P) = 1

F((| |)) = (⌫✏)
F(P | Q) = F(P)⌦F(Q)
F((⌫b)P) = (⌫b)F(P)

The actions ranged over by ↵,� are of the following three
kinds: Output M (⌫ea) N where ã ✓ n(N), Input M N , and Silent
⌧ . Here we refer to M as the subject and N as the object. We define
bn(M (⌫ã) N) = ã, and bn(↵) = ; if ↵ is an input or ⌧ . We also
define n(⌧) = ; and n(↵) = n(M) [n(N) for the input and
output actions. We write MhNi for M (⌫") N .

Definition 11 (Transitions). A transition is written ⇤ P

↵�! P

0,
meaning that in the environment the well-formed agent P can
do an ↵ to become P

0. The transitions are defined inductively
in Table 1. We write P

↵�! P

0 without an assertion to mean
1 ⇤ P

↵�! P

0.

The operational semantics is the same as for the original psi-
calculi, except for the use of MATCH in rule IN. We identify alpha-
equivalent agents and transitions (see [5] for details). In a transition
the names in bn(↵) bind into both the action object and the deriva-
tive, therefore bn(↵) is in the support of ↵ but not in the support
of the transition. This means that the bound names can be cho-
sen fresh, substituting each occurrence in both the action and the
derivative.

As shown in the introduction, well-formedness is not preserved
by transitions in the original psi-calculi. However, in sorted psi-
calculi the usual well-formedness preservation result holds.

Lemma 12. If P is well-formed, then P� is well-formed.

Proof. By induction on P . The output case uses the sort preserva-
tion property of substitution on terms (Definition 4). The interest-
ing case is input M(�ex)X.Q: assume that Q is well-formed, that
ex 2 VARS(X), that SORT(M) / SORT(X) and that ex#�.

short description of paper 4 2012/6/13

input

all name swappings (ex ey) we have e
N 2 MATCH(M, ey, (ex ey)X)

(alpha-renaming of matching).

In some cases we can recover the input pattern matching of the
original psi-calculi.

Example 6. Let X = T, with VARS(M) = P(n(M)), and
MATCH(M, ex, N) = {e

L : M = N [ex := e
L]}. This definition is

valid if substitutions do not remove pattern variables, i.e. n(N�) ◆
n(N) \ n(�), and matching is equivariant, i.e. ex ✓ n(N) implies
that n(N [ex := e

L]) ◆ n(e
L).

Equivariance of matching is imposed as a requirement on sub-
stitution on terms in our previous work on psi-calculi, but there
is no requirement that substitutions preserve pattern variables. For
this reason, the original psi semantics does not preserve the well-
formedness of agents (an input prefix M(�ex)N . P is well-formed
when ex ✓ n(N)), although this is assumed by the operational se-
mantics [5]. The semantics of pattern-matching psi-calculi indeed
preserves well-formedness, as shown below in Theorem 13.

In psi-calculi where only trivial pattern matching occurs on in-
put it is natural to restrict the patterns to be names. In such a cal-
culus the input construct always binds a single name, and we may
write M(x) for M(�x)x. This is done e.g. in the symbolic se-
mantics [19]; we here give a formal account of this restriction. The
example uses a failure pattern ? which results from “impossible”
substitutions.

Example 7. For any given values of the other parameters, we
may let X = N [{?} with VARS(X) = {a : X = a} and
let a[ex := e

L] = a if a#ex, otherwise X[ex := e
L] = ?. We

define MATCH(M, a, a) = {M} if SORT(a)⌃SORT(M), otherwise
MATCH(M, ex, X) = ;.

2.5 Agents
Definition 8 (Agents). The agents, ranged over by P, Q, . . ., are
of the following forms.

M N.P Output
M(�ex)X.P Input
case '1 : P1 [] · · · [] '

n

: P

n

Case
(⌫a)P Restriction
P | Q Parallel
!P Replication
(| |) Assertion

In the Input any name in ex binds its occurrences in both X

and P , and in the Restriction a binds in P. An assertion is guarded
if it is a subterm of an Input or Output. An agent is well-formed
if, for all its subterms, in a replication !P there are no unguarded
assertions in P , and in case '1 : P1 [] · · · [] '

n

: P

n

there are no
unguarded assertion in any P

i

. Substitution on agents is defined
inductively on their structure, avoiding name capture.

In comparison to [5] we restrict the syntax of well-formed
agents by imposing requirements on sorts: the subjects and objects
of prefixes must have compatible sorts, and restrictions may only
bind names of a sort in S

⌫

.

Definition 9. In sorted psi-calculi, an agent is well-formed if
additionally the following holds for all its subterms. In an Output
M N.P we require that SORT(M) / SORT(N). In an Input
M(�ex)X.P we require that ex 2 VARS(X) is a tuple of pair-
wise different names and SORT(M) / SORT(X). In a Restriction
(⌫a)P we require that SORT(a) 2 S

⌫

.

The output prefix M N.P sends N on a channel that is con-
nected to M . Dually, M(�ex)X.P receives a message matching
the pattern X from a channel connected to M . A non-deterministic

case statement case '1 : P1 [] · · · [] '
n

: P

n

executes one of the
branches P

i

where the corresponding condition '
i

holds. Restric-
tion (⌫a)P scopes the name a in P ; the scope of a may be extruded
if P communicates a data term containing a. A parallel composi-
tion P | Q denotes P and Q running in parallel; they may pro-
ceed independently or communicate. A replication !P models an
unbounded number of copies of the process P . The assertion (| |)
contributes to the current assertion with the information in . We
often write if ' then P for case ' : P , and nothing or 0 for the
empty case statement case.

Example 10. In Example 7, the pattern ? may never occur in a
well-formed agent: VARS(?) = ;,
so ex 2 VARS(?) is impossible.

2.6 Frames and transitions
A frame F can intuitively be thought of as an assertion with lo-
cal names, written (⌫e

b) where e
b is a sequence of names that

bind into the assertion . We use F, G to range over frames, and
identify alpha-equivalent frames. We overload ⌦ to frame compo-
sition defined by (⌫ e

b1) 1⌦(⌫ e
b2) 2 = (⌫ e

b1
e
b2)(1⌦ 2) where

e
b1# e

b2, 2 and vice versa. We write ⌦F to mean (⌫✏) ⌦F , and
(⌫c)((⌫e

b)) for (⌫ce
b) .

Intuitively a condition is entailed by a frame if it is entailed by
the assertion and does not contain any names bound by the frame,
and two frames are equivalent if they entail the same conditions.
Formally, we define F ` ' to mean that there exists an alpha vari-
ant (⌫e

b) of F such that e
b#' and ` '. We also define F ' G

to mean that for all ' it holds that F ` ' iff G ` '.
The frame F(P) of an agent P is defined inductively as follows:

F(M(�ex)N . P) = F(M N . P) = F(case e' : e
P) = F(!P) = 1

F((| |)) = (⌫✏)
F(P | Q) = F(P)⌦F(Q)
F((⌫b)P) = (⌫b)F(P)

The actions ranged over by ↵,� are of the following three
kinds: Output M (⌫ea) N where ã ✓ n(N), Input M N , and Silent
⌧ . Here we refer to M as the subject and N as the object. We define
bn(M (⌫ã) N) = ã, and bn(↵) = ; if ↵ is an input or ⌧ . We also
define n(⌧) = ; and n(↵) = n(M) [n(N) for the input and
output actions. We write MhNi for M (⌫") N .

Definition 11 (Transitions). A transition is written ⇤ P

↵�! P

0,
meaning that in the environment the well-formed agent P can
do an ↵ to become P

0. The transitions are defined inductively
in Table 1. We write P

↵�! P

0 without an assertion to mean
1 ⇤ P

↵�! P

0.

The operational semantics is the same as for the original psi-
calculi, except for the use of MATCH in rule IN. We identify alpha-
equivalent agents and transitions (see [5] for details). In a transition
the names in bn(↵) bind into both the action object and the deriva-
tive, therefore bn(↵) is in the support of ↵ but not in the support
of the transition. This means that the bound names can be cho-
sen fresh, substituting each occurrence in both the action and the
derivative.

As shown in the introduction, well-formedness is not preserved
by transitions in the original psi-calculi. However, in sorted psi-
calculi the usual well-formedness preservation result holds.

Lemma 12. If P is well-formed, then P� is well-formed.

Proof. By induction on P . The output case uses the sort preserva-
tion property of substitution on terms (Definition 4). The interest-
ing case is input M(�ex)X.Q: assume that Q is well-formed, that
ex 2 VARS(X), that SORT(M) / SORT(X) and that ex#�.

short description of paper 4 2012/6/13

all name swappings (ex ey) we have e
N 2 MATCH(M, ey, (ex ey)X)

(alpha-renaming of matching).

In some cases we can recover the input pattern matching of the
original psi-calculi.

Example 6. Let X = T, with VARS(M) = P(n(M)), and
MATCH(M, ex, N) = {e

L : M = N [ex := e
L]}. This definition is

valid if substitutions do not remove pattern variables, i.e. n(N�) ◆
n(N) \ n(�), and matching is equivariant, i.e. ex ✓ n(N) implies
that n(N [ex := e

L]) ◆ n(e
L).

Equivariance of matching is imposed as a requirement on sub-
stitution on terms in our previous work on psi-calculi, but there
is no requirement that substitutions preserve pattern variables. For
this reason, the original psi semantics does not preserve the well-
formedness of agents (an input prefix M(�ex)N . P is well-formed
when ex ✓ n(N)), although this is assumed by the operational se-
mantics [5]. The semantics of pattern-matching psi-calculi indeed
preserves well-formedness, as shown below in Theorem 13.

In psi-calculi where only trivial pattern matching occurs on in-
put it is natural to restrict the patterns to be names. In such a cal-
culus the input construct always binds a single name, and we may
write M(x) for M(�x)x. This is done e.g. in the symbolic se-
mantics [19]; we here give a formal account of this restriction. The
example uses a failure pattern ? which results from “impossible”
substitutions.

Example 7. For any given values of the other parameters, we
may let X = N [{?} with VARS(X) = {a : X = a} and
let a[ex := e

L] = a if a#ex, otherwise X[ex := e
L] = ?. We

define MATCH(M, a, a) = {M} if SORT(a)⌃SORT(M), otherwise
MATCH(M, ex, X) = ;.

2.5 Agents
Definition 8 (Agents). The agents, ranged over by P, Q, . . ., are
of the following forms.

M N.P Output
M(�ex)X.P Input
case '1 : P1 [] · · · [] '

n

: P

n

Case
(⌫a)P Restriction
P | Q Parallel
!P Replication
(| |) Assertion

In the Input any name in ex binds its occurrences in both X

and P , and in the Restriction a binds in P. An assertion is guarded
if it is a subterm of an Input or Output. An agent is well-formed
if, for all its subterms, in a replication !P there are no unguarded
assertions in P , and in case '1 : P1 [] · · · [] '

n

: P

n

there are no
unguarded assertion in any P

i

. Substitution on agents is defined
inductively on their structure, avoiding name capture.

In comparison to [5] we restrict the syntax of well-formed
agents by imposing requirements on sorts: the subjects and objects
of prefixes must have compatible sorts, and restrictions may only
bind names of a sort in S

⌫

.

Definition 9. In sorted psi-calculi, an agent is well-formed if
additionally the following holds for all its subterms. In an Output
M N.P we require that SORT(M) / SORT(N). In an Input
M(�ex)X.P we require that ex 2 VARS(X) is a tuple of pair-
wise different names and SORT(M) / SORT(X). In a Restriction
(⌫a)P we require that SORT(a) 2 S

⌫

.

The output prefix M N.P sends N on a channel that is con-
nected to M . Dually, M(�ex)X.P receives a message matching
the pattern X from a channel connected to M . A non-deterministic

case statement case '1 : P1 [] · · · [] '
n

: P

n

executes one of the
branches P

i

where the corresponding condition '
i

holds. Restric-
tion (⌫a)P scopes the name a in P ; the scope of a may be extruded
if P communicates a data term containing a. A parallel composi-
tion P | Q denotes P and Q running in parallel; they may pro-
ceed independently or communicate. A replication !P models an
unbounded number of copies of the process P . The assertion (| |)
contributes to the current assertion with the information in . We
often write if ' then P for case ' : P , and nothing or 0 for the
empty case statement case.

Example 10. In Example 7, the pattern ? may never occur in a
well-formed agent: VARS(?) = ;,
so ex 2 VARS(?) is impossible.

2.6 Frames and transitions
A frame F can intuitively be thought of as an assertion with lo-
cal names, written (⌫e

b) where e
b is a sequence of names that

bind into the assertion . We use F, G to range over frames, and
identify alpha-equivalent frames. We overload ⌦ to frame compo-
sition defined by (⌫ e

b1) 1⌦(⌫ e
b2) 2 = (⌫ e

b1
e
b2)(1⌦ 2) where

e
b1# e

b2, 2 and vice versa. We write ⌦F to mean (⌫✏) ⌦F , and
(⌫c)((⌫e

b)) for (⌫ce
b) .

Intuitively a condition is entailed by a frame if it is entailed by
the assertion and does not contain any names bound by the frame,
and two frames are equivalent if they entail the same conditions.
Formally, we define F ` ' to mean that there exists an alpha vari-
ant (⌫e

b) of F such that e
b#' and ` '. We also define F ' G

to mean that for all ' it holds that F ` ' iff G ` '.
The frame F(P) of an agent P is defined inductively as follows:

F(M(�ex)N . P) = F(M N . P) = F(case e' : e
P) = F(!P) = 1

F((| |)) = (⌫✏)
F(P | Q) = F(P)⌦F(Q)
F((⌫b)P) = (⌫b)F(P)

The actions ranged over by ↵,� are of the following three
kinds: Output M (⌫ea) N where ã ✓ n(N), Input M N , and Silent
⌧ . Here we refer to M as the subject and N as the object. We define
bn(M (⌫ã) N) = ã, and bn(↵) = ; if ↵ is an input or ⌧ . We also
define n(⌧) = ; and n(↵) = n(M) [n(N) for the input and
output actions. We write MhNi for M (⌫") N .

Definition 11 (Transitions). A transition is written ⇤ P

↵�! P

0,
meaning that in the environment the well-formed agent P can
do an ↵ to become P

0. The transitions are defined inductively
in Table 1. We write P

↵�! P

0 without an assertion to mean
1 ⇤ P

↵�! P

0.

The operational semantics is the same as for the original psi-
calculi, except for the use of MATCH in rule IN. We identify alpha-
equivalent agents and transitions (see [5] for details). In a transition
the names in bn(↵) bind into both the action object and the deriva-
tive, therefore bn(↵) is in the support of ↵ but not in the support
of the transition. This means that the bound names can be cho-
sen fresh, substituting each occurrence in both the action and the
derivative.

As shown in the introduction, well-formedness is not preserved
by transitions in the original psi-calculi. However, in sorted psi-
calculi the usual well-formedness preservation result holds.

Lemma 12. If P is well-formed, then P� is well-formed.

Proof. By induction on P . The output case uses the sort preserva-
tion property of substitution on terms (Definition 4). The interest-
ing case is input M(�ex)X.Q: assume that Q is well-formed, that
ex 2 VARS(X), that SORT(M) / SORT(X) and that ex#�.

short description of paper 4 2012/6/13

restriction

Goal: flexible definition of “well-formed”

name, term, and pattern sorting

a.k.a. Types

Polyadic Pi-calculus

vars(hãi) = {ã}

match(hãi, x̃, hx̃i) = {ã} if |ã| = |x̃|

sort(a) = chan
sort(ã) = tup
/ = / = {(chan, tup)}

a channel can send/
receive a tuple

all names in input
pattern must be bound

a(�x̃)hx̃i.P

 matches the pattern binding , then substituting forhx̃ihãi
x̃

x̃ã

c(�x̃)hx̃i.P c ã��! P [x̃ := ã]

Formal correspondence of transitions
and equivalence

Results
• More expressive framework

• Captures many previous process calculi

• Better precision for defining terms

• Well-sortedness is preserved by transitions

• Previous results for psi still hold

• Implemented in Pwb

99999

The Psi-Calculi Workbench: a Generic Tool for Applied Process
Calculi

Submitted to Special Issue on Application of Concurrency to System Design

Johannes Borgstr

¨

om, Ram¯unas Gutkovas, Ioana Rodhe and Bj

¨

orn Victor, Uppsala
University

Psi-calculi is a parametric framework for extensions of the pi-calculus with arbitrary data, and logic. All
instances of the framework inherit machine-checked proofs of the meta-theory such as compositionality and
bisimulation congruence. We present a generic analysis tool for psi-calculus instances, enabling symbolic
execution and (bi)simulation checking for both unicast and broadcast communication. The tool also provides
a library for implementing new psi-calculus instances. We provide examples from traditional communication
protocols and wireless sensor networks. We also describe the theoretical foundations of the tool, including
an improved symbolic operational semantics, with additional support for scoped broadcast communication.

Categories and Subject Descriptors: C.2.2 [Computer-Communication Networks]: Network Protocols—
Protocol Verification; D.2.2 [Software Engineering]: Design tools and techniques; I.1.4 [Symbolic and

Algebraic Manipulation]: Applications

General Terms: Design, Theory, Verification

Additional Key Words and Phrases: Wireless sensor networks, process calculi, symbolic semantics

ACM Reference Format:

Johannes Borgström, Ramūnas Gutkovas, Ioana Rodhe and Björn Victor, 2014. The Psi-Calculi Workbench:
a Generic Tool for Applied Process Calculi. ACM Trans. Embedd. Comput. Syst. 999, 9999, Article 99999
(Month 2014), 25 pages.
DOI:http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION
The development of concurrent systems is greatly helped by the use of precise and
formal models of the system. There are many different formalisms for concurrent sys-
tems, often in specialised versions for particular application areas. For each formalism,
tool support is necessary for constructing and reasoning about models of non-trivial
systems. This paper describes such tool support for a generic semantic framework for
process calculi with mobility. Thus, instead of developing a separate tool for each sep-
arate process calculus, we develop one single generic tool for a whole family of process
calculi.

Psi-calculi [Bengtson et al. 2011] is a parametric semantic framework based on the
pi-calculus [Milner et al. 1992a], adding the possibility to tailor the data language and
logic for each application. The framework provides a variety of features, such as lexi-
cally scoped local names for resources, communication channels as data, both unicast

This work has been supported by the ProFun project. Author’s addresses: Uppsala University, Dept. of IT,
Box 337, 751 05 Uppsala, Sweden.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c� 2014 ACM 1539-9087/2014/00-ART99999 $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Embedded Computing Systems, Vol. 999, No. 9999, Article 99999, Publication date: Month 2014.

Alastair F. Donaldson, Vasco Vasconcelos (Eds.): Proceedings
of the 7th Workshop on Programming Language Approaches
to Concurrency and Communication-cEntric Software (PLACES 2014)
EPTCS 155, 2014, pp. 25–31, doi:10.4204/EPTCS.155.4

Session Types for Broadcasting

Dimitrios Kouzapas
University of Glasgow

dimitrios.kouzapas@glasgow.ac.uk

Ramūnas Gutkovas
Uppsala University

ramunas.gutkovas@it.uu.se

Simon J. Gay
University of Glasgow

simon.gay@glasgow.ac.uk

Up to now session types have been used under the assumptions of point to point communication,
to ensure the linearity of session endpoints, and reliable communication, to ensure send/receive du-
ality. In this paper we define a session type theory for broadcast communication semantics that by
definition do not assume point to point and reliable communication. Our session framework lies
on top of the parametric framework of broadcasting ψ-calculi, giving insights on developing session
types within a parametric framework. Our session type theory enjoys the properties of soundness and
safety. We further believe that the solutions proposed will eventually provide a deeper understanding
of how session types principles should be applied in the general case of communication semantics.

1 Introduction

Session types [5, 7, 6] allow communication protocols to be specified as types and verified by type-
checking. Up to now, session type systems have assumed reliable, point to point message passing com-
munication. Reliability is important to maintain send/receive duality, and point to point communication
is required to ensure session endpoint linearity.

In this paper we propose a session type system for unreliable broadcast communication. Developing
such a system was challenging for two reasons: (i) we needed to extend binary session types to handle
unreliability as well as extending the notion of session endpoint linearity, and (ii) the reactive control
flow of a broadcasting system drove us to consider typing patterns of communication interaction rather
than communication prefixes. The key ideas are (i) to break the symmetry between the s+ and s− end-
points of channel s, allowing s+ (uniquely owned) to broadcast and gather, and s− to be shared; (ii) to
implement (and type) the gather operation as an iterated receive. We retain the standard binary session
type constructors.

We use ψ-calculi [1] as the underlying process framework, and specifically we use the extension
of the ψ-calculi family with broadcast semantics [2]. ψ-calculi provide a parametric process calculus
framework for extending the semantics of the π-calculus with arbitrary data structures and logical as-
sertions. Expressing our work in the ψ-calculi framework allows us to avoid defining a new operational
semantics, instead defining the semantics of our broadcast session calculus by translation into a broadcast
ψ-calculus. Establishing a link between session types and ψ-calculi is therefore another contribution of
our work.
Intuition through Demonstration. We demonstrate the overall intuition by means of an example.

For the purpose of the demonstration we imply a set of semantics, which we believe are self explanatory.
Assume types S =!T ;?T ;end, S =?T ; !T ;end for some data type T , and typings s+ : S, s− : S, a : ⟨S⟩,
v : T . The session type prefix !T means broadcast when used by s+, and single destination send when
used by s−. Dually, ?T means gather when used by s+, and single origin receive when used by s−.
Session Initiation through broadcast, creating an arbitrary number of receiving endpoints:
as−.P0 | ax.P1 | ax.P2 | ax.P3 −→ P0 | P1{s−/x} | P2{s−/x} | ax.P3

A SORTED SEMANTIC FRAMEWORK
FOR APPLIED PROCESS CALCULI

JOHANNES BORGSTRÖM, RAMŪNAS GUTKOVAS, JOACHIM PARROW, BJÖRN VICTOR,
AND JOHANNES ÅMAN POHJOLA

Abstract. Applied process calculi include advanced programming constructs such as
type systems, communication with pattern matching, encryption primitives, concurrent
constraints, nondeterminism, process creation, and dynamic connection topologies. Several
such formalisms, e.g. the applied pi calculus, are extensions of the the pi-calculus; a growing
number is geared towards particular applications or computational paradigms.

Our goal is a unified framework to represent di↵erent process calculi and notions of
computation. To this end, we extend our previous work on psi-calculi with novel abstract
patterns and pattern matching, and add sorts to the data term language, giving su�cient
criteria for subject reduction to hold. Our framework can accommodate several existing
process calculi; the resulting transition systems are isomorphic to the originals up to
strong bisimulation. We also demonstrate di↵erent notions of computation on data terms,
including cryptographic primitives and a lambda-calculus with erratic choice. Finally, we
prove standard congruence and structural properties of bisimulation; substantial parts of
the proof have been machine-checked using Nominal Isabelle.

1. Introduction

There is today a growing number of high-level constructs in the area of concurrency. Ex-
amples include type systems, communication with pattern matching, encryption primitives,
concurrent constraints, nondeterminism, and dynamic connection topologies. Combinations
of such constructs are included in a variety of application oriented process calculi. For each
such calculus its internal consistency, in terms of congruence results and algebraic laws,
must be established independently. Our aim is a framework where many such calculi fit
and where such results are derived once and for all, eliminating the need for individual
proofs about each calculus.

Our e↵ort in this direction is the framework of psi-calculi [BJPV11], which provides
machine-checked proofs that important meta-theoretical properties, such as compositional-
ity of bisimulation, hold in all instances of the framework. We claim that the theoretical
development is more robust than that of other calculi of comparable complexity, since we
use a structural operational semantics given by a single inductive definition, and since we
have checked most results in the theorem prover Nominal Isabelle [Urb08].

LOGICAL METHODS
IN COMPUTER SCIENCE DOI:10.2168/LMCS-???

c� J Borgström, R Gutkovas, J Parrow, B Victor, and J Åman Pohjola
Creative Commons

1

Personal Contributions

The Psi-Calculi Workbench: a
Generic Tool for Applied Process

Calculi

Session Types for
Broadcasting

A Sorted Semantic
Framework for Applied

Process Calculi

• Design, and
• Implementation of Pwb
• and examples
• Contributed text to the

paper

• Idea of applying
session types to
unreliable broadcast

• Reduction semantics
for psi

• Helped define the
system

• Some text
• Proofs

• About half of the
manual proofs

• Sorts in Pwb

Conclusion

• A parametric verification tool the Psi-Calculi
Workbench

• Session types for broadcast communication and
unreliable systems

• More expressivity: generalised pattern-matching
and sorts

Made it possible to model more

complicated systems

Straightforward protocol specification
with safety guarantees

Made psi-calculi more expressive

Future Work
• Algebras of Psi-calculi

• Nominal transition system specification

• Modal logics for Psi

• Models of Psi-calculi

• More case-studies

Build more complex models out of simpler

Factory of tool factory

Fine grained reasoning: safety & liveness

Efficient representations

More WSNs

Thank you for listening

