Advancing Concurrent
System Verification

Type Based Approach and Tools

Ramunas Gutkovas

Licentiate Seminar
2014 October 20

Uppsala University

Supported by ProFuN

In 2010, Toyota 400,000 vehicles

to correct a “ ”in ABS

Formal Verification |

| Show the absence of .
* bugs! “

-

Toyota Prius

esting shows the presence, not the absence of bugs!
- E. W. Dijkstra

Background

Wireless Sensor Network

ProFuN project

Wireless Sensor Network

ProFuN project

*‘. e

Wireless Sensor Network

ProFuN project

7z 7 A7 A

, sy
7 \\\\.\

DAY b e A /4 Y /4

—_—t T
A '
& Mt Dainichi
XBE

@V

: > '.,,:__‘__ -

/ VEngE
<z ,

5 H
At Sumon ., <.~ - 1
'&"HQS:

N
()

iMo

175

Mt Taishaku '
? BRW - L
! X " .@‘ ~ &
Lake Ozenuma
Eﬂ;g' o \)‘ \

#Lake Chuzenji
e

-)

O '.:::‘ L j.u
Mount Akagi o= fro \‘.' omiya #ES
BB EHE

TR Kanum
() . &R

Psl-calcull

A
ADD
PSI- |

® A family of languages, known as process
calculi, for modelling concurrent systems

® A framework for mobile process calcul
(“pi-calculus extensions”) for applications

® Straightforward semantics, reusable theory
(holds In all psi-calculi)

® Correct: machine-checked proofs! (Isabelle
with Nominal Package)

Syntax

Parameters:
output M N i/ObJeCt M, N:T (terms)
subjects :' pattern ¥ : C (conditions)
| ~ \U': A (assertions)
input M()\'T P
assertion (‘ v D EGE condition
' like guarded
: o : commands,
case 1 . P 1 U H P” if-then-else

the usual: 0 (va)P P|Q ' P

Cook a psi-calculus

Define terms T (e.g. data terms, channels) M, N
conditions C (e.qg. for if-then-else) SQ

assertions A (statements about e.g. terms) \IJ

can be practically anything

Cook a psi-calculus

Define terms T, conditions C, assertions A M, N
¥ v

Define substitution on these (satisfy axioms)

. a:= M]
Define operators:
< TxT — C Channel equivalence .\@
R:A XA = A Composition Qé&
1: A Unit assertion o

| &
FC A x C Entailment (§>
Q

2 - TxT—=C Broadcast Output Connectivity
« - T xT — C Broadcast Input Connectivity

Example

= b M :=init(M) |a|i€eN

= G pu=M=M|M-~< M

UeA Uo=M<M U |e¢
nit(1)123.0

init(2)(Ax)x.0
init(3)(Ay)y.casey=3: P

(2 L — &)

Example

MeT M ::=init(M)|al|ieN
g eC pou=M=M |M< M
veA Uou=M<M,U]|ec

Transition relation ~ semantics

In it(l) 123.0 action/behaviour 0
init(2)(Ax)x.0 0
init(3)(\y)y.casey =3 : P case 123 = 3 : Ply := 123]

(1<2,1=<3) (1<21<3)

Example

N = M ::=init(M)|al|ieN
o€ C pu=M=M|M=<M
= \IJ:::M<M’,\I/\6
T, M < M - init(M) < init(M)
UEM=Mif M = M]
init(1)123.0 @ 0
init(2)(A\x)x.0 /\ 0
init(3)(A\y)y.casey =3 : P case 123 = 3 : Ply := 123]

(2 | 11 <2,1<3)

Advancing Concurrent
System Veritication

» A tool factory the Psi-Calculi Workbench for
concurrent system veritication

e Session types for broadcast communication and
unreliable systems

 More expressivity: generalised pattern-matching
and sorts for psi-calculi

Type Based Approach and Tools

The Psi-Calculi Workbench: a
Generic Tool for Applied Process

Calculi

The Psi-Calculi Workbench: a Generic Tool for Applied Process
Calculi

Submitted to Special Issue on Application of Concurrency to System Design

Johannes Borgstréom, Raminas Gutkovas, loana Rodhe and Bjérn Victor, Uppsala
University

Psi-calculi is a parametric framework for extensions of the pi-calculus with arbitrary data, and logic. All
instances of the framework inherit machine-checked proofs of the meta-theory such as compositionality and
bisimulation congruence. We present a generic analysis tool for psi-calculus instances, enabling symbolic
execution and (bi)simulation checking for both unicast and broadcast communication. The tool also provides
alibrary for implementing new psi-calculus instances. We provide examples from traditional communication
protocols and wireless sensor networks. We also describe the theoretical foundations of the tool, including
an improved symbolic operational semantics, with additional support for scoped broadcast communication.
Categories and Subject Descriptors: C.2.2 [Computer-Communication Networks]: Network Protocols—
Protocol Verification; D.2.2 [Software Engineering]: Design tools and techniques; 1.1.4 [Symbolic and
Algebraic Manipulation]: Applications
General Terms: Design, Theory, Verification
Additional Key Words and Phrases: Wireless sensor networks, process calculi, symbolic semantics
ACM Reference Format:

Johannes Borgstrom, Ramunas Gutkovas, Ioana Rodhe and Bjorn Victor, 2014. The Psi-Calculi Workbench:
a Generic Tool for Applied Process Calculi. ACM Trans. Embedd. Comput. Syst. 999, 9999, Article 99999
(Month 2014), 25 pages.

DOI : http:/dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION

The development of concurrent systems is greatly helped by the use of precise and
formal models of the system. There are many different formalisms for concurrent sys-
tems, often in specialised versions for particular application areas. For each formalism,
tool support is necessary for constructing and reasoning about models of non-trivial
systems. This paper describes such tool support for a generic semantic framework for
process calculi with mobility. Thus, instead of developing a separate tool for each sep-
arate process calculus, we develop one single generic tool for a whole family of process
calculi.

Psi-calculi [Bengtson et al. 2011] is a parametric semantic framework based on the
pi-calcul 3 AN 3 A % age and
logic for as lexi-

SoEbRE S

Dept. of IT,

This work
]
> is granted

To appear in
Copyrights
edit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
© 2014 ACM 1539-9087/2014/00-ART99999 $15.00
DOI : http:/dx.doi.org/10.1145/0000000.0000000

ACM Tr ions on Embedded C Systems, Vol. 999, No. 9999, Article 99999, Publication date: Month 2014.

Session Types for
Broadcasting

Session Types for Broadcasting

Dimitrios Kouzapas Ramiinas Gutkovas Simon J. Gay
University of Glasgow Uppsala University University of Glasgow

dimitrios.kouzapas@glasgow.ac.uk ramunas.gutkovas@it.uu.se simon.gay@glasgow.ac.uk

Up to now session types have been used under the assumptions of point to point communication,
to ensure the linearity of session endpoints, and reliable communication, to ensure send/receive du-
ality. In this paper we define a session type theory for broadcast communication semantics that by
definition do not assume point to point and reliable communication. Our session framework lies
on top of the parametric framework of broadcasting -calculi, giving insights on developing session
types within a parametric framework. Our session type theory enjoys the properties of soundness and
safety. We further believe that the solutions proposed will eventually provide a deeper understanding
of how session types principles should be applied in the general case of communication semantics.

1 Introduction

Session types [5, 7, 6] allow communication protocols to be specified as types and verified by type-
checking. Up to now, session type systems have assumed reliable, point to point message passing com-
munication. Reliability is important to maintain send/receive duality, and point to point communication
is required to ensure session endpoint linearity.

In this paper we propose a session type system for unreliable broadcast communication. Developing
such a system was challenging for two reasons: (i) we needed to extend binary session types to handle
unreliability as well as extending the notion of session endpoint linearity, and (ii) the reactive control
flow of a broadcasting system drove us to consider typing patterns of communication interaction rather
than communication prefixes. The key ideas are (i) to break the symmetry between the s and s~ end-
points of channel s, allowing st (uniquely owned) to broadcast and gather, and s~ to be shared; (ii) to
implement (and type) the gather operation as an iterated receive. We retain the standard binary session
type constructors.

We use 1-calculi [1] as the underlying process framework, and specifically we use the extension
of the y-calculi family with broadcast semantics [2]. 1-calculi provide a parametric process calculus
framework for extending the semantics of the m-calculus with arbitrary data structures and logical as-
sertions. Expressing our work in the -calculi framework allows us to avoid defining a new operational
semantics, instead defining the semantics of our broadcast session calculus by translation into a broadcast
y-calculus. Establishing a link between session types and y-calculi is therefore another contribution of
our work.

Intuition through De) by means of an example.
For the purpose of the dem| P I_ A C E S 1 4 elieve are self explanatory.
Assume types S =!T;7T;¢ vings 5T : S, 57 : S, a:(S),
v:T. The session type prefix ' 5 ngle destination send when
used by s~. Dually, ?T means gather when used by s, and single origin receive when used by s~.

Session Initiation through broadcast, creating an arbitrary number of receiving endpoints:

as Py |ax.Py |ax.P, | ax.Ps — Py | Pi{s™ /x} | Po{s™ /x} | ax.P3

€dnsS broadcasr wnen usea oy dna

Alastair F. Donaldson, Vasco Vasconcelos (Eds.): Proceedings

of the 7th Workshop on Programming Language Approaches

to Concurrency and Communication-cEntric Software (PLACES 2014)
EPTCS 155, 2014, pp. 25-31, doi:10.4204/EPTCS.155 .4

-3
A Sorted Semantic
Framework for Applied
Process Calculi

A SORTED SEMANTIC FRAMEWORK
FOR APPLIED PROCESS CALCULI

JOHANNES BORGSTROM, RAMUNAS GUTKOVAS, JOACHIM PARROW, BJORN VICTOR,
AND JOHANNES AMAN POHJOLA

ABSTRACT. Applied process calculi include advanced programming constructs such as
type systems, communication with pattern matching, encryption primitives, concurrent
constraints, nondeterminism, process creation, and dynamic connection topologies. Several
such formalisms, e.g. the applied pi calculus, are extensions of the the pi-calculus; a growing
number is geared towards particular applications or computational paradigms.

Our goal is a unified framework to represent different process calculi and notions of
computation. To this end, we extend our previous work on psi-calculi with novel abstract
patterns and pattern matching, and add sorts to the data term language, giving sufficient
criteria for subject reduction to hold. Our framework can accommodate several existing
process calculi; the resulting transition systems are isomorphic to the originals up to
strong bisimulation. We also demonstrate different notions of computation on data terms,
including cryptographic primitives and a lambda-calculus with erratic choice. Finally, we
prove standard congruence and structural properties of bisimulation; substantial parts of
the proof have been machine-checked using Nominal Isabelle.

1. INTRODUCTION

There is today a growing number of high-level constructs in the area of concurrency. Ex-
amples include type systems, communication with pattern matching, encryption primitives,
concurrent constraints, nondeterminism, and dynamic connection topologies. Combinations
of such constructs are included in a variety of application oriented process calculi. For each
such calculus its internal consistency, in terms of congruence results and algebraic laws,
must be established independently. Our aim is a framework where many such calculi fit
and where such gy o T e i g v - Ry
proofs about ead

Our effort i
machine-checked

GG 14
ity of bisimulati 3 i
development is 1 S b m -tt d t I_ I\/l ‘ : S since we
use a structural U | e O since we

have checked md

LOGICAL METHODS © JBorgstrdm, R Gutkovas, J Parrow, B Victor, and J Aman Pohjola
IN COMPUTER SCIENCE DOI:10.2168/LMCS-??? Creative Commons

Contributions

lools

Tool is essential for verifying non-trivial systems!

Many tools

mCRL2 SBC PIET
ABC ProVerit

Concurrency Workbench
But specialised Mobility Workbench

Petruchio

PAT3

Psi-Calculi Workbench

™

e e
s e SO 4 2

e Jool factory: define your own tool!

 Based on the parametric psi-calculi framework

Features

Communication .
O O Parametric On

Primitives
Data Structures
O .
_ e.g., Names, Bits, Vectors, ADTs, Trees, ...
Unicast o—/OQ O
o O Logics

e.g., EUF, FOL, Equational Theory, ...

Wireless —O Logical Assertions
Broadcast %
e.g., Knows a secret, Connectivity,

Constraints...

PwD Functionality

Symbolic Execution

87
Up>P — P
C\ S Symbolic Constraints

Symbolic Behavioral Equivalence Checking

P~Q

Parametric Architecture
Pwb

Command Interpreter

Symbolic Equivalence Checker

Symbolic Execution

Psi Calculi Core

Supporting library

Parametric Architecture
User Supplied Pwb

:l :/ Command Interpreter
_ Symbolic Equivalence Checker

 Execution Constraint Solver Symbolic Execution
— 3

Supporting library

Data Collection in Wireless
Sensor Networks

Q/O)
1.Routing tree
2.Data collection _—O
O
@\>

Specification in Pwb

. Node Connectivity for
Node Behavior 3roadcasting

Sink(nodeId, sinkChan) <= Sink
'"init(nodeld)"! <sinkChan> .
I "data(sinkChan)"(x). ProcData<x> ;

Node (nodeId, nodeChan, datum) <=
"init(nodeId)"? (chan) .
""init(nodelId)"! <nodeChan> .
'"data(chan) "<datum> .

I "data(nodeChan)"(x).
'"data(chan)"<x> ;

SyStem Node Node
| raph represented as edge list
(new chanl) Node<l, chanl, datuml> |) £ 9

(new chan2) Node<2, chan2, datum2>
(O)l)) (@,2), (132)

Example [ransition

| Sink
(new chanl) Node<l, chanl, datuml> |
(new chan2) Node<2, chan2, datum2> sinkChanxﬁ’---. 0 '--."“~‘sinkChan

4) 3
’ : . Y
4 ° . L

"init(0)"! (new sinkChan)sinkChan

true Ak/Q?

(! ("data(sinkChan)" (gnb). ProcData<gnb>))
(((new chanl) (
""init(1)"!<chanl>.
'"data(sinkChan) "<datuml>.
I ("data(chanl) " (gnb).
'"data(sinkChan)"<gnb>))) |
((new chan2) (<--- broadcasts
""init(2)"!<chan2>. :
'"data(sinkChan)"<datum2>. G can unicast
' ("data(chan2)'"(gnb).
'"data(sinkChan)"<gnb>))))

1
1
1
|
I
1

! |

1
I
|
1
1
| |
| |
|)

Node Node

Example Summary

 Executable model of an aggregation-tree building
porotocol

» Connectivity graph expressed as an assertion
(possible to add and remove edges at runtime)

e Mix of wireless broadcast and reliable unicast
communication

Session Types

Specification of process that checks equality over a channel of type

CheqEqSrv =7[int].?[int].![bool|.end

Possible implementation

Srvimp(c) = ¢(x).c(y).case x = y : ctrue.0 | x # y : cfalse.O

Session Types

Specification of process that checks equality over a channel of type

CheqEqSrv =7[int].?[int].![bool|.end
Cit 1[int]fint].?[bool] end

Possible implementation

.c(y).case x = y : ctrue.0 | x # y : cfalse.O

Session Types

Specification of process that checks equality over a channel of type

CheqEqSrv =7?[int].?]int|.![bool|.end
Clt =![int].![int].?|bool|.end

Possible implementation

Srvimp(c) = ¢(x).c(y).case x = y : ¢true.0 | z # y : cfalse.O

CltImp(k) = k1.k2.k(b
mp(F) ()-0 c™ : CheqEqSrv

¢~ : Clt = CheqEqSrv
(Vc)(SrVImp(c+) | CltImp(c™))

Session Types

Structured Description of a protocol
Specifies direction and data carried over channel
Abstract specification

Safety: progress, session fidelity

Broadcast Session Types

e First Application of session types to Unreliable and
Broadcast communication systems

* Types for scatter & gather communication pattern

Scatter & Gather

‘ ctz.ct(y).P

-Rmtraking of session state |
' *Extended notion of duality

¢t :int].?[int].T

Unreliability

Let process recover

w 12 D AT

| ¢2.0)

Process no longer consistent with the type!

Results

 We are the first to introduce session types to
unreliable and broadcast systems

 Well-typed processes always transition to well-
typed processes

* Well-typed process does not reduce to an error

Crypto Example

Term for encryption enc(M, K)

< 3

(vk)(Menc(a, k).P) | M(Axz,y)enc(z,y).Q)
— (Vk)(P | Qlx :=a,y := k)

(vk)(Menc(a, k).P | M(A\x)enc(x

We need a way to control what are pattern variables

Knowledge of the key

Computation

Useful computation to have as part of substitution
dec(enc(M,K),K) - M

However, the substitutions are not allowed to lose nhames

dec(enc(a, b),b)|b := k] %/

k does not appear in the result

Generalised Pattern Matching

User defined pattern matchin. N
Relaxes requirement on the substitution. M()\[E)X.P

X patterns, ranged over by X, Y well-formed if
T € VARS(X)
MATCH : T xN* x X — P(T*) Pattern matching
VARS : X — P(P(N)) Pattern variables

-

Signifies which names are patterns

EX:
VARS(enc(m, k) = {{m}} M(Am)enc(m,k).P

M (Am, k)enc(m, k).P

Results

did not break psi

* Previous Psi results hold: compositional semantics,
behavioural equivalence is a congruence

* well-formedness of processes is preserved by
transitions

/

P—- P
well-formed / well-formed

Polyadic communication

Polyadic pi-calculus

a(x1,...,Tn).P

Piby,....b,/x1,..., 2y
 Gbi, .. b Q — P 1 He

Should be easy to express in Psi

Let'stake T =N +

Substitution needs to be a total function

(a,b,c)]a := (c,d)] = ((¢,d), b, c) Z N*

N

unk

Solution

Allow ((c,d),b,c) T=TUN

Set to error
(@b ella—llc d|— cmor i =N legion)

Allow substitution to be a partial function

Better yet! Type to disallow ‘bad’ substitutions
from arising.

a.k.a. Types

Sorts

Goal: flexible definition of “well-formed”

SORT : NUTUX — S name, term, and pattern sorting

Is well-sorted ift
substitution (@ := N] SORT(CL7;®ORT(N7;)

restriction (va)P SORT(a)

output M N.P

input M(Az)X.P SORT (M)(o< SORT(X)

Polyadic Pi-calculus

SORT(a) = chan

a channel can send/

a
SORT(CL) tup receive a tuple

X = x = {(chan, tup)}

VARS((a)) = {a} all names in input a(AZ)(Z).P
pattern must be bound

MATCH((d), 7, (7)) = {a} if |a| = |7|

(@)ymatches the pattern (Z) binding Z, then substituting a forZ

cO\IF).P £% Pl7 =

Formal correspondence of transitions

and equivalence

Results

More expressive framework

Captures many previous process calculi
Better precision tfor defining terms
Well-sortedness Is preserved by transitions
Previous results for psi still hold

Implemented in Pwb

Personal Contributions

The Psi-Calculi Workbench: a
Generic Tool for Applied Process

Calculi

The Psi-Calculi Workbench: a Generic Tool for Applied Process
Calculi

Submitted to Special Issue on Application of Concurrency to System Design

Johannes Borgstréom, Raminas Gutkovas, loana Rodhe and Bjérn Victor, Uppsala
University

Psi-calculi is a parametric framework for extensions of the pi-calculus with arbitrary data, and logic. All
instances of the framework inherit machine-checked proofs of the meta-theory such as compositionality and
bisimulation congruence. We present a generic analysis tool for psi-calculus instances, enabling symbolic
execution and (bi)simulation checking for both unicast and broadcast communication. The tool also provides
alibrary for implementing new psi-calculus instances. We provide examples from traditional communication
protocols and wireless sensor networks. We also describe the theoretical foundations of the tool, including
an improved symbolic operational semantics, with additional support for scoped broadcast communication.

Categories and Subject Descriptors: C.2.2 [Computer-Communication Networks]: Network Protocols—
Protocol Verification; D.2.2 [Software Engineering]: Design tools and techniques; 1.1.4 [Symbolic and
Algebraic Manipulation]: Applications

JAPSSORNR Y, NN U, | ISR | Ay SO

e Design, and

e Implementation of Pwb
e and examples

e Contributed text to the

paper

—_— ———

This work has been supported by the ProFun project. Author’s addresses: Uppsala University, Dept. of IT,
Box 337, 751 05 Uppsala, Sweden.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.

© 2014 ACM 1539-9087/2014/00-ART99999 $15.00

DOI : http:/dx.doi.org/10.1145/0000000.0000000

ACM Tr ions on Embedded C ing Systems, Vol. 999, No. 9999, Article 99999, Publication date: Month 2014.

Session Types for
Broadcasting

Session Types for Broadcasting

Dimitrios Kouzapas Ramiinas Gutkovas Simon J. Gay
University of Glasgow Uppsala University University of Glasgow
dimitrios.kouzapas@glasgow.ac.uk ramunas.gutkovas@it.uu.se simon.gay@glasgow.ac.uk

Up to now session types have been used under the assumptions of point to point communication,
to ensure the linearity of session endpoints, and reliable communication, to ensure send/receive du-
ality. In this paper we define a session type theory for broadcast communication semantics that by
definition do not assume noint to noint and reliable communication. Onr session framework lies

e |[dea of applying
session types to
unreliable broadcast

¢ Reduction semantics
for psi

e Helped define the
system

e Some text

¢ Proofs

as” Ry |ax-Py|ax.By | ax.Ps — By | Pi{s™ /x} | B {s™ /X} [ax.P3

Alastair F. Donaldson, Vasco Vasconcelos (Eds.): Proceedings

of the 7th Workshop on Programming Language Approaches

to Concurrency and Communication-cEntric Software (PLACES 2014)
EPTCS 155, 2014, pp. 25-31, doi:10.4204/EPTCS.155 .4

A Sorted Semantic
Framework for Applied
Process Calculi

A SORTED SEMANTIC FRAMEWORK
FOR APPLIED PROCESS CALCULI

JOHANNES BORGSTROM, RAMUNAS GUTKOVAS, JOACHIM PARROW, BJORN VICTOR,
AND JOHANNES AMAN POHJOLA

*. Applied process calculi include advanced programming constructs such as
stems, communication with pattern matching, encryption primitives, concurrent
constraints, nondeterminism, process creation, and dynamic connection topologies. Several
such formalisms, e.g. the applied pi calculus, are extensions of the the pi-calculus; a growing
number is geared towards particular applications or computational paradigms.

:e About half of the :

» manual proofs
e Sorts in Pwb

There is today a growing number of high-level constructs in the area of concurrency. Ex-
amples include type systems, communication with pattern matching, encryption primitives,
concurrent constraints, nondeterminism, and dynamic connection topologies. Combinations
of such constructs are included in a variety of application oriented process calculi. For each
such calculus its internal consistency, in terms of congruence results and algebraic laws,
must be established independently. Our aim is a framework where many such calculi fit
and where such results are derived once and for all, eliminating the need for individual
proofs about each calculus.

Our effort in this direction is the framework of psi-calculi [BJPV11], which provides
machine-checked proofs that important meta-theoretical properties, such as compositional-
ity of bisimulation, hold in all instances of the framework. We claim that the theoretical
development is more robust than that of other calculi of comparable complexity, since we
use a structural operational semantics given by a single inductive definition, and since we
have checked most results in the theorem prover Nominal Isabelle [Urb08].

LOGICAL METHODS @© JBorgstrdm, R Gutkovas, J Parrow, B Victor, and J Aman Pohjola
IN COMPUTER SCIENCE DOI:10.2168/LMCS-??? Creative Commons

Conclusion

 More expressivity: generalised pattern-matching

and sorts '
| VE
Maade ps'\-ca\cu\\ more express!

Future Work

Build more compl

Algebras of Psi-calcull

Nominal transition system specitication

Modal logics for P
Models of Psi-calculi

More case-studies

Fine grained reasoning: safety

ex models out Of simpler

Factory of tool factory

& liveness

Efficient representations

Thank you for listening

