
LANGUAGES, LOGICS, TYPES
AND TOOLS FOR CONCURRENT

SYSTEM MODELLING

Ramūnas Gutkovas

2016-12-14 NOVA LINCS

ramunas@fct.unl.pt

mailto:ramunas@fct.unl.pt

A LITTLE ABOUT MYSELF

2007 BSc

Startup
2007-2009

Kaunas, Lithuania

Uppsala, Sweden

2011 MSc

2016 PhD

BUGS

OR, WHEN MACHINES GO WRONG

EXPENSIVE BUGS

Ariane 5 went “poof”, 1996

$ 500 million loss

Pentium FDIV bug, 1994

$475 million worth of recalls

Integer Overflow

goo.gl/bU36B2

http://goo.gl/bU36B2

KILLER BUGS
Therac-25, 1980s

Due to a race condition
produced a lethal radiation burst

5 killed

Toyota, 2010

Unintended acceleration
Software bug

89 killed

SECURITY
Heartbleed

OpenSSL

A bug that allows to obtain keys
Most of the internet affected

Microsoft calls them 1 million dollar bugs!
goo.gl/GVQIlC
Many more:

SSL is foundation for ecommerce.

Data race in the linux kernel
since 2007 allows to escalate

privileges

Millions of Android devices
vulnerable

CVE-2016-5195

http://goo.gl/GVQIlC

UNPRECEDENTED
IMPLICATIONS

Celebgate

Celebrity Apple’s iCloud
accounts hacked

Voldemord

Influence foreign
government elections

STANDARD APPROACH:
TESTING

TESTING CAN’T BE COMPLETE

int multiply (int x, int y)

Suppose int is 32 bits

Thus, there are 264 inputs

Intel Core i7 5960X (8 core)

can do about 238 instructions per second

It would take 226 sec ~ 18641 hours ~ 2 years to test

Testing is essential, however, it is not sufficient!

TESTING

…program testing can
be used to show the
presence of bugs, but
never to show their

absence!

E. W. Dijkstra[EWD303]

CONCURRENT SYSTEMS

THE CHALLENGE

An adequate language for describing concurrent systems

Well-founded Verification Technique

A mathematical theory for capturing dynamics, i.e. semantics

find

CALCULUS OF
COMMUNICATING SYSTEMS

[Milner 1980]

a 2 A action

P,Q ::= a.P input
a.P output
0 inaction
t.P silent
P | Q parallel
P+Q sum/choice
!P replication

Figure 2.1. The grammar of a CCS process.

Another way is to introduce recursion, which is familiar to anyone who
has used a modern programming language with recursion. We give names to
processes as

A def
= P,

and then introduce a process
A

that invokes a process by its name. The process A behaves as its defining
process P. The two notions of replication and recursion are strongly related.
We can define the replicated process !P with the definition A def

= P | A, and then
invoke the process A. The other direction is slightly more involved. Returning
to our example, we can define a process that generates indefinitely many clock
signals

CLOCK0 = !tick.0.

The system CLOCK0 | COMPONENT1 | . . . | COMPONENTn then can accommo-
date as many components as necessary.

To summarise, the subset of CCS syntax that we presented here is given in
Figure 2.1. Clearly, CCS is quite abstract and basic, however, it conveniently
captures concurrent system phenomena for modelling: concurrency and syn-
chronous communication. It is certainly more adept and direct at describing
concurrent systems than for example non-deterministic finite automata theory.
In the next section, we will see how CCS can be generalised further to systems
with mobility.

The pi-calculus

The pi-calculus [22, 23]1 generalises CCS by introducing message passing
between processes while preserving synchronous behaviour. The pi-calculus

1The work that introduces the pi-calculus is split into two papers.

27

a.P | a.Q

P Q
aa

(can be extend
with value passing)

Ex.

OBSERVABLE BEHAVIOUR

coffee tea

pay

coffee tea

paypay

OBSERVABLE BEHAVIOUR

coffee tea

pay

coffee tea

pay.(coffee.0 + tea.0)
pay.coffee.0 + pay.tea.0

coffee.0 + tea.0

0 0

paypay

coffee.0 tea.0

0 0

There is nothing canonical
about the choice of the basic

combinators, even though they
were chosen with great

attention to economy. What
characterises our calculus is

not the exact choice of
combinators, but rather the

choice of interpretation and of
mathematical framework.

R. Milner

[Milner 1980]

ALGEBRA OF PROCESSES
Equivalence based on the observable behaviour

Bisimilarity

P ⇠ Q at each state P can perform all the actions of
Q, and vice versa, and states continue to be

bisimilar

P |Q ⇠ Q|P
0|P ⇠ P

0+ P ⇠ P
P +Q ⇠ Q+ P

P |(Q|R) ⇠ (P |Q)|R

Weak bisimilarity

Alg. properties

roughly, ignoring silent actions
P ⇡ ⌧.P

etc.

COMPOSITIONALITY
(Frege’s principle)

Systems built from smaller systems

Component Modularity

Under all contexts a processes behaviour
is indistinguishable (ie. bisimilar)

Ex. if

then R|P .⇠ R|Q

P
.⇠ QA congruence relation

Equivalence (bisimulation)
preserved under all operations

VERIFICATION TECHNIQUE
Specification ≈ Implementation

Specification = pay.(co↵ee.0+tea.0)

Implementation =

pay.(⌫interal)(internal(amount).
if amount = 50

then co↵ee.0 + tea.0
else co↵ee.0 + tea.0

| P)

(weakly) bisimilar

PI-CALCULUS

spi-calculus

applied pi-calculus

concurrent
constraint calculus

polyadic pi-calculus

polyadic synch. pi-calculus

… and myriad of other ‘small’ extensions of pi

[Milner et al. 1991]

CCS
+mobility

+security

+algebraic

PI-CALCULUS

spi-calculus

applied pi-calculus

concurrent
constraint calculus

polyadic pi-calculus

polyadic synch. pi-calculus

… and myriad of other ‘small’ extensions of pi

[Milner et al. 1991]

CCS
+mobility

+security

+algebraic

+ your extension

your pi-calculus

[Milner et al. ECS-LFCS-89-86]

10 pages of proof appendix +
30 main text and proofs

With cheats!

[Bengtson et al. 2011]For examples of bugs in meta-theories see

[3] is self-reference.

PSI-CALCULUS FRAMEWORK

Data structures

[Bengtson et al. 2011]

Logics Logical environment

Psi Framework

Bisimulation Congruence

Weak bisimulation

Weak congruence

Syntax Pi-calculus like
semantics

Bengtson and Pohjola

x 2 N name
M,N 2 T term

j1, . . . ,jn 2 C condition
Y 2 A assertion

.$ 2 T⇥T ! C channel equivalence
⌦ 2 A⇥A ! A assertion composition
` ✓ A⇥C entailment

[ex := eN] 2 T ! T substitution function

P,Q ::= M(lex)N.P input
M N.P output
P | Q parallel
!P replication
(nx)P restriction
LYM assertion
casej1 : P1 · · · jn : Pn case
0 inaction

Figure 2.3. The parameters and grammar of psi-calculi processes.

A significant modelling flexibility of psi-calculi comes from the fact that
Y ` j can be seen as a two-valued logic. In the above example, we inter-
preted the assertions as a set of names that are known to be equivalent, and
the channel equivalence condition as an equality query. We could as well take
the assertions to be sets of equations on terms, and the conditions to be also
equations, then the ` can be defined to be a proof derivation of this equational
logic. We can take this even further, we could define assertions to be sets
of predicate formulas (including the universal and existential quantifiers), and
likewise conditions to be formulas, then ` could be defined as a validity re-
lation of the predicate logic or proof derivation relation. Thus, in psi-calculi
it is quite straightforward to reuse already developed theories, e.g., of data
structures, cryptographic primitives, etc.

Psi-calculi has also been extended to encompass more process calculi: the
higher order communication [25], and unreliable broadcast communication [7].
The full syntax of psi-calculi is given in Figure 2.3, where we use ex and eN to
denote arbitrary sequences x1, . . . ,xn and N1, . . . ,Nn.

Psi-calculi are a major part of this thesis. The Psi-calculi framework is
the main subject of Paper II and Paper IV. The logic of Paper I arose from
considering the generalised actions with multiple binders and the behavioural

36

Parameters

Syntax

MAC

(⌫ secret)(
(|hash(hsecret,message)i = x|) |
ahmessage, xi |
a(y).

case hash(hsecret, fst(y)i) = snd(y) : bYES

[]hash(hsecret, fst(y)i) 6= snd(y) : bNO
)

generate a key

sign a message

receive MAC

send MAC

Verify

Languages, Logics, Types and Tools
for Concurrent System Modelling

RAMUNAS GUTKOVAS

Institutionen för informationsteknologi

Kph, Trycksaksbolaget AB, Uppsala 2016

Languages, Logics, Types and Tools for C
oncurrent System

 M
odelling RA

M
U

N
A

S G
U

TKO
VA

S

Expanding generality of Psi-calculi
with a type-system

Providing a verification calculus for
psi-calculus, and others

Tool support for psi-calculi

SORT SYSTEM FOR PSI

REPRESENTATION
[LMCS 2016]

A direct encoding of a process calculus to a Psi-calculus

No elaborate encodings
No superfluous data terms
No superfluous behaviour

Many calculi were not representable

Unsorted polyadic pi-calculus Sorted polyadic pi-calculus

LINDA pattern matching Polyadic synchronisation pi-calculus

Value-passing CCS

Goal: extend psi-calculi to be capable of representing new
calculi!

SYMMETRIC CRYPTO

30 J. BORGSTRÖM, R. GUTKOVAS, J. PARROW, B. VICTOR, AND J. ÅMAN POHJOLA

Writing i for succi(zero), the agent (νa)(a 2 | a(λy)succ(y) . c plus(3, y)) of
REWRITE(⇓Peano) has one visible transition, with the label c 4. In particular, the object
of the label is plus(3, y)[y := 1] = plus(3, y){1/y}⇓Peano = 4.

5.2. Symmetric cryptography. We can also consider variants of REWRITE(⇓), such
as a simple Dolev-Yao style [DY83] cryptographic message algebra for symmetric cryptog-
raphy, where we ensure that the encryption keys of received encryptions can not be bound
in input patterns, in agreement with cryptographic intuition.

The rewrite rule describing decryption dec(enc(M,K),K) → M induces a convergent
rewrite system ⇓enc, where the terms not containing dec are stable. The construction of
REWRITE(⇓) yields that x̃ ∈ vars(X) if x̃ ⊆ n(X) are pair-wise different and no xi
occurs as a subterm of a dec in X. This construction would still permit to bind the keys of
an encrypted message upon reception, e.g. a(λm,k)enc(m,k) . P would be allowed although
it does not make cryptographic sense. Therefore we further restrict vars(X) to those sets
not containing names that occur in key position in X, thus disallowing the binding of k
above. Below we give the formal definition (recall that ≼ is the subterm preorder).

SYMSPI

Everything as in REWRITE(⇓enc) except:
S = {message, key}
Σ = {enc : message× key → message, dec : message× key → message}
dec(enc(M,K),K) → M
vars(X) = P(n(X) \ {a : a ≼ dec(Y1, Y2) ≼ X ∨ (a ≼ Y2 ∧ enc(Y1, Y2) ≼ X)})

The proof of the conditions of Definition 2.4 and Definition 2.5 for patterns is the same as
for REWRITE(·) in Section 5.1 above.

As an example, the agent

(νa, k)(a enc(enc(M, l), k) | a(λy)enc(y, k) . c dec(y, l))

has a visible transition with label c M , where one of the leaf nodes of the derivation is

a(λy)enc(y, k) . c dec(y, l)
a enc(enc(M,l),k)
−−−−−−−−−−−→ c dec(y, l)[y := enc(M, l)]

since enc(M, l) ∈ match(enc(enc(M, l), k), y, enc(y, k)). The resulting process is

c dec(y, l)[y := enc(M, l)] = c dec(y, l){enc(M,l)/y} ⇓ = c dec(enc(M, l), l) ⇓ = c M.

5.3. Asymmetric cryptography. Amore advanced version of Section 5.2 is the treatment
of data in the pattern-matching spi-calculus [HJ06], to which we refer for more examples
and motivations of the definitions below. The calculus uses asymmetric encryption, and
includes a non-homomorphic definition of substitution that does not preserve sorts, and a
sophisticated way of computing permitted pattern variables. This example highlights the
flexibility of sorted psi-calculi in that such specialized modelling features can be presented
in a form that is very close to the original.

We start from the term algebra TΣ over the unsorted signature

Σ = {(), (·, ·), eKey(·), dKey(·), enc(·, ·), enc−1(·, ·)}

(⌫a, k)(0 | cM)

Computation

(⌫a, k)(a enc(M,k).0 | a(�y)y. c dec(y, k).0)

makes sense when it is typed

(⌫a, k)(a “foobar”.0 | a(�y)y. c dec(y, k).0)

(⌫a, k)(0 | c dec(“foobar”, k).0)

⌧�!

⌧�!

SORT SYSTEM

Consider only well sorted substitutions

Sort(X) 2 S

Set of sorts

Sort assigning to params function

Sorting relations for substitution and processes:

can substituted

Sanity check: A well-sorted substitution preserves
well-sortedness of a process.

can send can receive can restrict

S

RESULTS
All the standard algebraic laws of bisimulation are preserved

All the mentioned calculi are directly representable

Unsorted polyadic pi-calculus

Sorted polyadic pi-calculus

LINDA pattern matching

Polyadic synchronisation pi-calculus

Value-passing CCS

Bisimulation

Congruence

Weak bisimulation Weak congruence

MODAL LOGICS FOR PSI

MODAL LOGICS
Find grained properties of a system

Deadlock freedom

Eventually coffee machine produces coffee

A malicious message is eventually rejected

Process Modal logical formulais a model

P ✏ '

== Process

== Modal
Logic

Formula

formula 𝜑 is true for P

MODAL LOGICS

CCS
Value-Passing CCS

Spi-calculus

Applied pi-calculus

Fusion calculus

Multi-labelled Nominal
transition systems

Logics
Concurrent System

Models
Hennessy, Milner 1985

Hennessy, Liu 1995

Frendrup et al.2002

Hüttel, Pedersen et al. 2007

Haugstad et al. 2006

De Nicola, Loreti 2008

Psi-calculi framework ???
Concurrent constraint calc.

Possibly others
???

NOMINAL MODAL LOGIC

P ` '

P ✏ ¬A P ✏ Anot

P ✏
^

i2I

Ai (8i 2 I) P ✏ Ai

iffP ✏ '

iff

iff

P ✏ h↵iA P
↵�! P 0, P 0 ✏ A(9P 0)iff

Adequate for strong bisimilarity.

Formulas depend on finite number of names

Thm.

What’s new: finitely supported formulas

[CONCUR 2015]

EXPRESSIVENESS
Next step for any action there is a state

Quantifiers for every value of a domain

Fresh/New for a state where a name does not appear

Recursion in Logic

Eventually get coffee :=
rec X. <coffee>true ⋁ next step, recurse on X

recX.A

Ex.

RESULTS

Adequate Modal Logic for many transition systems

The main proofs are machine checked

Adequate for many variants of bisimilarity:
hyper, open, early, late, weak

Provide an adequate modal logic for

psi-calculi, concurrent constraint calculus,
and others

TOOL SUPPORT

AUTOMATED TOOLS

Small spec. in Pwb There is no tempered data
that the network accepts

20 LOC

WSN secure aggr.
Property

only 3 nodes
Results in

Small specification:

PSI-CALCULI WORKBENCH
Tool factory: define your own tool!

Based on the parametric psi-calculi framework

[TECS 2015]

PARAMETRIC
Data Structures

Logics

Logical Assertions

e.g., Names, Bits, Vectors,
ADTs, Trees, ...

e.g., EUF, FOL, Equational
Theory, ...

e.g., Knows a secret,
Connectivity, …

FEATURES

Unicast

Unreliable
Broadcast

Communication
Primitives

[Borgström et
al. 2011]

Pluggable
Architecture

Execution of Processes

(Weak) Bisimulation
Checking

EXAMPLE: WSN
AGGREGATION

✰

✰

Establish routing tree

Forward data

Spatially distr. nodes

Wireless communication

Protocol:

WORKBENCH MODEL

The Psi-Calculi Workbench 99999:13

(2) if I 6= ; and O = {{|init(n)
.
� a|}}, and we have (n,m) 2 top for every constraint

{|a
.
� init(m)|} in I, then the solution is [a := init(n)]. Otherwise the constraint is

unsatisfiable, i.e. ?.
(3) if I 6= ; and O = ;, then the constraint solver finds n such that for every

{|a
.
� init(m)|} 2 I we have (n,m) 2 top. For each such n, [a := init(n)] is a possi-

ble solution.
(4) if I = ; and O = ;, then the broadcast part of the constraint is trivially true.

5.3. Tree building model
Once the instance is implemented, we can define processes modelling the tree building
algorithm in PWB syntax. The sink broadcasts its own channel and then goes into data
collection mode, that is, it listens on its unicast channel repeatedly.
Sink (nodeId , bsChan) <=

’ ” i n i t (nodeId) ” !<bsChan> .
! ” data (bsChan) ” (x) ;

A node listens on its broadcast channel for a channel of a parent to which it will
send data to. Then, similarly to the sink, it broadcasts its own unicast channel on
which it expects data to receive in order to forward it to the parent. After completing
the broadcast, it sends its data to the parent and goes into mode of forwarding data.
Node (nodeId , nodeChan , datum) <=

” i n i t (nodeId) ” ? (pChan) .
’ ” i n i t (nodeId) ” !<nodeChan> .
’ ” data (pChan) ”<datum> .
NodeForwardData<nodeChan , pChan> ;

NodeForwardData (nodeChan , pChan) <=

! ” data (nodeChan) ” (x) . ’ ” data (pChan) ”<x> ;

5.4. Example Strong Transitions
We here study the (symbolic) transition system generated by a small WSN with a sink
and two sensor nodes. Each node has a unique channel for response messages.
System3 (d1 , d2) <=

(new chanS) Sink<0,chanS> |
(new chan1) Node<1, chan1 , d1> |
(new chan2) Node<2, chan2 , d2>

We will show a possible transition sequence in PWB, using the topology shown in Fig-
ure 3a. Below, we only consider transitions labelled with broadcast output and unicast
communication actions.

The following initial transition is obtained by executing the symbolic simulator of
PWB on System3<d1,d2>. The resulting system is in configuration where both sensor
nodes have obtained the parent’s channel, in this case the sink’s. The nodes would
then be able to communicate their data to the sink. The unicast channel connectivity
corresponds to the routing tree shown in Figure 3b. It is one of seven possible initial
transitions produced by PWB, of which three represent broadcast reception from the
environment, and the other three situations where not all nodes receive the broadcast
message. The transition label gna!(new bsChan)bsChan, represents the channel with a
fresh name gna. The generated constraint requires {|init(0)

.
� gna|} ^ {|gna

.
� init(1)|} ^

{|gna
.
� init(2)|}, meaning node 0 is output connected to some channel gna which is input

connected to nodes 1 and 2. The constraint solver finds a solution to the constraint,
which substitutes init(0) for gna.

ACM Transactions on Embedded Computing Systems, Vol. 999, No. 9999, Article 99999, Publication date: Month 2014.

The Psi-Calculi Workbench 99999:13

(2) if I 6= ; and O = {{|init(n)
.
� a|}}, and we have (n,m) 2 top for every constraint

{|a
.
� init(m)|} in I, then the solution is [a := init(n)]. Otherwise the constraint is

unsatisfiable, i.e. ?.
(3) if I 6= ; and O = ;, then the constraint solver finds n such that for every

{|a
.
� init(m)|} 2 I we have (n,m) 2 top. For each such n, [a := init(n)] is a possi-

ble solution.
(4) if I = ; and O = ;, then the broadcast part of the constraint is trivially true.

5.3. Tree building model
Once the instance is implemented, we can define processes modelling the tree building
algorithm in PWB syntax. The sink broadcasts its own channel and then goes into data
collection mode, that is, it listens on its unicast channel repeatedly.
Sink (nodeId , bsChan) <=

’ ” i n i t (nodeId) ” !<bsChan> .
! ” data (bsChan) ” (x) ;

A node listens on its broadcast channel for a channel of a parent to which it will
send data to. Then, similarly to the sink, it broadcasts its own unicast channel on
which it expects data to receive in order to forward it to the parent. After completing
the broadcast, it sends its data to the parent and goes into mode of forwarding data.
Node (nodeId , nodeChan , datum) <=

” i n i t (nodeId) ” ? (pChan) .
’ ” i n i t (nodeId) ” !<nodeChan> .
’ ” data (pChan) ”<datum> .
NodeForwardData<nodeChan , pChan> ;

NodeForwardData (nodeChan , pChan) <=

! ” data (nodeChan) ” (x) . ’ ” data (pChan) ”<x> ;

5.4. Example Strong Transitions
We here study the (symbolic) transition system generated by a small WSN with a sink
and two sensor nodes. Each node has a unique channel for response messages.
System3 (d1 , d2) <=

(new chanS) Sink<0,chanS> |
(new chan1) Node<1, chan1 , d1> |
(new chan2) Node<2, chan2 , d2>

We will show a possible transition sequence in PWB, using the topology shown in Fig-
ure 3a. Below, we only consider transitions labelled with broadcast output and unicast
communication actions.

The following initial transition is obtained by executing the symbolic simulator of
PWB on System3<d1,d2>. The resulting system is in configuration where both sensor
nodes have obtained the parent’s channel, in this case the sink’s. The nodes would
then be able to communicate their data to the sink. The unicast channel connectivity
corresponds to the routing tree shown in Figure 3b. It is one of seven possible initial
transitions produced by PWB, of which three represent broadcast reception from the
environment, and the other three situations where not all nodes receive the broadcast
message. The transition label gna!(new bsChan)bsChan, represents the channel with a
fresh name gna. The generated constraint requires {|init(0)

.
� gna|} ^ {|gna

.
� init(1)|} ^

{|gna
.
� init(2)|}, meaning node 0 is output connected to some channel gna which is input

connected to nodes 1 and 2. The constraint solver finds a solution to the constraint,
which substitutes init(0) for gna.

ACM Transactions on Embedded Computing Systems, Vol. 999, No. 9999, Article 99999, Publication date: Month 2014.

SYMBOLIC EXECUTION
99999:14 Johannes Borgstr

¨

om et al.

��|gna ! (new bsChan) bsChan|��>
Source :

System3<d1 , d2>
Constraint :

(new chan1 , chan2 , chanS) { | ” i n i t (0)<gna” | } ^
(new chanS , chan2 , chan1) { | ”gna>i n i t (1) ” | } ^
(new chanS , chan1 , chan2) { | ”gna>i n i t (2) ” | }

Solution :
([gna := ” i n i t (0) ”] , 1)

Derivative :
(! (” data (chanS) ” (x))) |

(((new chan1) (
’ ” i n i t (1) ” !<chan1>.

’ ” data (chanS) ”<d1>.
NodeForwardData<chan1 , chanS>

)) |
((new chan2) (

’ ” i n i t (2) ” !<chan2>.
’ ” data (chanS) ”<d2>.

NodeForwardData<chan2 , chanS>
)))

In the derivative the Sink successfully communicated its unicast channel chanS to both
nodes.

From this point the system can evolve in two symmetrical ways: either of the nodes
broadcasts an init message, but since no node in the (closed) system is listening on a
broadcast channel, the message is not received. The following transition is for node 1.
��|gna ! (new chan1) chan1|��>
Source :

The same as the above derivative
Constraint :

(new chan2 , chan1) { | ” i n i t (1)<gna” | }
Solution :

([gna := ” i n i t (1) ”] , 1)
Derivative :

(! (” data (chanS) ” (x))) |
((’ ” data (chanS) ”<d1>.

NodeForwardData<chan1 , chanS>) |
((new chan2) (

’ ” i n i t (2) ” !<chan2>.
’ ” data (chanS) ”<d2>.

NodeForwardData<chan2 , chanS>
)))

The system is now in the state where node 1 can send data to the sink. By following
the analogous transition for node 2, we get the system where both nodes are ready to
communicate the data.
��|gna ! (new chan2) chan2|��>
Source :

The same as the above derivative
Constraint :

(new chan2) { | ” i n i t (2)<gna” | }
Solution :

([gna := ” i n i t (2) ”] , 1)
Derivative :

(! (” data (chanS) ” (x))) |

ACM Transactions on Embedded Computing Systems, Vol. 999, No. 9999, Article 99999, Publication date: Month 2014.

generated action

system with 3 nodes

constraints

solution

Execution:
derived
process

Supporting library

ARCHITECTURE

Psi Calculi Core

Symbolic Execution

Symbolic Equivalence gen.

Command Interpreter

Pwb

Supporting library

ARCHITECTURE

Psi Calculi Core

Symbolic Execution

Symbolic Equivalence gen.

Command Interpreter

Pwb

Data Logics Assertions

Execution Constraint Solver

Equivalence Constraint Solver

ParserPretty Printer

Parameters

Plug in external solvers,
e.g. SMT solvers

Z3, CVC4, Yices2

CONCLUSION

A widened applicability of psi-calculi via a type system

A general and powerful modal logic that is
applicable to systems such as psi-calculi

Tool support for psi

QUESTIONS

