LANGUAGES, LOGICS, TYPES
AND TOOLS FOR CONCURRENT
SYSTEM MODELLING

Ramiinas Gutkovas
ramunas(@fct.unl.pt

2016-12-14 NOVA LINCS

mailto:ramunas@fct.unl.pt

FINLAND

T1 C H
sAB(- MYSELF

veeent System Maede ing

GUTKIVAS

A
%
UNIVERSITET ' Ty
ot 'f '
i Kauno
ktu technologijos
o ’ universitetas Chen

1922

2007 BSc

Uppsala, Sweden

~ Startup
2007-2009

DENMARK
Copenhagen
o

o molensk
Gdansk Vilniug
L)

burg
[] []
== Kaunas, Lithuania
NETHERLANDS
. POLAND et
?Jljnf-.'.(f'o Bielefeld

...........
.......

BUGS

OR,WHEN MACHINES GO WRONG

An error has occurred. To continue:
Press Enter to return to Windows, or

Press CTRL+ALT+DEL to restart your computer. If you do this,
you will lose any unsaved information in all open applications.

Error: OE : 016F : BFF9B3D4

Press any key to continue

Your PC ran into a problem and needs to restart. We're just
collecting some error info, and then we'll restart for you. (0%
complete)

If you'd like to know more, you can search online later for this error: HAL INITIALIZATION FAILED

EXPENSIVE BUGS

. |
intele |

!

Ariane 5 went “poof”, 1996

Pentium FDIV bug, 1994 Integer Overflow

$475 million worth of recalls $ 500 million loss

goo.gl/bU36B2

http://goo.gl/bU36B2

KILLER BUGS

Therac-25, 1980s Toyota, 2010

€he Xew Pork Stmes Fulruary 1, 2010

Theaveckaze of alexus I35 530 ia whick four people cac a Avgust aftasit accelerat=d out of conuc.

Due to a race condition Unintended acceleration
produced a lethal radiation burst Software bug

5 killed 89 killed

Many more: Microsoft calls them | million dollar bugs!

g00.¢gl/GVOIIC
SECURITY

Heartbleed CVE-2016-5195

DIRTY GOW

OpenSSL Data race in the linux kernel
since 2007 allows to escalate

A bug that allows to obtain keys o
privileges

Most of the internet affected

SSL is foundation for ecommerce. Millions of Android devices
vulnerable

http://goo.gl/GVQIlC

UNPRECEDENTED
IMPLICATIONS

Influence foreign
government elections

Celebgate

Celebrity Apple’s iCloud
accounts hacked

STANDARD APPROACH:
TESTING

Output
Input > Black Box

Internal behavior of the code is unknown

TESTING CAN'T BE COMPLETE

Testing is essential, however, it is not sufficient!

Suppose int is 32 bits

int multiply (int x, int vy)

Thus, there are 2% inputs

Intel Core i7 5960X (8 core)

can do about 238 instructions per second

It would take 2% sec ~ 18641 hours ~ 2 years to test

(l
;:1 - .

..program testing can (
be used to show the
presence of bugs, but
never to show their
absence!

TESTING

‘\

Dijkstra

fik: Vo
S Y
, TN

' E
A ‘ !
Lol -
' _\'~' \ 1=
v i3 E
R
i
bty . '

[EWD303]

CONCURRENT SYSTEMS

© Joe An-slrnv 2013

THE CHALLENGE

find

An adequate language for describing concurrent systems
A mathematical theory for capturing dynamics, i.e. semantics

Well-founded Verification Technique

CALCULUS OF
COMMUNICATING SYSTEMS

a € o action
PO == aP input a.P { @.Q
a.pP output
0 1naction a /\CL

T.P silent @ @
P|Q parallel

P+ (O sum/choice

P replication (can be extend
with value passing)

OBSERVABLE BEHAVIOUR

l
|

OBSERVABLE BEHAVIOUR

™
pay.(coffee. + tea.0)

pay.coffee.0 + pay.tea.0

pay

coffee.0 + tea.0 coffee.0

l
o 0 0

[Milner 1980]

There is nothing canonical
about the choice of the basic

were chosen with great
attention to economy. VWhat

characterises our calculus is
not the exact choice of
combinators, but rather the
choice of interpretation and of |}
mathematical framework.

R. Milner

ALGEBRA OF PROCESSES

Equivalence based on the observable behaviour

Bisimilarity

P ~ Q at each state P can perform all the actions of
Q, and vice versa, and states continue to be
bisimilar
Alg. properties
PIQ ~Q|P P|(QR) ~ (P|Q)|R gig”gﬂj
O|P ~ P etc.

Weak bisimilarity roughly, ignoring silent actions

P~+.P

COMPOSITIONALITY

(Frege’s principle)

c S 5 Systems built from smaller systems
LU

g* Component Modularity

. A Under all contexts a processes behaviour

* : (5 c is indistinguishable (ie. bisimilar)
U

A congruence relation

f PAQ

Equivalence (bisimulation) then R|P ~ R|Q
preserved under all operations

VERIFICATION TECHNIQUE

Specification = Implementation
(weakly) bisimilar

Specification = pay.(coffee.0+tea.0)

Implementation =
pay.(vinteral)(internal(amount).
if amount = 50
then coffee.0 + tea.(
else coffee.0 + tea.O
bp)

CCS

* +mobility

PI-CALCULUS GISreaE

N

concurrent
constraint calculus

+security

spi-calculus

olyadic synch. pi-calculus
+algebraic

polyadic pi-calculus
applied pi-calculus

... and myriad of other ‘small’ extensions of pi

CCS

* +mobility

PI-CALCULUS GISreaE

+security

+ your extension XrIraT| (I
spi-calculus

your pi-calculus’ dic synch. pi-calculus

polyadic pi-calculus
applied pi-calculus

... and myriad of other ‘small’ extensions of pi

Appendix

In this Appendix we outline the proofs of some of the results stated in the
text; most of the proofs are by case analysis, and we give the argument for a
few crucial or typical cases. Full proofs may be found in [3].

Proof of Lemma 1: The prool is by induction on depth of inference. We
consider in turn each transition rule as the last rule applied in the inference
of the antecedent P -2+ P’. We give two cases.

(INPUT-ACT) Then a = z(y) and P = z(z). P, with y & ((z)P) and
P' = Pi{¥/z}, so (i) holds and (ii) fn(#") C (fn(£y)—{z})U{y} C In(£)U{y}.
(cLOSE) Then a = 7 and P> = P | /2 with £ () P i) £, and
P = (y)(P | P) so (i) holds, and fn(P) C fn(P) U {J} and m(P;) C
m(P) U {y}, so m(P") = (n(P;) U n(P,)) — {y} C m(P). O

Lemmas 2 5 are all similarly proved by induction on depth of inference.
Theorem 1 follows easily from the lemmas.

Proof of Lemma 6: Let S =J,., S, where

Sy =

Somn = {(P{¥:}, Q{9 | PS.Q, w & in(P.Q)}

We show that S is a strong bisimulation by showing by induction on n that
if PS,@) then

1. if a is a free action and P - P’ then for some @', @ - Q' and
P'SQ’,

2. iy & m(P,Q) and JegEatis
n PURSQ) 7

if y & (P, Q) and P 9 pr then for some Q' Q =) Q' and P'SQ’.

If n = 0 then 1, 2 and 3 hold since Sp = ~

Suppose n > 0 and that 20S,Qo where P’S,_1() and o = {¥/z} where
w & fn(L,Q)). We consider only 3.

Suppose that Po W, pr where y € fn(Po, Qo). Choose y’ & n(L, Q,w,z).
Then Lo "W pr = P'{¥ly}. Hence by Lemma 4 for some /" and z' with

IS pihen for some Q' Q =) Q" and for all

33

P"¢ = P" and 2’0 = z, P W) p Since PS,_1Q and y' & n(P,Q)
for some Q"' Q) Q" and P"SQ". Heuce Qo =) Q" = Q'o, and so
Qo 2o Q' = Q"{Yy'}. Then

Po= P (o)

[l

Q" {w}{Y'} since y & (L {W/z}, Q" {W/})
= @
O
Proof of Lemma 7: Let &* =, S, where
So = S

Sun = {(@0)P,(u

The proof involves showing that S* is a strong bisimulation. First we note
that by induction on n, if PS,Q and w & fn(P,Q), then P{w/=}S,Q{w/=}.
For n = 0 this is immediate from the dchnmon Suppose n. > 0 and
zx)l"S77(1')Q where PS,_1Q and w & fn((v) P, (v)Q). Then ((v)P){w:} =
(w) P{"fu}{)z} and ((v)Q){%/z} = (u Q{“/v}f’" 2} where u & [((v) P, (0)Q, w)
and u{Wz} = u, so (v) P{Wz}S,(v)Q{"/}.

Next we show by induction on n that if S, Q then

)Q) | PS.Q, we N}

1. if a is a free action and /> - [’ then for some @', Q@ - Q' and
rsq,

2.ify €n(f. Q) and P — =) P’ then for some @', @ — i) Q)" and for all v,
PYyyS Q{Yy},

3.ify g n(P,Q)and P —= O 1 e feow e Q,Q) Q" and P'S*Q’.
For n = 0 this is immediate from the fact that Sy is a strong bisimulation up

to restriction and the definition of $*. The remaining details are omitted.

m}

Proof of Theorem 2:

For transitivity it
The proof uses

(a) That ~ is both reflexive and symmetric is clear.
suffices to show that <~ < is a strong bisimulation.

Lemma 2. We give one case.

Suppose that y & n(P,R) and P — A pr, (home z & n(P,Q,R).
Then P °& pr = P'{#y}, so for some @', @ 2 Q’ and for all
w, P/{wz} ~Q'{w/z}. Hence for some R, R L R’ and for all
w, Q'{wz} A R {wz}. Then R W — R{Yy[z} and for all w,
Pi{wfy}y ~ ~ B {tfy}.

(b) For the congruence properties note that:

(1) {(e. P,a. Q) | P~ Q} U ~ is a strong bisimulation.

(2) {(P+R.Q+ R)| P~Q}U ~ is a strong bisimulation.

(3) {([z=y]P, [a=y]Q) | P~Q} U ~ is a strong bisimulation.
(

1) Let S = {(P|R,Q|R) | P~@Q}. It suffices by Lemma 7 to show
that S is a strong bisimulation up to restriction. To see this
note first that if 2~ @ and w ¢ fn(L, Q) then by Lemma 6,
P{U} < Q{uf) and so (PIRNUWIS(QIR){ s}
to check that the clauses concerning transitions hold. The only
rules applicable are PAR, COM and CLOSL.

)
)
)
)

It is routine

(5) It lollows [rom Lemma 6 that ~ is a strong bisimulation up to re-
striction. Hence by the proof of Lemma 7, if P ~ () then (w)P

(c) Note that {(z(y). P «(y). Q)| for all w € fn(L, Q,y), L{®/y}~ CJ{”’/z/}}
is a strong b1<1mulat10n This follows easily using Lemma 6.

Proof of Theorem 8: 'T'he proofs of Theorem 8 (a) and Theorem 8 (b)
are straightlorward. In contrast, the prools ol Theorem 8 (¢) and (d) are not

short.

Proof of Theorem 8 (c):
bisimulation up to ~ and restriction. For completeness we introduce first
the following concept.

In the proof we make use of the idea of a strong

Definition 25
PSQ then

A relation S is a strong simulation up to ~ il whenever

1. if o is a free action and P - P’ then for some @', Q > @' and
PSS,

2. ity €n(lQ)and P = =) P’ then for some @', @ 2(u) @’ and for all w,
P{fy} ~ S~ Q{Wy},

3. ify € n(L, Q) and P29 prihen for some Q,Q — 7 Q' and ' ASAQ'.

S is a strong bisimulation up to ~ ill both 8 and S7! are strong simulations
up to ~.

Lemma 9 If § is a strong bisimulation up to ~ then § C ~.

Proof: Let S*=,., S

. where
So = ~ASK
Sur = {(P{"/}, Q{1 | PS.Q, w & (P, Q)}

Then by an argument very similar to fhat in the proof of Lemma 6 it can be
shown that S* is a strong bmunulatlon We omit the details. o

Combining this concept with that of a strong bisimulation up to restric-
tion we obtain the following.

Definition 26 A relation S is a strong simulation up to ~ and restriction
iff whenever °SQ) then

L if w & (P, Q) then P{w/z}SQ{w/:},

2. if 22 =% 1 then for some (), Q —% @' and [~ S~ (),

WA (P10 andl PO S plihenttorsone QM QL dandltoriallle)
Pr{wfy} ~ 8~ Q'{%fy}.

1 ify & n(L,Q) and 22 Z% 17 then for some @', @ " Q' and 1<~ S~¢,

5. if 2 — I then for some @', @ — Q' and either [’ ~ S ~
some P”,)" and w, P’ <~ (w)P", Q' ~ (w)@" and P"SQ".

Q' or for
S is a strong bisimulation up to ~ and restriction iff both § and S~' are
strong simulations up to ~ and restriction.

We have the following result.

Lemma 10
SC .

It S is a strong bisimulation up to ~ and restriction then

Proof: Let §* =, S, where

28
{((0) P, (w)Q) | S,.Q, we N}

Sy =
S =

-

Then by an argument similar to that in the proof of Lemma 7 it may be
shown that $* is a strong hisimulation. We omit the details.

O

Returning to the main proof of Theorem 8 (c), we prove that the relation

S = {(l] Loy (WL L2)) | 1, Py agents, y & (1)} U Id

is a strong bisimulation up to ~ and restriction. Thus, for each £ and @
such that PSQ and each transition P - P’, we must find a “simulating”
transition @ — ()’ satisfying the requirements of a strong simulation up to
restriction and equivalence, and vice versa. Clearly, it 7 = (@ this is trivial,
WP P, Q = (y)(P | P) . and y & In(P).

"T'he proof that there always exists an appropriate transition) = (y)(
@' is by a case analysis on how the transition P = (y)P, | P, = P'is

so we assume that P =

~(w)Q.

derived, and vice versa. There are sixteen cases in all from which we draw a
sample of two.

Tor ¢
in the [

O

Proof of Theorem 8 (d):

The proof involves showing that the relation

[Milner et al. ECS-LFCS-89-86

We then have to prove three things:

({}): that the premises of the upper derivation imply the premises of the
lower derivation;

(1): conversely that the premises of the lower derivation imply the premises
of the upper derivation;

(8): that the derivatives P’ and Q' satisfy the requirement of a strong bisim-
ulation up ~ and restriction.
Note that by the definition of strong simulation we only have to consider o

such that y & bn(a), since y occurs in the agents P and Q.

Case :

P 2e) P z.z#y
mnrKs: —M8¥ MM
A D wr n Ty
COM @
(WP P —— ()P} Py
iy
o
COM:
3B D PR | 2
RES :
() (L1 Py) — ()P})

(1}): Trivial.

(f): From y & tn(P,) and Lemma | we get that z # y. We cannot prove that
z # y, but if z = y then we use a fresh z’ instead of z to get a simulating
from Lemma 2 we get that £ =) Py}, The
simulating transition then is:

transition as follows:

WP P = (PERDLY P ()

(8): From v,z # y it lollows that ((y)P]){Vz} = (y)P{z}

with y & tn(P,) gives that y & fn(Pj), so
(PP S ()

as required. For the simulating transition (*) we know that z
(since v # y and 2’ is chosen fresh) that

(DAY B =

,and Lemma 1

(Pi{v} 1 75)

=y, so it holds

WP P S (PH WY P2)

10 pages of proof appendix +
30 main text and proofs ;;

Case :
JERicn 24 T,0EY
RES: -
LN B
COM :
()P, | Py —= ()P | Pi{v)}
({}): Trivi

(ﬂ)‘ bl()lll LCLLII L allu g ¢ 111\\[2) Wwe geL ot ? Y. LIC S1LUALIOIL WIICLL U —
is treated in another case (see [3]).
(S): From Lemma 1 and y € m(F;) we get that y =

zory & m(Fy), so from

| P2) <o y it follows y & M(P{4/z}). This proves as required

N L T (i B N e L e N

‘he prool thatl t s appropriale {ransition

is by a case analysis on how the transition 2 —— [’ is derived, and vice
versa. There are 30 cases in total. We present one sample case in the same
style as in the proof of Theorem 8 (c).

Case :
P p oy
CLOST:
PI‘PZ - (5)(")1,"”2,)
PAR :
(P | P)| P — (2)(P| Py)| Ps
U
P,) Pi{#z} 2 ¢ tn(Ps)
PAR: = o
A T N L T)

CLOSE :

Pr|(Py|) = (PF Y | (PEY | Py)

({}): By Lemma 2 there exists a fresh z’ such that P 2y P/{#}z} and
B, " prsLy.

(8): Note that 2’
applying Theorem 8 (¢) we get that

is a fresh name. By alpha-converting z to 2’ and then

P BB = (OEPHFEN BEEN P~ ((PHER) B | Py)

so the condition for a simulation up to ~ and restriction is satisfied:

(PHZY | PEED | P S PHZS | (PHZEY | Py)

39

Proof of Theorem 17:
definition of replacement. If 77 is an agent expression and o a substitution
of names, then IYo is defined to be the agent expression obtained in the way
analogous to Definition 3. Then substitutions of names as expected commute
with replacements in the following way: E(A;, ...~ Ao = Eo(Ay..... An).
Also, since replacement clearly distributes over the operators we have that
These facts will be used freely

We first state some immediate consequences of the

Theorem 2 generalizes to agent expressions.
in what follows.

We will only prove the theorem for I = {1}. The proof of the general case
is similar and only notationally more cumbersome. We write E, F, A, B, X, &
for E,, Fy, Ay, By, X;,%,. Assuming the premises of the theorem, define the
relation & by

S = {(C(A),G

We show that S is a strong bisimulation up to ~. By Lemma 9 it follows
that § € ~ . By choosing G = X(7) we then Qc‘f that A(g) ~ B(7); since
this holds for any names ¥ it nuphes that A(Z)o ~ B(¥)o for any o, which
amounts to A(Z) ~ B(7).

To prove S a strong bisimulation up to ~ it is clearly enough to prove
the following properties, which we will call (%):

(B)) : G has only the schematic identifier X}

I. f G(A) -% P’ and o is a free action or bound output action with
bn(a) N n(G(A), G(B)) = B, then G(B) -2 Q" with P'S ~ Q".
. G(A) "W prand y & n(G(A),G(B)) then G(B M Q" such that
for all w, P/{¥y}S ~ Q"{wy}.
So assume G(A) -2+ P’; we will prove (x) by induction on the depth of the
inference of this transition. We argue by cases on how the last step in this
transition is inferred. We give two sample cases.

o

G(B) = B(y) — Q. Since ~ is transitive, P'S ~ Q" as required.
Consider next the subsubr ase where o = x(y) is an input action. We onlv

A), G(B)). By definition, then y ¢ n(E{J/F}(A

have to consider y & n(G(

10

), B}

(4): Trivial.
(f): From y & fn(F,) and Lemma 1 we get that « # y. We cannot prove that

z # y, but if 2 = y then we use a fresh 2’ instead of z to get a simulating °
transition as follows: from Lemma 2 we get that P 2] P/{Z'ly}. The '
simulating transition then is: Py

(WP Py = () PH{FE Y| B (*)

(S): From v, z # y it follows that ((y)P/){Vz} = (y)P/{Yz}, and Lemma 1
with y & fn(P,) gives that y & fn(P}), so

() P{Y

o (L) Trivial.,
(ii>i{z'/y}>{v/zf}134 (,’\j: From 0, %’ fD(PQ) and Lemma 1 we o
N %+ o hnt if » = v then we 11ce a frech
CcoM (yn e = ‘

In this Appendix we outline the proots of some of the results stated in the
text; most of the proofs are by case analysis, and we give the argument for a
few crucial or typical cases. Full proofs may be found in [3].

(4): Trivial.
(11): From Lem

is treated in another case (see |3]).
(S): From Lemma 1 and y & fn(P,) we get that y = z or y & fn(P5), so from .
v # y it follows y & fn(P;{v/z}). This proves as required [3] IS Se If_ refe re n Ce

)P | By S (y)(Pr] Ba{Yfz))

For examples of bugs in meta-theories see [Bengtson et al. 201 |]

[Bengtson et al. 201 1]

PSI-CALCULUS FRAMEWORK

Logical environment

Logics

/

Psi Framework

Syntax Pi-calculus like Weak bisimulation
semantics

Bisimulation Congruence Weak congruence

x € N name Parameters
MN ¢ T term
o,....,0, € C condition
Y e A assertion
— € TxT—C channel equivalence
® € AXA—A assertion composition
- C AXxC entailment
X:=N] € T-—T substitution function
PO = M (AX)N.P input Syntax
MN.P output
P|Q parallel
P replication
(vx)P restriction
(YY) assertion
case@ : P 0---1¢,: P, case
0 inaction

MAC

(v secret)(generate a key
(hash((secret, message)) = x|) | sigh a message
a(message, x) | send MAC
a(y). receive MAC

case hash((secret, fst(y))) = snd(y) :bYES
[hash({secret, fst(y))) # snd(y) :bNO

Verify

UPPSALA
UNIVERSITET

Languages, Logics, Types and Tools
for Concurrent System Modelling

RAMUNAS GUTKOVAS

/A

Expanding generality of Psi-calculi
with a type-system

Providing a verification calculus for
psi-calculus, and others

Tool support for psi-calculi

SORT SYSTEM FOR PS|

[LMCS 2016]

REPRESENTATION

A direct encoding of a process calculus to a Psi-calculus

No elaborate encodings
No superfluous data terms

No superfluous behaviour
Many calculi were not representable

Unsorted polyadic pi-calculus Sorted polyadic pi-calculus
LINDA pattern matching Polyadic synchronisation pi-calculus

Value-passing CCS

Goal: extend psi-calculi to be capable of representing new
calculi!

SYMMETRIC CRYPTO

Computation

dec(enc(M,K),K) - M

makes sense when it is typed

(va, k)(a “foobar”.0 | a(Ay)y.cdec(y, k).0)
Ty (wa,k)(0 | @dec(“foobar”, k).0)

(va,k)(aenc(M,k).0 | a(ly)y.cdec(y,k).0)
Iy (va,k)(0|cM)

SORT SYSTEM

Set of sorts S

Sort assigning to params function ~ SORT(X) € §

Sorting relations for substitution and processes:
can send can receive can restrict

can substituted

Consider only well sorted substitutions

Sanity check: A well-sorted substitution preserves

well-sortedness of a process.

RESULTS

All the standard algebraic laws of bisimulation are preserved
Weak bisimulation = VWeak congruence Bisimulation

Congruence

All the mentioned calculi are directly representable

Unsorted polyadic pi-calculus LINDA pattern matching

Sorted polyadic pi-calculus Polyadic synchronisation pi-calculus

Value-passing CCS

MODAL LOGICS FOR PSI

MODAL LOGICS

Find grained properties of a system == Process

Deadlock freedom
== Modal

Eventually coffee machine produces coffee Logic

.. : : Formula
A malicious message is eventually rejected

Process

is a model Modal logical formula
formula @ is true for P

MODAL LOGICS

Concurrent System
Models

CGCS
Value-Passing CCS

Spi-calculus

Applied pi-calculus
Fusion calculus

Multi-labelled Nominal
transition systems

Psi-calculi framework

Concurrent constraint calc.

Possibly others

Logics

Hennessy, Milner 1985
Hennessy, Liu 1995
Frendrup et al.2002

Huttel, Pedersen et al. 2007
Haugstad et al. 2006
De Nicola, Loreti 2008

20?
20?

[CONCUR 2015]

NOMINAL MODAL LOGIC

Formulas depend on finite number of names

PE-A iff notPF A

P:/\Ai iff (Viel) PE A,

el
PE(a)A iff (3P) PSP, P EA

Adequate for strong bisimilarity.

What'’s new: finitely supported formulas

EXPRESSIVENESS

Next step for any action there is a state
Quantifiers for every value of a domain
Fresh/New for a state where a name does not appear

Recursion in Logic recX.A

Ex.

Eventually get coffee :=

rec X. <coffee>true V next step, recurse on X

RESULTS

Adequate Modal Logic for many transition systems

The main proofs are machine checked\

Adequate for many variants of bisimilarity:
hyper, open, early, late, weak

Provide an adequate modal logic for

psi-calculi, concurrent constraint calculus,
and others

TOOL SUPPORT

AUTOMATED TOOLS

Small specification: Property

WSN secure aggr.
. There is no tempered data
JERec in Fwh that the network accepts
20 LOC P

only 3 nodes

—
%
2 :
. X |

— D) O —C

\

[TECS 2015]

PSI-CALCULIWORKBENCH

Tool factory: define your own tool!

s;' .
1P

o P

Based on the parametric psi-calculi framework

PARAMETRIC

Data Structures e.g., Names, Bits, Vectors,
ADTs, Trees, ...
Logics e.g., EUF, FOL, Equational
Theory, ...
Logical Assertions e.g., Knows a secret,

Connectivity, ...

FEATURES

Communication ,
Execution of Processes

Primitives
O
Unicast o—/OQ O
o O (Weak) Bisimulation

Checking

Unreliable ¢ —©
Broadcast Pluggable
[Borgstrom et Architecture
al. 201 1]

EXAMPLE:WSN
AGGREGATION

Spatially distr. nodes

Wireless communication

Protocol:
Establish routing tree

Forward data

WORKBENCH MODEL

Sink (nodeld, bsChan) <=
’”1n1t (nodeld) ”!<bsChan> .
' ?data(bsChan)” (x) ;

Node(nodeld, nodeChan, datum) <=
”1init (nodeld)” ?(pChan)
’”1nit (nodeld) ”!<nodeChan> .
’”data (pChan) "<datum> .
NodeForwardData<nodeChan, pChan> ;

NodeForwardData(nodeChan, pChan) <=
' ”data(nodeChan)”(x). ’"data(pChan)’<x> ;

SYMBOLIC EXECUTION

generated action
——|gna!(new bsChan)bsChan|—>

Source: :
System3<dl, d2> system with 3 nodes
Constraint:
(new chanl, chan2, chanS){| "init(0)<gna” |} A .
(new chanS, chan2, chanl){| "gna>init(1)” |} A constraints
(new chanS, chanl, chan2){| “gna>init(2)” |}
Solution:
([gna := 71init(0)”], 1) solution
Derivative:
(!(”data(chanS)”(x))) |
(((new chanl)(
"”1nit (1) ”!<chanl>. - .
’?data(chanS) ”<d1>. EXGCFItIOn.
NodeForwardData<chanl, chanS> derived
) |
((new chan?2)(process

2% 2

init (2)”!<chan2>.
’”data (chanS) "<d2>.
NodeForwardData<chan2, chanS>
)))

ARCHITECTURE

Pwb

Command Interpreter

Symbolic Equivalence gen.

Symbolic Execution
Psi Calculi Core

Supporting library

ARCHITECTURE

Parameters Pwb

. I
Pretty Printer :iParser | command Interpreter

Plug in external solvers,

i Symbolic Equivalence gen. I
e.g. SMT solvers

Z3, CVC4, Yices2 Symbolic Execution

< —
[ata] [ogics | [Assertions] [Psi Calcuicore

Supporting library

CONCLUSION

A widened applicability of psi-calculi via a type system

A general and powerful modal logic that is
applicable to systems such as psi-calculi

Tool support for psi

QUESTIONS

