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ABSTRACT

Several musical instrument classifiers have been pro-
posed. While many approaches in sound-feature extraction
and in sound classification have been successfully used, most
focus on distinguishing different harmonic instruments such
as the violin and the flute, whose sounds have very different
characteristics. On the other hand, much less attention has
been given to percussion instruments, especially if we con-
sider the discrimination of instruments of the same type, like
the cymbals in a drum kit.

Here, we propose a classifier that is able to distinguish
this latter type of instruments. The classifier is able to dis-
tinguish sounds with very similar properties, like sounds pro-
duced by instruments with similar geometry that differ in ma-
terial or size. In particular it is able to distinguish sounds
from the cymbals in a drum kit. Instead of using a set of pre-
defined features, the classifier learns spectral features from
the data using non-negative matrix factorization. This work is
important to fill the gap on percussion instrument classifica-
tion and transcription (since most music transcribers focus on
harmonic instruments).

Index Terms— sound classification, percussion instru-
ments, indefinite pitch, acoustic signal processing, non-
negative matrix factorization

1. INTRODUCTION

Most proposed classifiers of musical instruments deal with
string and wind harmonic instruments, while much less at-
tention has been given to percussion instruments with non-
perceptible pitch, that is, with indefinite pitch. Still, there
have been a few studies that focus on the automatic classifi-
cation of this latter type of instrument. A few of these studies
focus on the recognition of different types of strokes in a sin-
gle instrument, like the snare drum and conga drums [1, 2, 3].
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Yet, most of these studies focus on distinguishing different in-
struments in the drum kit (such as bass drum, snare drum, hi-
hat, toms and cymbals) [4, 5, 6, 7, 8, 9, 10, 11, 12]. Nonethe-
less, while some of the proposed classifiers can distinguish
cymbals from other instruments in the drum kit, they cannot
discriminate between the cymbals, that is, sounds from any of
the cymbals in the drum kit are all assigned to the same class.

Here we propose a classifier of indefinite pitched percus-
sion instruments of the same type, such as the cymbals in a
drum kit. That is, we are interested in discriminating sounds
from instruments of the same type, such as instruments with
similar geometries that differ in size, material, or other subtle
properties. This is a significantly more difficult problem than
differentiating a bass drum from a cymbal, because while bass
and cymbal sounds have very different characteristics, sounds
from different cymbals are more alike. To the best of our
knowledge, there has been no previous work on classification
of indefinite pitched percussion instruments of the same type.

Sound classifiers are characterized by a stage of sound
features extraction and another stage of classification. Many
low and high level temporal, spectral and short-time features
have been tried to characterize indefinite pitch percussion in-
struments, but due to the difficulty on deciding which are the
most appropriate features to characterize the data, many clas-
sifiers use a combination of several features to achieve good
classification rates [1, 2, 3, 7, 9, 11, 13]. For instance, start-
ing with a set of about fifty features of the attack and decay
sections of the sound, of the energy in the sub-bands, mel-
frequency cepstral coefficients and variances, Herrera, Yetar-
ian, and Gouyon were able to determine the twenty most rel-
evant features to distinguish sounds from the five main instru-
ments in the drum kit [8].

Whereas most sound classifiers use a set of pre-defined
features, there are also some classifiers that learn the features
using a decomposition method such as independent compo-
nent analysis, independent sub-space analysis, sub-band in-
dependent subspace analysis and non-negative matrix factor-
ization (NMF) [4, 5, 10, 12]. While exploring the techniques
proposed by FitzGerald and colleagues on the classification of



cymbals, we were able to conclude that some of those tech-
niques are appropriate to distinguish cymbals from other el-
ements in the drum kit (namely from the bass, snare, hi-hat,
and toms), but they are not suitable to discriminate the indi-
vidual cymbals. We then investigated the use of other sta-
tistical sound source separation techniques and were able to
develop a classifier that can discriminate cymbals.

While our cymbal classifier uses spectral features, it does
not use a set of pre-defined features. Instead, it learns them
from the data using non-negative matrix factorization [14,
15]. Using these features on a 1-nearest neighbor (1-NN)
algorithm, we obtained very high classification rates: 95%
when distinguishing between two cymbals and 86% when dis-
tinguishing between three cymbals.

2. THE CLASSIFIER

As mentioned before, our classifier learns the features from
the data: it starts by representing the sounds with magni-
tude spectrograms1, and then it extracts spectral features from
these spectrograms using NMF. Here we prove that the fea-
tures learned in this manner can successfully separate drum
kit cymbal sounds, more specifically sounds from hi-hats, and
china, splash, crash and ride cymbals.

Here we consider that the spectrogram is a sequence of
frames, which are the columns of the spectrogram. Each
frame is the power spectrum at a given time interval. In other
words, the data runs over frequency: the frames are initially
represented in an F -dimensional space, which we call the
frequency space, with one dimension for each frequency bin
(where the frequency bins are the rows of the spectrogram).

Each spectrogram, Sn, can be represented as a product of
a matrix, Θ, which has a spectrum per column, with a matrix,
Pn, which has a temporal envelope (i.e., time-varying gain
function) per line: Sn = ΘPn. We estimate Θ and Pn with
NMF, as explained below.

In the training phase, the classifier performs NMF2 on the
concatenation of the spectrograms, (S1, . . . ,SN)

3, where Sn

is the spectrogram of a training sample, and N is the number
of samples. As a result it learns a set of spectral basis func-
tions, that consist of the spectra in matrix Θ, that describe
the spectral regularities in the frames in (S1, . . . ,SN).To put
it in another way, the data is now represented in a new space,
whose axes are spectral basis functions. Fig. 1 shows the basis
functions learned by NMF of the concatenation of the spec-
trograms from samples from a china and a crash cymbal.

The basis functions in Θ are the spectral features that later
will be used in the classification stage. But we still need the
values of those features: we have seen that each frame in the
data set is now represented in the space defined by the basis

1We do not use the spectrograms phase information. For simplicity, in the
remaining text we refer to the magnitude spectrogram as spectrogram.

2We used an NMF software package by Virtanen [16].
3(A, B) represents two concatenated matrices.

Fig. 1. Two spectral basis functions learned by NMF of
(Ss1 , . . . ,Ss6 ,Sc1 , . . . ,Sc6), where Ssi is the spectrogram of
a sample from a stroke on the edge of a 16 inch china cymbal
and Sci is the spectrogram of a sample from a stroke on the
edge of a 16 inch crash cymbal, with 1 6 i 6 6.

functions in Θ, but we still need to know by which coeffi-
cients. These coefficients are the values of the features, that
is, these are the values that will be used in the 1-NN algo-
rithm. Along with matrix Θ, the NMF of the concatenated
spectrograms also produces a matrix P that contains the rep-
resentation of the frames in the new space, that is, the coeffi-
cients that we are looking for.

Each column of P consists of the representation of one
frame in the new space (that is, it contains the coefficients
associated to one frame) and P contains as many lines as the
number of basis functions. Now we can define matrix Pn

which contains the coefficients associated to spectrogram Sn

(Pn contains as many columns as the number of frames in
Sn). Therefore, the data set (S1, . . . ,SN) can be expressed
as:

(S1, . . . ,SN) = Θ (P1, . . . ,PN) . (1)

The ith row of every matrix Pn is associated to the ith ba-
sis function in Θ, that is, the ith column of Θ, and P =
(P1, . . . ,PN). Each line in Pn is a sequence of coefficients
associated to one basis function, which here we call tempo-
ral envelopes. In this way, a spectrogram is represented by a
set of temporal envelopes (one temporal envelope per spectral
basis function).

Fig. 2 shows the temporal envelopes related to the basis
functions from Fig. 1 (each graph consists of one line from
P). The temporal envelopes in Fig. 2a are related to the top
basis function in Fig. 1 and the temporal envelopes in Fig. 2b
are related to the bottom basis function in Fig. 1. Note that
each graph contains twelve envelopes. Each envelope is asso-
ciated to one of the twelve spectrograms used in this example:
six spectrograms from strokes on the edge of a 16 inch china



(a) (b)

Fig. 2. Temporal envelopes obtained by NMF of
(Ss1 , . . . ,Ss6 ,Sc1 , . . . ,Sc6), where Ssi is the spectrogram of
a sample from a stroke on the edge of a 16 inch china cym-
bal and Sci is the spectrogram of a sample from a stroke on
the edge of a 16 inch crash cymbal, with 1 6 i 6 6. The
peaks of the temporal envelopes are marked with rectangles
(for samples from the china cymbal) and circles (for samples
from the crash cymbal). (The envelopes of the sixth crash are
not noticeable because of the sample’s very low energy.)

cymbal and other six from strokes on the edge of a 16 inch
crash cymbal.

In particular, note how the highest peaks in the temporal
envelopes from the crash cymbal (marked with a circle) are
much higher than the peaks in the temporal envelopes from
the china cymbal in Fig. 2b. This suggests that the corre-
sponding basis function (from the bottom Fig. 1) describes a
property of the sounds from the crash cymbal.

In the example given in Fig. 1 and 2, Θ is a matrix
with 2 columns, where the first column contains the basis
functions in the top Fig. 1 and the second column con-
tains the basis function in the bottom Fig. 1. Pn (with
n ∈ {s1, . . . s6, c1 . . . , c6}) is a matrix with 2 lines, with the
nth envelopes from Fig. 2a and b.

3. RESULT ANALYSIS

The data used to test and train the classifier was a set of
strokes on six different cymbals with different diameters and
of different classes: 16 inch crash cymbal, 14 inch crash cym-
bal, 16 inch china cymbal, 9 inch splash cymbal, 20 inch ride
cymbal, and 14 inch hi-hats. For each cymbal we chose to
analyze samples from the areas that are most commonly used
by drummers: the edge (for china, splash and crashes) and
the bow (for ride and closed hi-hat). We used two wooden
drumsticks made of pau-santo. The recorded samples have
different loudness levels.

The sounds were digitized using a sampling frequency of
44100 Hz. The spectrograms were computed with the fast
Fourier transform (FFT) using a sliding Hanning window of
2048 samples and 50% overlap between successive frames.

Cymbal A B C D E F G
combination
Correctly 11 11 11 12 12 15 16
classified samples

Table 1. Number of correctly classified samples out of the
12 samples in the tests with two cymbals (A to E) and out of
the 18 samples in the tests with three cymbals (F and G). We
chose cymbal combinations commonly played by drummers:
splash and china (A), 14 inch crash and 16 inch crash (B),
splash and 16 inch crash (C), china and 16 inch crash (D),
closed hi-hat bow and ride bow (E), china, 16 inch crash and
14 inch crash (F), and splash, 16 inch crash and 14 inch crash
(G). (The stroke area is edge unless otherwise specified.)

The length of the FFT was the same as the size of window.
The training and test sets were built with samples from

two or three cymbals and contained six samples from each
of the cymbals in the set. The samples were spread along
the various levels of amplitude for each set (from loud to soft
strokes). Obviously, the samples used in the training sets were
different from the ones in the test sets.

A training sample, which is a column of P, is an M di-
mensional vector of coefficients from M temporal envelopes
from one sound, where M is the number of basis functions in
Θ. More specifically, the training sample ti,n is a vector that
contains the coefficients associated to the ith frame of spec-
trogram Sn: ti,n = (p1,i,n, . . . , pM,i,n), where pr,c,n is the
coefficient in the rth row and cth column of Pn.

A test sample consists also of an M dimensional vector of
coefficients extracted from M temporal envelopes. Yet, while
the temporal envelopes in the training set are learned by NMF
of the spectrograms, the temporal envelopes in the test set are
determined by the following equation:

Ptest sound = Θ−1Stest sound , (2)

where Θ−1 is the pseudo-inverse of Θ.
Table 1 shows the results obtained for two cymbal combi-

nations (combinations A to E). Out of the 5 tests performed,
only 3 samples were misclassified: one sample from the china
cymbal (in combination A), one from the 16 inch crash cym-
bal (in combination B) and one from the splash cymbal (in
combination C). The overall classification rate was 95%. The
most surprising results came from the combination of the ride
with the hi-hat (combination E), and of the two crashes (com-
bination B), given these cymbals have very similar character-
istics. The crashes are of the same class of cymbals, while the
ride bow and closed hi-hat bow, both have very low energy
and a fast decay.

The overall classification rate obtained for three cymbal
combinations was 86% (Table 1, combinations F and G). Un-
surprisingly, out of the 5 samples misclassified, 3 were from
the 14 inch crash, which were misclassified as being from the
16 inch crash.



4. CONCLUSIONS

A classifier for drum kit cymbals has been proposed. While
most drum kit classifiers focus on distinguishing different in-
struments in the drum kit (like bass drum, snare drum, hi-
hat, toms and cymbals) little attention has been given to the
classification of different cymbals. This is a harder problem
than distinguishing the different instruments in the drum kit,
because while the sounds from those instruments have very
different characteristics, sounds from different cymbals are
much more alike. In spite of those similarities, here we have
proven that these sounds can be correctly classified.

The proposed classifier uses spectral features learned by
NMF of the spectrograms, to train a 1-NN algorithm that is
then used to classify new sounds. It achieves very high classi-
fication rates: 95% for training and test sets composed of sam-
ples from two cymbals and 86% for sets composed of samples
from three cymbals.

There have been other studies that use NMF of the spec-
trograms of drum sounds [10, 12]. Yet, the techniques used
differ from ours. While we use the learned spectral basis func-
tions directly as features that are feed into the k-NN algo-
rithm, Moreau and Flexer extract other pre-defined features
from the basis functions. On the other hand, Paulus and Vir-
tanen use NMF of the spectrograms to estimate the spectra
of each instrument: they separately analyze different instru-
ments and obtain several spectral basis functions that charac-
terize the samples from each instrument. The basis functions
from each instrument are then averaged to obtain a spectrum
that characterizes the instrument.

Whereas we only explored spectral features, temporal fea-
tures can also be useful for distinguishing cymbal sounds. In
particular, they may be useful for distinguishing the china
cymbal from the other cymbals, because while the shape of
the relative decay envelopes of the different frequency frames
of most cymbals behave in a similar fashion, the relative de-
cay envelopes of the china show a different behavior.
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