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ABSTRACT

We propose a statistical method for modeling and synthe-
sizing sounds with both sinusoidal and attack transient com-
ponents. In addition, the sinusoidal component can have
pitch-changing characteristics. The method applies mul-
tivariate decomposition techniques (such as independent
component analysis and principal component analysis) to
learn the intrinsic structures that characterize the sound
samples. Afterwards these structures are used to synthe-
size new sounds which can be drawn from the distribu-
tion of the real original sound samples. Here we apply the
method to impact sounds and show that the method is able
to generate new samples that have the characteristic attack
transient of impact sounds.

1. INTRODUCTION

Many sound synthesis methods have been proposed over
the years. On the one hand there are physical methods,
whose models are derived from the properties of the ob-
ject that produces the sound. These are knowledge based
techniques whose models have parameters that are set ac-
cording to the physics, dynamics and acoustics of the ob-
jects. However, those parameters may be hard to estimate
when dealing with objects with complex geometries or ma-
terials. On the other hand there are signal modeling tech-
niques. These are data-driven techniques that describe the
acoustic structure of the sounds and do not require any
knowledge of the physics, dynamics and acoustics of the
objects. Signal modeling techniques use a set of data sam-
ples from which they estimate the parameters used in the
models equations and synthesis method.

Most signal modeling techniques use a set of parameters
that are estimated from one sound sample. Those parame-
ters are used to later generate sounds. Since these methods
use only a single sound sample, they are able to character-
ize that specific sound but they may fail to characterize the
class of sounds of the same type (for instance, if there is a
property of those sounds that is not very noticeable in that
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specific sound sample). In addition, these methods synthe-
size sounds that are actually not new sounds, in fact they
consist of a modification of the original sound sample.

One of the difficulties of many signal modeling techniques
is on the synthesis of attack transients. These broad band
portions of the signal are characterized by a sudden and
brief increase in energy, which may be hard to model and
reproduce.

Here we propose a data-driven analysis and synthesis method
that uses independent component analysis (ICA) and prin-
cipal component analysis (PCA) to model and synthesize
waveforms that contain both sinusoidal and attack transient
components. The method is an extension of Cavaco and
Lewicki’s method for the analysis of the intrinsic struc-
tures of impact sounds [1]. That method is able to learn
the acoustic properties (such as ringing, resonance, sustain,
decay, and onsets) that characterize the sounds. The exten-
sion proposed here successfully generates sounds with at-
tack transient and sinusoidal components, which can have
pitch-changing characteristics. Moreover, the synthesized
sounds consist of new samples drawn from the distribution
of the real original sound samples.

The next section discusses some relevant related work.
Section 3 reviews Cavaco and Lewicki’s intrinsic struc-
ture analysis method. The analysis and synthesis extension
proposed here and the results obtained are discussed in sec-
tions 4 and 5, respectively. Section 6 draws the conclusions
and discusses some future work.

2. PREVIOUS WORK ON DATA-DRIVEN
SYNTHESIS METHODS

Even though many synthesis methods exist here we focus
only on the methods that are relevant to this work, namely
on signal modeling techniques. These techniques describe
the acoustic structure of the sound, independently of the
properties of the object.

One of the best known signal modeling techniques is the
phase vocoder [2, 3]. This technique successfully models
and synthesizes harmonic signals with static pitch charac-
teristics. Yet, it is not as successful when it comes to mod-
eling pitch changing sounds (i.e., sounds that have partials
with time-varying frequencies) and inharmonic sounds, since
it does not model the slow frequency variations in the par-
tials and the sinusoids are assumed to be harmonic. How-
ever, natural sounds can be inharmonic, and are typically
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not purely periodic because their sinusoidal components
can have slowly time-varying frequencies.

2.1 Sinusoidal modeling

Over the years, many extensions and alternatives to the
phase vocoder have been proposed [4–8]. The most well
known alternatives are the sinusoidal models, as the MQ
modeling technique proposed by McAulay and Quatieri,
and the PARSHL technique proposed by Serra [9–11]. Al-
though, these two methods are very similar, MQ model-
ing and PARSHL were developed independently. While
MQ modeling was developed to represent and synthesize
speech, PARSHL focused on musical sounds. Nonethe-
less, the main ideas behind the two methods are similar.
The two methods have an analysis module, which repre-
sents the sounds as a sum of sinusoids with slowly varying
amplitude and frequency. Since these models use instan-
taneous frequencies (instead of a constant frequency for
each sinusoid) they are able to characterize pitch changing
sounds. These methods consider that each slowly varying
sinusoidal component of the signal is represented by a hori-
zontal ridge of energy in the signal’s spectrogram, and they
use a peak tracking algorithm to identify those horizontal
ridges in the spectrogram. This algorithm looks for the lo-
cal maxima in each frame of the spectrogram, and connects
the peaks from different frames to form tracks. It then rep-
resents each track as a sequence of parameters that deter-
mine the track’s instantaneous amplitudes and frequencies.

MQ modeling and PARSHL also have a synthesis mod-
ule, which uses that representation previously obtained to
synthesize the sounds. The synthesis can be done in the
time domain with an oscillator bank: the oscillator bank
generates a sinusoid for each track, and these sinusoids are
added to obtain the final synthesized signal. Alternatively,
and assuming the original phase values are preserved, the
synthesis can be done in the frequency domain with the
inverse Fourier transform.

While PARSHL and the MQ method successfully model
and synthesize inharmonic and pitch-changing sounds, they
are inefficient when modeling and synthesizing signals with
a broader spectrum, like noise and transients. These meth-
ods try to model the noise and transients as a sum of sinu-
soids, which is very ineffective and computationally ex-
pensive as typically these signals contain energy in the
whole spectrum and would need to be modeled by a large
number of sinusoids. As a response to this problem, Serra
and Smith developed an extension of PARSHL which makes
a distinction between the sinusoidal and broad band spec-
trum components in the signal [12,13]. This method, spec-
tral modeling synthesis (SMS), combines sinusoidal mod-
eling and noise modeling to represent and synthesize sounds
with both sinusoidal and noise components [13].

The noise modeling part of SMS, represents the non-sinusoidal
portions of the signal, which include the excitation energy
that is not transformed into stationary vibrations of the
sound source. This module assumes that the non-sinusoidal
components consist of stochastic signals, which do not re-
quire a precise description of the time-varying magnitude
shape of each frequency bin and that can be represented by

a density function that describes the expected magnitude
of each frequency bin over time. It uses a time-varying
frequency-shaping filter to represent the density function
and applies it to white noise to represent the stochastic
components of the signal.

SMS successfully models and synthesizes inharmonic and
pitch-changing sounds that have broad band spectrum com-
ponents with stochastic characteristics, like the sound of
the bow sliding against the strings of an instrument, or
the sound of breath in a wind instrument. However, this
technique may fail to effectively model and synthesize the
transient portion of the signals. Transients are not well rep-
resented by sinusoidal modeling due to their broad band
spectrum characteristics (as they would have to be repre-
sented by a quite large quantity of sinusoids), and they are
not well represented by the noise model of SMS because
they need precise time synchronization between the var-
ious frequency components in their representation. As a
result, when attack transients are modeled and synthesized
with the techniques described here, they lose their charac-
teristic sharpness and sound more like noise than like at-
tacks. As a response to this problem, some methods have
been developed that treat transients as a separate kind of
signal [14–17]. Below we describe one of these methods,
namely the transient modeling synthesis.

2.2 Transient modeling synthesis

Transient modeling synthesis (TMS) is an analysis/synthesis
method proposed by Verma and colleagues to model and
synthesize transient sounds [16, 17]. TMS can be com-
bined with SMS to model the sinusoidal, attack transients
and noise portions in the sounds.

While a sinusoid is a slowly varying curve in the time
domain and a sharp peak in the frequency domain, a tran-
sient is sharp in the time domain and it can be represented
by a slowly varying curve in the frequency domain. In or-
der to model the transients as slowly varying curves, TMS
uses a two-step space transformation. In the first step, it
computes the discrete cosine transform (DCT) of the wave-
form, to represent the signal in a new space of cosine basis
functions (or simply, frequency) by amplitude. The DCT
is used because it represents the transients as sinusoids in
the frequency domain. This transform maps the signal into
a frequency by amplitude space and retains the phase in-
formation.

In the second step, TMS computes the magnitude spec-
trogram of the DCT of the signal, to represent the signal
in a frequency by time space. The signal is represented
in a space of spectrogram frame number (in the horizon-
tal axis) by discrete Fourier transform (DFT) bin number
(in the vertical axis). The spectrogram frame represents a
window of DCT bins, and in turn, a DCT bin corresponds
to a cosine basis function, or frequency. Thus, the frame
stands for frequency. The DCT of an impulse at the begin-
ning (or left side) of the time window is represented by a
low frequency sinusoid. Impulses that appear later in time
(i.e., towards the right side of the window) are represented
by higher frequency sinusoids. Thus, there is a correspon-
dence between time and frequency of the sinusoids. The



DFT bins correspond to the frequencies of these sinusoids,
and therefore, they also correspond to time.

In order to model the slowly varying sinusoids on the
spectrogram of the DCT, TMS uses a peak tracking algo-
rithm (described in section 2.1 for sinusoidal modeling).
It identifies these horizontal lines, and represents them by
tracks that consist of sequences of parameters that deter-
mine the instantaneous amplitudes, and the onset times of
the transients (coded in terms of frequency, i.e., DCT basis
functions).

Once the transients are modeled by these sequences of
parameters, and after optional modifications to the param-
eters, the transients can be synthesized. This can be done
with a bank of oscillators to generate a sinusoid for each
track, which are added to obtain a signal in the DCT do-
main. Finally, the inverse DCT transforms the signal back
into the time domain. The result is a waveform that con-
tains the transients of the original signal.

2.3 Other methods for modeling and synthesis of
sinusoids and transients

The previous sections discuss some techniques to model
and synthesize the sinusoids and transients in the signals.
Yet, these are not the only options that may be considered,
and more work has been proposed in this area. For exam-
ple, Depalle and Hélie proposed a parametric method to
extract the sinusoids from the spectrogram [18]. George
and Smith proposed the analysis-by-synthesis overlap-add
method, which extracts sinusoids in an iterative way [19].
Also other methods have been proposed to model tran-
sients. For instance, Christensen and van de Paar model
transients with a sum of sinusoids, whose amplitudes are
modulated by gamma envelopes [20]. Nsabimana and Zölzer
proposed improvements to TMS [21].

3. THE INTRINSIC STRUCTURES ANALYSIS
METHOD

The goal of the Intrinsic Structures Analysis (ISA) method
proposed by Cavaco and Lewicki is to represent the struc-
tures in the sounds [1]. Instead of extracting pre-defined
features of the sounds, like Mel-frequency cepstral coef-
ficients or other short-time features, the method learns a
set of temporal and spectral features from the data. For
that end, the method represents the sounds with magnitude
spectrograms (Sk, where k is the index of the sound) and
then it extracts sound features from the transposed spectro-
grams.

In more detail, the method performs ICA 1 (or PCA) on
the concatenation of the transposed spectrograms:((

S1
)T

, . . . ,
(
SK

)T)
, (1)

1 We used the fastica software package [22]. Even though in the text
we mention that we use the magnitude spectrogram, in fact we use both
the magnitude spectrogram Sk and its negative, i.e., we used the extended
matrix (−Sk,Sk). Therefore the mean is zero, and this is done because
ICA models the variation around the data mean. This way the results
from ICA describe the signal rising and falling from zero, rather than the
spectrogram mean.

where (Sk)T is the transpose of the magnitude spectro-
gram of sound k, and this expression represents a huge
matrix that consists of the concatenation of the transposed
spectrograms in the data set. Thus the columns in this ma-
trix are the transpose of the bins in the data set, that is in
the spectrograms S1, . . . ,SK .

As a result the method learns a set of temporal basis func-
tions Φ that describe the temporal regularities in the bins
in the data set. Along with that, the method also extracts a
set of weights, such that each bin is now represented by a
set of weights (one weight per basis function). If we con-
sider all the weights related to the bins of one spectrogram
and one basis function, we have a (spectral) vector, which
we call spectral source signal.

Thus, the concatenated transposed spectrograms can be
expressed as the linear combination of these spectral source
signals:((

S1
)T

, . . . ,
(
SK

)T)
= Φ

(
C1, . . . ,CK

)
, (2)

where Φ is a matrix with one temporal basis function per
column, K is the number of sounds, and, for every 1 6
k 6 K, Ck is a matrix of spectral source signals: there
is one such matrix for each spectrogram and the rows of
these matrices contain the source signals. The ith row of
every matrix Ck has the weights to the ith basis function
in Φ (that is, the ith column of Φ).

Figure 1 shows an example of the temporal basis func-
tions and spectral source signals obtained by PCA of the
spectrograms of a set of ten sounds from impacts on an
aluminum rod (where the spectrograms are arranged as in
equation 1). Figure 1a shows 3 basis functions, that is,
3 columns from Φ (plotted horizontally), and figure 1b
shows 3 spectral source signals. While the basis functions
in Φ are common to all spectrograms, each spectral source
signal is associated to a specific basis function and a spe-
cific spectrogram. For instance, in this example, cAl1

1 (the
first row in CAl1) is a vector that contains the weights as-
sociated to SAl1 and φ1.

Since there still are temporal regularities that can be fur-
ther explored in the matrices Ck, the method has a second
stage that consists of modeling those regularities. For that
purpose, the method first constructs new matrices of source
signals, Di, such that each matrix contains the source sig-
nals related to one basis function. Matrix Di contains the
source signals related to the ith basis function in Φ, that is,
each column in this matrix is the ith spectral source signal
for a different sound,

Di = (c1i , . . . , c
K
i ) , (3)

where cki is the ith source signal (that is, row) in Ck. There
will be as many Di matrices as basis functions in Φ. (Note
that, cki is a column in Di and a row in Ck. Thus, since
here vectors are column vectors, we should have used the
transposed, (cki )T , when referring to the row of Ck, but
we will drop the transpose symbol whenever there is no
ambiguity.)

The method then applies ICA or PCA to each matrix Di.
As a result, it learns a set of spectral basis functions, repre-
sented in the columns of Ψi, and a set of weights Ui such



(a)

(b)

Figure 1. Temporal basis functions in Φ and spectral
source signals in Ck (with 1 6 k 6 3) obtained by PCA
of a set of 10 impacts on an aluminum rod ({Al1, . . .,
Al10}) [1]. (a) The first three basis functions in Φ (that is,
the first 3 columns in this matrix, which for convenience
here we plotted horizontally): φ1, φ2 and φ3. (b) The first
spectral source signal for sounds Al1, Al2 and Al3 (that is,
the first row in matrixes CAl1, CAl2 and CAl3): cAl1

1 , cAl2
1

and cAl3
1 .

that
Di = ΨiUi . (4)

Ψi contains the spectral basis functions that reflect the reg-
ularities in the spectral source signals associated to the ith
basis function in Φ. While the jth row in Ui is related
to a the jth basis function (that is, column) in Ψi, the kth
column in Ui is related to sound k. Now, we can reorga-
nize the weights in matrices Ui and build matrix Vk that
contains all the weights related to sound k: each column in
Vk is the kth column of a different Ui.

Figure 2 shows an example of the spectral basis functions
and weights obtained by PCA of the spectral source signals
in D1, where, in turn, the source signals were obtained by
PCA of the spectrograms of a set of ten sounds from im-
pacts on an steel rod (where the spectrograms are arranged
as in equation 1). Figure 2a shows 3 basis functions, that

(a)

(b)

Figure 2. Spectral basis functions in Ψ1 and weights ob-
tained by PCA of the source signals which were obtained
by PCA of a set of 10 impacts on a steel rod ({St1, St2, . . . ,
St10}) [1]. (a) First three spectral basis functions from Ψ1

(that is, the first 3 columns in this matrix, which for con-
venience here we plotted horizontally). (b) Weights in U1,
where vk1,j is the weight for sound k and basis functionψ1

j .

is, 3 columns from Ψ1 (plotted horizontally). Figure 2b
shows the weights in U1, that is, it shows the first column
of each matrix VSt1, . . . ,VSt10.

To conclude, the ISA method represents the sounds with a
model that consists of the triple (Φ,Ψ,V), where V con-
tains V1, . . . ,VK , Ψ contains the sets Ψ1, . . . ,ΨI , and I
is the number of basis functions in Φ. For a more complete
explanation of this model and more figures with results,
please refer to [1].

4. MODELING INTRINSIC STRUCTURES OF
IMPACT SOUNDS WITH ACCURATE TRANSIENT

SYNTHESIS

Using the ISA method, it is possible to model all parts
(attack, sinusoids, etc.) of impact sounds. The learned
model is able to identify and describe the structures of the



sounds, which can be used to synthesize the pure tones
of the sounds, for instance using sinusoidal modeling and
synthesis [9–11]. However, the same is not true when it
comes to synthesizing the attack transients of the sounds.
This is due to the lack of phase information in the magni-
tude spectrograms. Here, we extend the ISA method such
that, the model it learns can be used to synthesize both the
sinusoidal and transient parts in the sounds.

The extended method, which we name the Intrinsic Struc-
ture Analysis and Synthesis (ISAS) method, is composed
of an analysis stage that decomposes the sounds into ba-
sis functions that represent their structures, and a synthe-
sis stage that uses those basis functions to produce wave-
forms. The analysis stage starts by dividing each signal
into two parts: the sinusoidal sub-signal, which we call s
and contains the pure tones from the original signal, and
the transient sub-signal, which we call a (from attack) and
which contains the transients from the original signal. Af-
terwards, the sub-signals are treated differently. The sinu-
soidal sub-signals are analyzed by the ISA method, which
extracts the temporal basis functions Φ, the spectral basis
functions Ψ and weights V. The transient sub-signals are
analyzed by the transients method described in section 4.1,
which also learns sets of spectral and temporal basis func-
tions, along with the weights. The synthesis stage receives
the basis functions learned by the ISA method and tran-
sients method, and uses them to synthesize new sounds
(section 4.2).

4.1 The transients method

In order to avoid the problems introduced by the lack of
phase information, the transients method does not use a
spectrogram to represent this sub-signal. Instead, it uses
the representation proposed by Verma and colleagues in
the context of TMS, that is, the spectrogram of the DCT
(see section 2.2) [16, 17]. So, the analysis of the transients
sub-signal starts by representing ensembles of transients
signals (or a single transients signal) with the spectrogram
of the DCT of the signals’ waveforms, which here we call
Zk. (Note that the frames of Zk correspond to frequencies
of the signal, and the bins correspond to time, while in Sk,
the frames correspond to time slices, and the bins to fre-
quency intervals.) This allows representing the transients
by a periodic signal (composed of cosine waves) that is
easily modeled, modified and synthesized, while preserv-
ing the transient characteristics of the signal.

The next step consists of concatenating the spectrograms
in the same way as with the ISA method, such that the
data matrix X is the concatenation of transposed spectro-
grams, X = ((Z1)T , (Z2)T , ...(ZK)T ). Then the method
applies ICA or PCA to this matrix (whose concatenated
frames, i.e. the rows of X, are the signal mixtures) and
as a result, it learns a set of basis functions and a set of
source signals (i.e., vectors of weights). While at this step,
the ISA method learns the temporal basis functions Φ, the
transients method learns a set of spectral basis functions,
which we call Υ. The basis functions learned at this step
are spectra because the frames of the matrices Zk corre-
spond to frequencies of the original signal.

Figure 3. Spectral basis functions Υ learned by PCA of
the set of 10 transients sub-signals from impacts on a steel
rod ({St1, St2, . . . , St10}). The figure shows the first three
(most dominant) basis functions from top to bottom: Υ1,
Υ2 and Υ3.

As an illustration, Figure 3 shows the most dominant ba-
sis functions in Υ learned by PCA of transients from im-
pacts on a steel rod. As one could expect, these basis func-
tions have some broad band characteristics (for instance,
comparing to figure 2a here the partials are not as well de-
fined), which is consistent with the broad band character-
istics of the transients.

The source signals obtained at this stage are time-varying
functions because the bins of Zk correspond to time of the
original signal. Just like with the ISA method, the tran-
sients method has a further stage which consists of analyz-
ing the structures in these temporal source signals (vectors
of weights) obtained in the first stage along with Υ. The
process is the same as explained in section 3 but now the
method uses matrices of temporal source signals instead of
the matrices Ck. As a consequence, the basis functions
learned at this second stage are time-varying functions,
which we call Γ. As an example, figure 4 shows tem-
poral basis functions learned by PCA. (The same sounds
were used both in figure 3 and figure 4.) These basis func-
tions characterize the temporal structure of transients and,
as it can be observed they are very sharp (they have very
sudden increases of energy and fast decays) which is con-
sistent with the characteristics of transients. Associated
with each temporal basis function in Γ and each transients
sub-signal, there is a weight that scales the basis function.
Here, O is the set of those weights.

To summarize, the transient method is very similar to the
ISA method but instead of initially representing the sounds
with a spectrogram of the waveform, it represents them
with the spectrogram of the DCT of the waveform (Zk).
It then represents the spectral and temporal structures in
these spectrograms with sets of spectral and temporal basis
functions. To learn these basis functions, it uses the same
processes as the ISA method. Since the frames of Zk cor-
respond to frequencies of the original signal, and the bins
correspond to time, the transient method first obtains a set



Figure 4. Temporal basis functions Γ learned by PCA of
the temporal source signals, which in turn were obtained
by PCA of the set of 10 transients sub-signals from impacts
on a steel rod ({St1, St2, . . . , St10}). The first three (most
dominant) basis functions are shown from top to bottom:
γ1, γ2 and γ3.

of spectral basis functions Υ, and a set of temporal source
signals. Afterwards, it learns a set of temporal basis func-
tions Γ, and a set of weights O (by analyzing the temporal
source signals obtained in the first stage). The transients
method represents the sounds with a model that consists of
the triple (Υ,Γ,O).

4.2 The synthesis stage

Once the analysis stage has completed, we have sets of ba-
sis functions (Φ, Ψ, Υ and Γ) that describe the structures
in sinusoidal and transients sub-signals. These basis func-
tions and the weights in V and O can be used to synthe-
size sounds. The synthesis is sub-divided into two meth-
ods: one that synthesizes a sinusoidal waveform s′ (section
4.2.1) and another that synthesizes a transients waveform
a′ (section 4.2.2). After these two waveforms have been
generated, the synthesis stage combines them to produce
the final synthesized signal,

y(t) = s′(t) + a′(t). (5)

Optionally, the basis functions and weights can be mod-
ified in order to obtain new sounds. For instance, the syn-
thesis stage can consider only a subset of basis functions or
it can modify in some way the shape of one (or more) basis
functions. Also, instead of using the original weights, the
synthesis stage can use newly generated weights. If those
new weights are drawn from the distributions in V and O,
the method can obtain new realistic impact sounds.

4.2.1 Synthesis of the sinusoidal sub-signal

This stage uses the basis functions in Φ and Ψ to synthe-
size a sinusoidal signal s′. Since the sinusoidal sub-signal
s is represented by a magnitude spectrogram, the original
phase information is not retained. This loss of phase in-
formation is not critical for synthesizing s′ because phase

information is not perceptually significant in the periodic
regions of the sounds. Here we use an algorithm similar to
sinusoidal modeling and synthesis, as in the MQ method
and PARSHL [9–11]. The method builds a spectrogram
from the information in the sets of basis functions Φ and
Ψ, and weights V. Then it uses the peak tracking algo-
rithm of sinusoidal modeling to extract the parameters that
represent the tracks of peaks in the spectrogram. These pa-
rameters are then used by sinusoidal synthesis (with a bank
of oscillators) to obtain a sinusoidal waveform s′.

4.2.2 Synthesis of the transients sub-signal

This stage uses the basis functions in Υ and Γ to synthe-
size a transients signal a′. It starts by building a spectro-
gram from the information in the basis functions in Υ and
Γ, and weights O. Then it uses a process similar to TMS,
to produce a transients waveform a′ from this spectrogram:
It uses sinusoidal modeling to model the energy tracks in
this spectrogram, and converts the tracks into a waveform
by sinusoidal synthesis and an inverse DCT.

5. RESULTS

In this section we discuss the results obtained by the ISAS
method. The data used here to train the model, that is,
to learn the basis functions Φ, Ψ, Υ and Γ, consists of
sounds from impacts on metal rods. A wooden rod, with a
much shorter length but the same diameter, was used as a
mallet. Since the rods were hit by hand, there were slight
variations on the impact location and force. The sounds
were digitized using a sampling frequency of 44 100 Hz.

The ISA method is able to represent both the steady and
attack structures in the sound, and its results can be used
to synthesize the steady portions of the sound. However,
because of the loss of phase information inherent to this
method, the same is not true for the transients: when syn-
thesized, they will sound less sharp than the real transients.
To illustrate these limitations, the top line of figure 5 shows
a waveform, yISA, obtained by the ISA method and by
the synthesis procedure described in section 4.2.1. Here,
the sets of basis functions Φ, Ψ and coefficients V, were
learned by the ISA method (with ICA of the transposed
spectrograms of ten sounds from impacts on a zinc plated
steel rod, and with PCA of the spectral source signals).
These basis functions and the weights obtained for sound
Zn1, that is, VZn1, were used to produce a spectrogram,
which was modeled and turned into waveform yISA by the
synthesis procedure described in section 4.2.1. This wave-
form contains the steady, slower decaying, portion of the
sound, but lacks the initial sharp and big increase of energy
that is characteristic of the attack portion of these impact
sounds.

As explained above, the ISAS method produces two wave-
forms, a sinusoidal waveform s′ and a transients waveform
a′, which can be combined to produce the final synthesized
waveform y. Let us first look into the sinusoidal wave-
form s′. To illustrate the sinusoidal waveforms obtained,
figure 6 shows a sinusoidal waveform s′ obtained by the
ISAS method. As above, here, the sets of basis functions
Φ, Ψ and coefficients V, were learned with ICA of the



Figure 5. Synthesized signals with a training data set of
10 sounds from impacts on a zinc plated steel rod ({Zn1,
Zn2, . . . , Zn10}). The weights in VZn1 were used to syn-
thesize both waveforms. (Top) yISA was synthesized by
sinusoidal modeling and synthesis and the ISA method.
(Bottom) yISAS was synthesized by the ISAS method.

transposed spectrograms of ten sinusoidal sub-signals from
impacts on a zinc plated steel rod, and PCA of the spectral
source signals. These basis functions and the coefficients
in VZn1 were used to produce a spectrogram, which was
then used to obtain a waveform s′ with the synthesis pro-
cedure described in section 4.2.1. As can be observed, s′

is quite similar to yISA in figure 5.
Now, in contrast to the ISA method, the ISAS method can

deal with the synthesis of attack transients. The bottom
waveform in figure 5 shows a waveform, yISAS , obtained
by the ISAS method. This waveform consists of the sum of
the synthesized sinusoidal and transients waveforms (see
equation 5). The synthesized sinusoidal waveform consists
of the waveform s′ shown in figure 6. In order to synthe-
size the transients waveform a′, the ISAS method used the
transients method described in section 4.1 with ten tran-
sients sub-signals from impacts on a zinc plated steel rod,
along with the synthesis method described in section 4.2.2
and the weights obtained for sound Zn1. As it can eas-
ily be observed in the figure, this waveform starts with an
attack transient, which is the very brief part of the sound
at around 0.1 s with a very sharp increase and decrease of
energy. This attack transient is followed by a slower de-
caying portion, which corresponds to the sinusoidal part of
the sound. This demonstrates that our goal here was suc-
cessfully achieved, that is, the ISAS method can synthesize
waveforms that preserve the transient characteristics of the
signals.

6. CONCLUSIONS

Here we proposed a statistical analysis and synthesis method
that is able to deal with both the sinusoidal and attack tran-

Figure 6. Sinusoidal waveform s′ synthesized by the ISAS
method with a training data set composed of the sinusoidal
sub-signals extracted from 10 sounds from impacts on a
zinc plated steel rod ({Zn1, Zn2, . . . , Zn10}).

sient portion of the sounds and does not require any knowl-
edge of the physics, dynamics and acoustics of the objects.
The method is an extension to the ISA method [1]. The
ISA method is able to model the intrinsic structures of
all parts of the sounds (such as the attack, decay and sus-
tain portions, and even other interesting properties such as
ringing). The structures (basis functions) learned by that
method can be used to synthesize the sinusoidal portions
of impact sounds. However, due to the loss of phase infor-
mation inherent to the ISA method, the attack portion of
the sounds cannot be successfully synthesized.

On the other hand, the extension proposed here (the ISAS
method) is able to synthesize waveforms that contain both
attack transients and slower decay (sinusoidal) portions,
which can also have pitch-changing characteristics. This
extension treats the sinusoidal and transients parts of the
signal in different ways: it analyses and synthesizes them
differently. It starts with a different initial representation
for each case. The sinusoidal portions are represented with
a magnitude spectrogram and the transient portions are rep-
resented with the spectrogram of the DCT. This allows rep-
resenting the transients by a periodic signal that can then
be analyzed in the same way as the sinusoidal parts. The
method then learns the spectral and temporal structures
that represent each portion of the sounds. These structures
can then be used to synthesize new sounds that contain
both the sinusoidal and attack transient portions.

Other methods have been proposed to synthesize sinu-
soidal and transient sounds, such as SMS and TMS [9–
11, 16, 17], but there are some key differences. Most of
those signal modeling techniques analyse one sound sam-
ple and generate a new sound that consists of a modifica-
tion of the original sound. The ISAS method works in a
different way: it analyzes a set of sound samples. Since it
analyses the structures of a set of sounds and not those of
a single sound, it is able to extract the intrinsic properties
of that class of sounds. Thus, given a distribution of sound
samples from the same class, the ISAS method is able to
generate new sounds from within that distribution.

As future work, we are studying the possibility of gen-
erating sounds from the interpolation of different classes.
For instance, given a set of impacts on the edge of an ob-
ject and another set of impacts on the center of the object,
we are studying the possibility of generating sounds from
impacts on intermediate locations. Also, the sounds used
here were from impacts on metal rods, but we are planning
to use the method to generate other types of sounds, like
impacts on other objects.



Acknowledgments

We would like to thank Dr. M. Lewicki for his advice, and
also Dr. L. Holt and Dr. V. Ming for help recording the
impact sounds used here.

This work was supported by grant UTA-Exp/MAI/0025/2009
from Fundação para a Ciência e a Tecnologia (Portugal)
and fellowships from Fundação para a Ciência e a Tec-
nologia and Fundação Calouste Gulbenkian (Portugal).

7. REFERENCES

[1] S. Cavaco and M. Lewicki, “Statistical modeling of
intrinsic structures in impact sounds,” Journal of the
Acoustical Society of America, vol. 121, no. 6, pp.
3558–3568, June 2007.

[2] J. Flanagan and R. Golden, “Phase vocoder,” Bell
System Technical Journal, vol. 45, pp. 1493–1509,
November 1966.

[3] M. Portnoff, “Implementation of the digital phase
vocoder using the fast Fourier transform,” IEEE Trans-
actions on Acoustics, Speech, and Signal Processing,
vol. 24, no. 3, pp. 243–248, June 1976.

[4] J. Marques and L. Almeida, “New basis functions for
sinusoidal decomposition,” in Proceedings of EURO-
CON, Stockholm, Sweden, 1988.

[5] D. Griffin and J. Lim, “Multiband excitation vocoder,”
in Proceedings of IEEE International Conference on
Acoustics, Speech, and Signal Processing, vol. 36, is-
sue 8, 1988, pp. 1223–1235.

[6] M. Puckette, “Phase-locked vocoder,” in Proceedings
of IEEE Workshop on Applications of Signal Process-
ing to Audio and Acoustics, New Paltz, NY, 1995.

[7] J. Laroche and M. Dolson, “Improved phase vocoder
time-scale modification of audio,” IEEE Transactions
on Speech and Audio Processing, vol. 7, no. 3, pp. 323–
332, May 1999.

[8] J. Laroche and M.Dolson, “New phase vocoder tech-
niques for pitch-shifting, harmonizing and other exotic
effects,” in Proceedings of IEEE Workshop on Appli-
cations of Signal Processing to Audio and Acoustics,
New Paltz, NY, October 1999, pp. 91–94.

[9] R. McAulay and T.Quatieri, “Speech analy-
sis/synthesis based on a sinusoidal representation,”
IEEE Transactions on Acoustics, Speech, and Signal
Processing, vol. ASSP-34, no. 4, pp. 744–754, August
1986.

[10] R. McAulay and T. Quatieri, “Sinusoidal coding,” in
Speech Coding and Synthesis, W. Kleijn and K. Pali-
wal, Eds. Elsevier Science B.V., 1995, ch. 4, pp.
121–173.

[11] J. Smith and X. Serra, “PARSHL: an analysis/synthesis
program for non-harmonic sounds based on a sinu-
soidal representation,” in Proceedings of the Interna-
tional Computer Music Conference, 1987, pp. 290–
297.

[12] X. Serra and J. Smith, “Spectral modeling synthesis: a
sound analysis/synthesis based on a deterministic plus
stochastic decomposition,” Computer Music Journal,
vol. 14, no. 4, pp. 12–24, 1990.

[13] X. Serra, “Musical sound modeling with sinusoids
plus noise,” in Musical Signal Processing, C. Roads,
S. Pope, A. Picialli, and G. De Poli, Eds. Swets &
Zeitlinger Publishers, 1997.

[14] P. Masri, “Computer modeling of sound for transfor-
mation and synthesis of musical signal,” Ph.D. disser-
tation, University of Bristol, 1996.

[15] M. Ali, “Adaptive signal representation with applica-
tions in audio coding,” Ph.D. dissertation, University
of Minnesota, 1996.

[16] T. Verma, S. Levine, and T. Meng, “Transient mod-
eling synthesis: a flexible analysis/synthesis tool for
transient signals,” in Proceedings of the International
Computer Music Conference, September 1997, pp.
164–167.

[17] T. Verma and T. Meng, “Extending spectral model-
ing synthesis with transient modeling synthesis,” Com-
puter Music Journal, vol. 24, no. 2, pp. 47–59, 2000.
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