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Abstract. We propose a sound recognizer that uses a reduced feature
set to identify musical instruments from single notes in sound recordings
as well as the note that was played. The recognizer learns a set of spectral
features from the data using non-negative matrix factorization.
The accuracy of the recognizer is very high for both instrument and note
classification: the recognition rate for instruments ranged from 94% to
100%, while for note identification ranged from 86% to 100%.
Keywords: sound classification, musical instruments recognition, mono-
phonic, non-negative matrix factorization

1 Introduction

The principle of multimedia indexing is to provide information about the data,
such as its title, author or, more importantly, its contents. Much of this informa-
tion is still manually inputted. For it to be possible to transition to a completely
automated process, a great number of problems still need to be solved. Due to
their variety, these problems are studied in numerous areas. Music, for instance,
is studied by a cross discipline known as Music Information Retrieval, which
embodies many research topics [3]. Its main goal is to develop methods that
automatically extract and organize information from large collections of music
(a daunting task to perform manually [7]). Automatic recognition of musical in-
struments belongs to this area and, unsurprisingly, is in itself an immense topic,
having many different concepts and approaches. Two classes can be clearly dis-
tinguished in terms of recordings: monophonic, when only single notes are played,
and polyphonic, when various notes are played simultaneously.

Monophony has been widely researched by exploring more efficient and pre-
cise combinations of features (for instance, [1]). Polyphony, on the other hand,
tends to be more realistic due to the notion that, in the majority of cases, record-
ings will contain more complex sounds as opposed to single note compositions.

There are two distinct approaches to handle polyphony. The first focuses on
developing methods of retrieving, directly from the mixed audio signal, informa-
tion used to identify the instruments present in the mix [4, 9]. The second uses
statistical sound source separation algorithms, such as independent component



analysis and non-negative matrix factorization (NMF), to learn sound features
that can characterize the instruments or notes in the signal [2, 5, 6].

We propose an instrument recognizer that uses NMF to learn a reduced set
of spectral features from sounds and a k -NN classifier to classify the data. The
recognizer achieves very high recognition rates, not only determining the instru-
ment of the sample, but also the note being played. While the tests presented
here use monophonic sounds, the system can also deal with polyphonic sounds:
we have performed some preliminary tests on polyphonic sounds, which confirm
that the system is able to recognize the instruments and notes of these sounds.

2 The Recognizer

The proposed recognizer does not use a set of pre-defined features, instead, it
learns them from the data using NMF1. In the training phase, the recognizer
starts by normalizing the amplitude of the sounds, computing their spectrograms
(namely, S1 to SN), and concatenating all the spectrograms to produce a single
matrix (S1, . . . ,SN) 2, where N is the number of sound samples.

The NMF of the concatenated spectrograms produces two matrices: Θ, the
mixing matrix, whose columns consist of the spectra that characterize the sounds
in the training data set, and P, the source matrix, whose lines contain the
temporal envelopes of the sounds. Using these matrices, the training data set
(S1, . . . ,SN) can be expressed as (S1, . . . ,SN) = ΘP.

The spectra in Θ are the sound features that later will be used in the classi-
fication stage of the recognizer. The temporal envelopes in P contain the values
of these features. In other words, the columns of Θ are spectral basis functions
that define a new space where the data is now represented. The envelopes in P
are vectors of coefficients, which are the coordinates of the data in this space,
that is, each frame in (S1, . . . ,SN) is now represented in this new space of spec-
tral basis functions by a new set of coefficients. If we consider all the coefficients
related to the frames of one spectrogram and one basis function, we have a vec-
tor of coefficients, which is a temporal envelope. Now we can define matrix Pn
which contains all the vectors of coefficients (or temporal envelopes) that are
associated to spectrogram Sn. The data set can then be expressed as:

(S1, . . . ,SN) = Θ (P1, . . . ,PN) , (1)

where the ith row of each matrix Pn is associated to the ith basis function (the
ith column) of Θ.

In terms of the classifier, two other concepts are relevant: training and test
feature vectors. A training feature vector is an M dimensional vector of coef-
ficients from M temporal envelopes from one sound, where M is the number
of basis functions in Θ. More specifically, the training feature vector ti,n =

1 Our code was developed in MATLAB and we used an NMF software package by
Virtanen [8].

2 (A, B) represents two concatenated matrices.
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Fig. 1: (a) The spectral basis functions in Θ and (b) the temporal envelopes in P
learned by NMF of the spectrograms of three different sounds (A5flute, F3guitar

and C4piano). (a) We call these spectra θC4piano , θF3guitar , and θA5flute (from top
to bottom). (b) The three feature vectors found are indicated by the rectangles.

(t1,i,n, . . . , tM,i,n) is a vector that contains coefficients associated to a small
neighborhood of the ith frame of spectrogram Sn: tm,i,n ∈ {pm,i−∆i,n, . . . , pm,i+∆i,n},
where pr,c,n is the coefficient in the rth row and cth column of Pn, and ∆i deter-
mines the size of the neighborhood that is analyzed, that is, how many frames
the algorithm analyses in order to build the training feature vectors. In more
detail, the algorithm evaluates P to determine the largest peak in each of the
submatrices (P1, . . . ,PN ) to create N training feature vectors (one for each
sound in the training set). When a peak is found in Px, the algorithm looks for
a peak in the other lines of Px, such that the peaks are in close proximity, that
is, the algorithm analyses only a limited number of columns (determined by ∆i)
such that the peaks correspond to the same event (such as the attack of a note).

A test feature vector consists also of an M dimensional vector of coefficients
extracted from M temporal envelopes, but while the envelopes in the training
set are learned by NMF of the spectrograms, the envelopes in the test set are
determined by the following equation:

Ptest sound = Θ−1Stest sound , (2)

where Θ−1 is the pseudoinverse of Θ.
The training feature vectors are used to train a k -NN classifier that uses

the Euclidean distance metric. While we could extract several training feature
vectors from each sound (for example, some from the attack, some from the
sustain and/or the decay), here we use only one such vector per sound.

To illustrate these concepts, let us consider a simple scenario in which the
training set consists of only three sounds (A5flute, F3guitar and C4piano) and
the test set of a single sound (C4′piano, from a different recording). NMF of
the matrix of concatenated spectrograms (SA5flute

,SF3guitar ,SC4piano) produces
matrices Θ and P (Figure 1). Each line in Figure 1a consists of one of the
columns from Θ and defines one spectra (or feature). Since matrix P contains
the temporal envelopes associated with the three sounds, it can be represented
as P =

(
PA5flute

,PF3guitar
,PC4piano

)
.
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Fig. 2: The temporal envelopes
in Ptest sound for the test sound
described in section 2 (C4′piano).
The feature vector found is indi-
cated by the grey rectangle.

Data Features
Instr. Note ΘA5flute

ΘF3guitar ΘC4piano

Piano C4 0,0184 0,0000 4,3936
Guitar F3 0,3636 3,6361 0,1087
Flute A5 3,2725 0,4984 0,01562

Table 1: Training feature vectors
for the simple test case described
in section 2. Each feature vector
consists of three coefficients, one
for each of the features: θA5flute

,
θF3guitar , and θC4piano from Fig-
ure 1a.

The next step consists of evaluating P to determine the largest peak in each
of the submatrices (PA5flute

, PF3guitar , and PC4piano) to create three training
feature vectors (one for each sound in the training set) as was described above.
These training feature vectors are marked by the grey rectangles in Figure 1b
(and their values are presented in Table 1). Each of these vectors represents a
single note and will later be used to train the k -NN classifier.

Finally, to classify a test sound, the algorithm represents it in the same space
as the training feature vectors, that is, the space defined by Θ: it normalizes the
amplitude, computes the spectrogram, and through equation 2 obtains a matrix
Ptest sound, of coefficients. Figure 2 shows the matrix obtained for the test sound
used with the simple test case described above. Since the highest peak is in
the top row, means that this sound has a spectra very similar to that defined
by the top spectra in Figure 1a, that is θC4piano

. The algorithm then obtains
a feature vector by computing the maximum peak and applying the method
described above: (0.0232, 0.0121, 4.8865). With this test feature vector, the k -
NN classifier, trained with the values in Table 1 and with k = 1, can correctly
determine the note and instrument of the test sound as C4 and piano.

3 Result Analysis

The data set used to train and test the classifier is composed of single notes from 3
different instruments using various recording conditions and playing techniques.
The instruments used were a Fender Stratocaster Electric Guitar, a Yamaha
Grand Piano and a Hohner Recorder/English Flute. The recordings were made
with a microphone (AKG C1000S) connected to a USB Audio Interface (Edirol
UA-25). All recordings were digitized using a sampling frequency of 44100 Hz,
16 bit depth and 1 channel (mono).



In all, 48 notes (spanning 4 octaves) were recorded, of which 12 are guitar (C3

to B3)3, 24 are piano (F]3 to F5) and 12 are flute (C5 to B5). Different recordings
were made for each note, giving a total of 288 sound samples: six recordings of
each guitar note using different pickups (72 samples), six recordings of each flute
note with two different playing techniques, sustain and staccato (72 samples)
and six recordings of each piano note with three different playing techniques,
strong sustain, soft sustain and staccato (144 samples).

To test the recognizer, we performed an n-fold cross validation experiment:
the training sets were created with all the sounds except one from each note
and instrument (that is, all training sets had 240 sounds). The remaining 48
sounds were used as test data (all the sounds from the same instrument in the
test data used the same technique, such as staccato or sustain). Therefore all
sounds were used for training at five of the experiments and for testing in one
of the experiments. From these six different experiments we gathered results
using two different methods: (1) the samples from the test data were classified
individually; (2) the system detected and classified the samples from randomly
generated sound files containing twenty samples in sequence (distanced by two
seconds of silence). Since the maximum number of identical notes for the same
instrument in the training sets is 5, we used k = 5 for the k -NN classifier.

Instrument Note Total number
# % # % of samples

Flute 70 97% 62 86% 72

Guitar 72 100% 72 100% 72

Piano 137 95% 143 99% 144

Table 2: Results for the tests with in-
dividual sounds.

Instrument Note Total number
# % # % of samples

Flute 27 100% 27 100% 27

Guitar 27 100% 27 100% 27

Piano 62 94% 65 98% 66

Table 3: Results for the tests with
random sequences of sounds.

The recognition results were very positive in both scenarios. The values for
the classification of individual samples are presented in Table 24, where we can
verify that the accuracy of the system is consistently high (while obscured by
the compounded values, the lowest result was 75% on one of the flute note
identification tests). All guitar samples were correctly classified as guitar sounds
and all the guitar notes were correctly identified. The instrument classification
was also very high for flute and piano (97% and 95%, respectively), with only one
piano sample incorrectly identified. The lowest results were the note classification
of flute samples, with a very acceptable recognition rate of 86%.

For the randomized sequences of samples we obtained even better results,
see Table 3, with an accuracy percentage of almost 100% for all the instruments
and notes tested. Only 4 piano samples were misclassified as being from another
instrument and one piano sample was misclassified as the wrong note.

3 This representation is called “scientific pitch notation” and identifies western notes
by combining the letter-name (A to F ) accidentals and a number identifying the
pitch’s octave.

4 The columns Instrument and Note show the number and percentage of correctly
classified samples in terms of instrument and note, respectively.



4 Conclusions

We proposed a musical instrument recognizer that, instead of using a set of
predefined features, uses NMF to learn a set of spectral features from the data.
When tested with samples from flute, guitar and piano, spanning four octaves,
this approach proved extremely successful. The recognition rates were very high
for the classification of the instruments (ranging from 94% to 100%) as well as
for identification of the notes from the samples (between 86% and 100%).

While all presented tests used monophonic sounds, we have also performed
some preliminary tests on polyphonic sounds, which have a highly promising
recognition rate. As future work we intend to test other musical instruments as
well as further explore the application of this technique on polyphonic sounds.
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9. Xin Zhang and Zbigniew W. Raś. Sound isolation by harmonic peak partition for
music instrument recognition. Fundam. Inf., 78:613–628, December 2007.


