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Abstract

Due to the lack of annotation of their large video
archives, multimedia content provider companies and
television channels do not use the data in their archives
to their full extent. In order to contribute with a solu-
tion to this problem, we have developed a tool that com-
bines audio and visual information to annotate video.
In particular, this tool has been used by a video produc-
tion company that has given us positive feedback. The
main innovation of this tool is the use of environmental
sound recognition to annotate video. Here we focus on
the tool’s audio information extraction method, which
consists of a sound recognizer that learns a small set of
spectral features from the data using non-negative ma-
trix factorization. The recognizer can be used for differ-
ent purposes such as to classify musical instruments, to
identify the notes that are played and to distinguish en-
vironmental sounds like water, traffic, trains and people.

Key words: sound classification, musical instru-
ments recognition, environmental sound recognition,
non-negative matrix factorization, video annotation

1. Introduction

In order to optimize the management of the avail-
able manpower and reduce the overall costs of multi-
media content provider companies and television chan-
nels, there is a need for more efficient workflows. While
the overall process of obtaining media from the initial
production concepts until the archiving phase can be
time consuming, the capturing and editing stages cor-
respond to the tasks that have a major impact on the
workflow duration. Re-using material available in large

video archives, allows sparing the time spent on cap-
turing footage, which, consequently, speeds the work-
flow processes of those companies. This way, television
networks and content provider companies can produce
more and better content, in a fast and convenient way.

In order to reuse the material available in video
archives, there is a need to annotate the existing mate-
rial. In many video production companies, this task is
still performed manually. This is a hard and tedious job,
which, in addition, is prone to depend on human sub-
jectivity. In order to escape from human subjectivity, an
automatic approach would be desirable.

We have developed a tool that combines audio and
visual information to annotate video automatically. The
developed tool has been included in the workflow of a
video production company, Duvideo. We use face detec-
tion, color descriptors (marginal HSV color moments)
and texture descriptors (Gabor filters and SIFT) to gather
visual information that is used to train semantic mod-
els for video annotation [1, 2]. While the visual infor-
mation obtained can be used per se to annotate video,
we combine it with audio information. The goal of us-
ing both audio and video information is to give the sys-
tem a better understanding of the content and also to en-
able better browse and search functionalities. Since the
focus of this paper is the audio information extraction
method, we will not discuss the visual information ex-
traction method any further. (For examples and details
of work in digital video, please refer to TREC video re-
trieval evaluation, TRECVID [3].)

There has been some previous work on video anno-
tation that combines audio and visual information. The
majority of these proposals used information extracted
from speech to identify keywords that may help to anno-
tate video. This information can be from, for example,
speech recognition of voice annotations [4, 5], speech



recognition of the speech from the video [6, 7], or using
speech annotation to create audio-visual stories [8, 9].
Notwithstanding, the main contribution of this paper is
the use of the environmental sound to annotate video,
which is a much less explored problem. We combine
features extracted from the video’s environmental sound
(such as traffic noise or sounds from crowds) with fea-
tures extracted from its visual content. Jiang et al. also
combined features extracted from the video’s environ-
mental sound with visual features [10]. They build dis-
criminative audio-visual codebooks by using the multi-
ple instance learning technique. They extract local color
and texture from the video segments, along with audio
features extracted from the sound track. Then, they com-
bine the visual and audio information into audio-visual
atoms and train several concepts using this information.
On the other hand, we train several concepts separately
using only image features and only audio information,
and we give the user the option of using only one modal-
ity or both.

In order to extract content information from the au-
dio data available in large video archives, we propose a
sound recognizer that has proven to be suitable to deal
with different types of data, such as samples from musi-
cal instruments and environmental sounds. When deal-
ing with these types of data, two main approaches are
possible. The first focuses on developing methods of
retrieving, directly from the audio signal, information
used to identify the instruments or other sources present
in the mix [11, 12]. The second uses statistical sound
source separation algorithms, such as independent com-
ponent analysis, matching pursuit and non-negative ma-
trix factorization (NMF), to learn sound features that can
characterize the instruments, sources or notes in the sig-
nal [10, 13–18].

The proposed recognizer uses this second approach.
The advantage of this approach is that it does not use a
set of pre-defined features, such as Mel frequency cep-
stral coefficients or other short time features, instead it
learns the set of spectral features that can better describe
the data. The recognizer uses NMF to learn a reduced set
of spectral features from sounds and a k nearest neigh-
bor (k-NN) classifier to classify the data. The recog-
nizer achieves excellent recognition rates for some of the
classes present in the environmental sounds extracted
from a multimedia content production company’s videos
(Duvideo). These sounds have the particularity of hav-
ing a noisy nature, which adds to the difficulty of the
problem. Moreover, the recognizer is not limited to en-
vironmental sounds. It can be used to classify other
types of sounds. In particular, it also achieves very high
recognition rates with musical samples when determin-
ing the instrument of the sample as well as the note being
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Figure 1. The spectral basis functions (or
features) in Θ learned by NMF of the spec-
trograms of three different notes (A5flute,
F3guitar and C4piano): θC4piano

(top row),
θF3guitar (middle row), and θA5flute

(bottom
row).

played.

2. The Recognizer

The proposed recognizer does not use a set of pre-
defined features, instead, it learns them from the data
using NMF1. In the training phase, the recognizer starts
by normalizing the amplitude of the sounds, computing
their magnitude spectrograms2 (namely, S1 to SN), and
concatenating all the spectrograms to produce a single
matrix (S1, . . . ,SN) 3, where N is the number of sound
samples.

The NMF of the concatenated magnitude spectro-
grams results into two matrices: Θ, the mixing matrix,
whose columns consist of the spectra that characterize
the sounds in the training data set, and P, the source
matrix, whose lines contain the temporal envelopes of
the sounds. Using these matrices, the training data set
(S1, . . . ,SN) can be expressed as:

(S1, . . . ,SN) = ΘP . (1)

The spectra in the columns of Θ are the sound features
that later will be used in the classification stage of the

1Our code was developed in MATLAB and we used an NMF soft-
ware package by Virtanen [17].

2We do not use the spectrograms’ phase information. For simplic-
ity, in the remaining text we refer to the magnitude spectrogram as
spectrogram.

3(A, B) represents two concatenated matrices.



Time

Figure 2. The temporal envelopes in P
obtained by NMF of the spectrograms of
three different notes (A5flute, F3guitar and
C4piano). The three feature vectors found
are indicated by the three grey rectangles.

recognizer. The temporal envelopes in P contain the
values of these features. In other words, the columns of
Θ are spectral basis functions that define a new space
where the data is now represented. The envelopes in
P are vectors of coefficients, which are the coordinates
of the data in this space, that is, each time frame4 in
(S1, . . . ,SN) is now represented in this new space of
spectral basis functions by a new vector of coefficients.

To illustrate these concepts, let us consider a sim-
ple scenario in which the training set contains only three
samples: the notes A5 from flute, F3 from guitar and C4
from piano. NMF of the matrix of concatenated spectro-
grams (SA5flute

,SF3guitar
,SC4piano

) produces a matrix
Θ, represented in Figure 1 (for simplicity, we have plot-
ted the transpose of Θ in the figure). Each row in this
figure consists of one of the columns from Θ and de-
fines one spectral feature, which here we call θC4piano

,
θF3guitar

, and θA5flute
.

Along with Θ, NMF also produces a matrix P,
which, for the example used above is represented in Fig-
ure 2. There is a correspondence between the envelopes
in this figure and the spectra in Figure 1. The envelopes
in the ith row are associated to the spectrum in the ith
row of Figure 1. Each line in Figure 2 consists of one of
the lines from P, where the ith line contains the feature
values of feature θi. This way, a time frame from the
spectrograms in the data set is represented by one col-
umn of P (that is, a vector with one coefficient for each

4A time frame is a column of the spectrogram.

of the spectral features in Θ).
If we consider all the coefficients related to the

frames of one spectrogram and one basis function, we
have a vector of coefficients, which is a temporal enve-
lope. Now we can define matrix Pn which contains all
the vectors of coefficients (or temporal envelopes) that
are associated to spectrogram Sn. In this way, the data
set can be expressed as:

(S1, . . . ,SN) = Θ (P1, . . . ,PN) . (2)

The ith row of every matrix Pn is associated to the ith
basis function (the ith column) in Θ.

Considering the example again, since matrix
P contains the temporal envelopes associated with
three sounds, it can be represented as P =(
PA5flute

,PF3guitar
,PC4piano

)
, where Px contains

the temporal envelopes of note x. If we inspect Figure 2
more carefully, we can see that each row contains 3 tem-
poral envelopes: one for each of the 3 sounds used in
the example. For instance, the first row contains the en-
velopes p1, A5flute

, p1, F3guitar , and p1, C4piano , which
are the first rows of PA5flute

PF3guitar
and PC4piano

re-
spectively. In particular, we can observe that p1, C4piano

has more energy than the other two envelopes, which
suggests that θ1 (which we have named θC4piano ) de-
scribes a property of the C4 piano sample. The en-
velopes are time varying functions that describe how the
sounds evolve with time. For instance, p1, C4piano

indi-
cates that at the attack the C4 piano sample’s spectrum
can be obtained by multiplying θC4piano

by a strong co-
efficient, but as time passes lower coefficients are used
to obtain the spectra, eventually reaching zero, at the end
of the decay portion of the sound. Notice that this way
we obtain a sequence of spectra that when put together
actually form a spectrogram (SC4piano

).
By inspecting the rest of Figure 2, we can see that

the temporal envelope that is active in the middle row
corresponds to the second note in the sequence, that is,
F3guitar, which means that the middle spectra in Fig-
ure 1 describes this note. Finally, the temporal envelope
that is active in the bottom row in Figure 2 corresponds
to the first note in the sequence, that is, A5flute, which
indicates that the bottom spectra in Figure 1 accounts for
this sound.

The feature vectors used for training the classifier
are built using the values in the vectors Pn. A fea-
ture vector v is an M dimensional vector, where M is
the number of basis functions in Θ (that is, the num-
ber of features). The definition of v depends on the
type of sounds used. For instance, for musical sounds,
most envelopes in the matrices Pn have an attack por-
tion followed by a sustain and decay portions. We can
use the peaks of these envelopes (which are located at



the end of the attack and right before the sustain) to
build v. In more detail, when a peak is found in Pn,
the algorithm looks for a peak in the other lines of Pn,
such that the peaks are in close proximity, that is, the
algorithm analyses only a limited number of columns
(determined by ∆i) such that the peaks correspond to
the same event (such as the attack of a note). Thus,
vi,n = (v1,i,n, . . . , vM,i,n) is a vector of coefficients
associated to a small neighborhood of the ith frame of
spectrogram Sn: vm,i,n ∈ {pm,i−∆i,n, . . . , pm,i+∆i,n},
where pr,c,n is the coefficient in the rth row and cth col-
umn of Pn. When the envelopes in Pn are not well de-
fined, such as the envelopes of noisy sounds (like from
cars, crowds, flowing water, etc.), instead of using di-
rectly the coefficients in Pn to build v, we use the aver-
age value, the median and the energy of the envelopes.

This way, N training feature vectors are built using
the values in P1, . . .PN (one for each sound in the train-
ing set). The training feature vectors are used to train a
k-NN classifier that uses the Euclidean distance metric.
While we could extract several training feature vectors
from each sound (for example, some from the attack,
some from the sustain and decay parts of the sound),
here we use only one such vector per sound.

Going back to our example again, the next step
consists of evaluating P to determine the largest peak
in each of the submatrices (PA5flute

,PF3guitar
, and

PC4piano
) to create three training feature vectors (one

for each sound in the training set) as was described
above. The training feature vectors created by the al-
gorithm are marked by the grey rectangles in Figure 2.
Essentially, each feature vector represents a single note,
and these are the vectors used to train the k-NN. Note
that while we mentioned that for most musical sounds
we use the peaks from the attack portion of the sound,
the flute sound shows different characteristics from the
other two sounds in the example and therefore its feature
vector does not correspond to the attack portion of the
sound: the active temporal envelope of the flute sound
(first envelope in bottom row of Figure 2) looks very dif-
ferent from the active envelopes of the other two sounds,
and it can also be observed that the spectral feature that
characterizes this sound (θA5flute

) is almost sinusoidal.
A test feature vector consists also of an M dimen-

sional vector of coefficients extracted from M temporal
envelopes, but while the envelopes in the training set are
learned by NMF of the spectrograms, the envelopes in
the test set are determined by the following equation:

Ptest sound = Θ−1Stest sound , (3)

where Θ−1 is the pseudoinverse of Θ.
So, in order to classify a test sound, the algorithm

starts by representing it in the same space as the training

feature vectors: it normalizes the amplitude, computes
the spectrogram, and through equation 3 obtains a ma-
trix Ptest sound, with the coefficients of the test sound.
The algorithm then obtains a test feature vector by com-
puting the maximum peaks (for musical sounds) or by
computing the average, median and energy in the en-
velopes (for environmental sounds).

3. Result Analysis

We tested the classifier with two types of data:
sounds from musical instruments and from the environ-
ment. The environmental samples were extracted from
video footage from Duvideo’s archive and consist of 0.2
seconds samples. We used a total of 96 segments of
flowing water sounds (from rivers, fountains, etc.), 125
segments of moving car sounds, 1400 segments of train
sounds (which consist of sounds recorded inside a mov-
ing train) and 615 segments of sounds from crowds (in a
stadium, etc.).

The musical instrument samples consist of single
notes from flute, guitar and piano. The recordings were
made with a microphone (AKG C1000S) connected to
an USB Audio Interface (Edirol UA-25) and all record-
ings were digitized using a sampling frequency of 44100
Hz. In all, 48 notes (spanning four octaves) were
recorded, of which 12 are guitar (C3 to B3), 24 are pi-
ano (F#3 to F5) and 12 are flute (C5 to B5). Six different
recordings were made for each note using different play-
ing techniques, giving a total of 288 sound samples: 72
guitar samples, 72 flute samples and 144 piano samples.

To test the recognizer with the musical instrument
samples, we performed n-fold cross validation experi-
ments. The training sets were created with all the sam-
ples except one from each note and instrument (that is,
all training sets had 240 sounds). The remaining 48
sounds were used as test data (all the sounds from the
same instrument in the test data used the same technique,
such as staccato or sustain). Therefore all sounds were
used for training at five of the experiments and for test-
ing in one of the experiments. Since the number of sam-
ples from the same instrument and note in the training
sets is five, we used this number as the value for k in the
k-NN classifier.

The recognition results we obtained were very posi-
tive. When dealing with musical sounds, the recognizer
can not only identify the instrument but also the note
played. Table 1 shows that the accuracy of the system
is consistently very high. The columns Instrument and
Note show the number of correctly classified samples
in terms of instrument and note, respectively. The last
column shows the total number of tested samples. All



Table 1. Classification rates for the musical
instrument samples.

Instrument Note Total number

# % # % of samples

Flute 70 97% 62 86% 72

Guitar 72 100% 72 100% 72

Piano 137 95% 143 99% 144

Table 2. Confusion matrix for the environ-
mental samples.

Water Car Train People Total

Water 75 20 0 1 78%

Car 7 61 6 51 49%

Train 0 342 1053 5 75%

People 0 35 0 580 94%

guitar samples were correctly classified both in terms of
note and instrument. The instrument classification was
also very high for flute and piano (97% and 95%, respec-
tively) and there was only one piano sample that was
classified as the wrong note. The worse results were the
note classification of flute, but even so this gave quite an
acceptable recognition rate (86%).

The value of k for the tests performed with the envi-
ronmental sounds was set in a different manner:
k = ceiling(

√
mean(|C1|, . . . , |C4|), where |Ci| is the

number of samples from class Ci. The results were ex-
cellent for the class people with 94% recognition rate
and also good for the classes water and train (see Ta-
ble 2). Even though we had more car segments than
water, the recognition rate of car sounds was the low-
est. This may be due to some existing similarities be-
tween car sounds and large crowds’ sounds (note how
there are also some people’s sounds misclassified as car
sounds), which suggests that more car samples would be
necessary to improve the recognition capability of these
sounds.

4. Conclusions

The main contribution of this paper is the use of non
speech sounds to annotate video. For that end, we pro-
posed a sound recognizer that instead of using a set of
predefined features, it learns a set of spectral features

from the data using NMF. The recognizer has been in-
cluded in the workflow of a multimedia content provider
company to annotate video.

We have tested the recognizer with environmen-
tal sounds extracted from a real video archive and ob-
tained very high recognition rates for some of the classes
tested. It is worth to note that the environmental sounds
used have a noisy nature which adds to the difficulty of
finding features that successfully separate them.

The recognizer is not restricted to environmental
sounds; it can also deal with other types of data, like mu-
sic samples. When tested with musical instrument sam-
ples, this approach proved very successful: very high
recognition rates (from 95% to 100%) were obtained for
all tested instruments. In addition, the recognizer is also
able to identify the note being played: again, very high
recognition rates (from 86% to 100%) were obtained for
samples spanning four octaves.

As future work we plan to use more samples from
the real video archive that include other classes of
sounds. We also plan to extend the recognizer with a
pre-processing module which decides if the signal being
analyzed is a musical sound or an environmental sound,
such that the recognizer can decide what type of fea-
ture vector to use, that is, how to process the activation
values in the envelopes learned by NMF (a vector with
the peak activation values near the note onset for musi-
cal sounds, or a vector with the average value, median
and energy of the activations for environmental sounds).
This distinction can be done by analyzing the rhythmic
content in the data. The rhythmic content has been used
on music genre classification and contains information
such as the beat, the tempo, the regularity of the rhythm
and time signature [19–22]. Another possible extension
of this work is to combine it with a speech recognizer so
that both information from the environment and speech
are used to annotate the data.
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