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ABSTRACT 

The Carnegie Mellon Laptop Orchestra (CMLO) is a 
collection of computers that communicate through a 
wireless network and collaborate to generate music. The 
CMLO is the culmination of a course on Computer Music 
Systems and Information Processing, where students learn 
and apply techniques for audio and MIDI programming, 
real-time synchronization and scheduling, music 
representation, and music information retrieval. 

1. INTRODUCTION 

Starting with the League of Automatic Music Composers 
and the Hub [1], the idea of networked computers running 
semi-autonomously to compose and perform music has 
been a fascinating subject. Recently, the Princeton Laptop 
Orchestra [6] was created, with input from composers, 
computer music researchers, and students. Inspired by 
these efforts, we formed the Carnegie Mellon Laptop 
Orchestra, or CMLO, as part of a course offered by the 
Computer Science Department.  

The design and musical directions of the CMLO are 
determined by the instructional goals of the course and by 
the musical knowledge and background of the students. 
The main goal of the class is to learn how to design and 
implement real-time interactive music systems (and related 
systems such as robotics, embedded systems, games, and 
process control) by implementing small projects. Since 
most students are not studying music, they come with a 
variety of backgrounds and experience. All are familiar 
with popular music of some kind, but few are well versed 
in contemporary art music. The CMLO is structured 
around very conventional music, but offers some 
innovation in the areas of modular software for music 
making, network control and delivery of music, and real-
time interaction with compositional algorithms. 

Reflecting the emphasis of the couse, we describe the 
software architecture of the CMLO, the workings of the 
components, and finally the outcome of a public concert. 

Overall, the CMLO was a great success, not only in terms 
of producing music but also in motivating students to 
integrate and apply what they learned in the course. 
Undoubtedly, working in a software development team, 
coordinating changing specifications, and integrating and 
testing software were all valuable additions to the course. 

2. CMLO SYSTEM DESIGN 

Class projects are difficult to design. On the one hand, it is 
good if everyone has a job to do that somehow supports 
the whole. On the other hand, it is risky if the overall 
success depends upon each component working perfectly. 
The CMLO has some critical components, but many are 
not so critical for the success of the whole system. In most 
cases, we assigned two students to work together on the 
most critical components. 

2.1. Components 

The overall design, as shown in Figure 1, is based on a 
central hub that relays messages to clients. Although the 
central hub must not fail, the system allows clients to join 
and leave the network on-the-fly. So, for example, a client 
can be stopped, the code can be edited, and the client can 
be restarted and re-attached to the network. 

Most of the clients represent virtual musicians, serving 
conventional roles that include: drummer, bass player, 
chord player, melody player, and arpegiator. These 
musicians are controlled by information that is equivalent 
to a “lead sheet.” In other words, musicians get time 
signature, tempo, key signature, and chord symbols, but no 
information at the note level. This gives the creator of the 
musicians the opportunity to explore any number of 
compositional algorithms and generative music techniques. 
Musicians are also created for different styles that include 
blues, funk, and techno. Some musicians can handle 
multiple styles, and some are specialists. The specialists 
simply stop playing if the current musical style is not 
within their capability. 
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Figure 1. System organization of the CMU Laptop 
Orchestra. 

The musicians are coordinated and controlled by 
sending them state information via the network. Some 
information, e.g. a chord progression, is generated 
algorithmically, and all the control information originates 
from a program called Harmony. This program makes a 
plan for a group of measures and sends this plan to all the 
musicians through the central hub. 

Harmony, in turn, responds to some high-level controls 
that include tempo, key, and musical style. This 
information is manipulated using a program with a 
graphical interface. Like the other components the 
graphical interface can join the network dynamically. 
Figure 2 shows the interface used to control the orchestra. 

For example, if a user decides to change the current 
style to Blues, he or she can choose this style in the GUI 
(Figure 2). As a result, the interface process sends a style-
changing message via the central hub to the Harmony 
process. Once it receives that message, the Harmony 
process generates a new chord progression for that style 
and sends this chord progression along with style 
information to the virtual musician processes, again via the 
central hub. In order to have all musicians start the new 
style at the same time, the Harmony process adds a 
timestamp to each message and sends the messages well 
ahead of real time. When a musician receives the style 
information, it checks if it knows how to play this style, in 
which case it uses the chord progression information to 
generate music. The details of how style, chords, and other 
information are interpreted to improvise music are left up 
to the individual clients. 

Some debugging support was written to help debug the 
complete system. The debug monitor program can join the 
network, monitor all commands coming from the Harmony 
program, and examine the behavior of the clock 
synchronization protocol. 

Other modules were contemplated, including synthesis 
modules (currently musicians use local MIDI synthesizers) 

and modules to collect and stream MIDI to remote concert 
sites. As it turns out, we used Skype (www.skype.com) to 
transmit audio and video from the concert to the instructor, 
who was (safely) over 3000 miles away. 

 
 

 
Figure 2. Graphical user interface to control style, 
volume, tempo, and key during performances. 

2.2. Message Communication 

The various processes communicate via TCP/IP through a 
central hub or server, and all other processes (musicians, 
Harmony, graphical interface, debugging tools) are called 
clients. Routing all messages through a central process has 
obvious drawbacks, but in practice, it greatly simplifies 
communication by: (1) establishing a single connection 
point for each component, (2) centralizing the recovery 
code needed for dropped connections (clients assume that 
the central hub never stops, and only the hub needs to 
handle the case where a client crashes or disconnects), (3) 
creating a single authority for time synchronization, and 
(4) providing a mechanism for locating desired recipients 
of messages. 

Although OSC (http://opensoundcontrol.org) [7] is 
frequently used as the foundation for distributed music 
applications, our need for many-to-many communication 
led us to create our own protocol just for this distributed 
application. Messages are sent from clients to the hub, 
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which then forwards messages to appropriate clients. The 
messages are: 
• I_am: used by a client when connecting to the hub. 

Identifies the client by category such as “drum,” 
“bass,” “ui,” or “har;” 

• Style: sets the style to “techno,” “blues,” etc.; 
• Time: specifies the real time of a given beat; 
• Tempo: specifies a tempo change; 
• Volume: specifies volume scale factor; 
• Tchange: requests a sudden tempo change; 
• Accel: requests a gradual tempo change; 
• Key: specifies a key change; 
• Chords: specifies a chord as a pitch class set, a root, 

and the position (measure) of the chord within a 
sequence of chord changes. 

For simplicity, messages are all strings of plain text. 
Messages are sent to the hub and optionally include a set 
of logical destinations. For example, the graphical 
interface program can send a Tchange message with a 
destination of “har.” The hub will forward this message to 
the Harmony program (which identified itself to the hub 
using an “I_am har” message). The Harmony program 
will then plan a suitable time to introduce a tempo change 
(usually the end of an 8-bar phrase) and issue a Tempo 
message to all clients. 

2.3. Synchronization 

Synchronization in the laptop orchestra is important 
because of the distribution of machines, the potentially 
high latency of wireless communication, and the fact that 
the generated music is beat based. Synchronization is 
achieved in a layered fashion and relies heavily on time-
stamped messages. The important principle here is that the 
client behavior should depend on the message content 
including timestamps, but not on the message delivery 
time, which is difficult to control. 

Synchronization is achieved though several layers of 
timing specification. At the top layer, musical activities are 
scheduled according to integer beat numbers. For example, 
chord changes or style changes will take place on integer 
beat boundaries. Changes are sent in advance of the actual 
beat to allow time for messages to propagate, and when the 
messages arrive early, clients use a scheduler to delay the 
processing of the message until the indicated beat time.  

To determine when beats occur, there is a system-wide 
mapping from real-time to beat-time. This mapping is 
specified as a simple linear function with two coefficients 
(offset and rate). This specification avoids any need for 
clients to keep a cumulative record of tempo changes in 
order to know the current beat, and therefore clients can 
join the network at any time and quickly synchronize with 
other clients.  

At the lowest level of timing specification, all clients 
must have a shared view of the global real time. Elaborate 
schemes, including NTP [4] could be used, but for 

simplicity and pedagogical purposes, we embedded time 
synchronization into the clients and the central hub, which 
serves as a time server. The method is quite simple: clients 
periodically request the real time from the hub. When the 
time tr returns, the client knows that this time was correct 
at some point between when the request was issued (local 
time t1) and when the reply was received (local time t2). If 
these values are sufficiently small, which is usually the 
case, the client estimates that the real time was correct at 
the half-way point between sending the request and 
receiving the reply. Thus the offset between hub time and 
local time is approximately tr – (t2–t1)/2. If the difference 
(t2–t1) is large, this round of synchronization is simply 
ignored and the previously estimated offset is used until 
the next round. 

There was some concern that network traffic would 
either be too heavy or the delays would be unacceptable. 
The protocols were designed conservatively in anticipation 
of long delays. We also planned to have a backup hub 
running on a wired Ethernet, which would cut the wireless 
traffic approximately in half. In practice everything 
worked very well, and we even ran Skype with an audio 
and video connection over the same wireless network 
without problems. 

2.4. Program Structure 

The typical laptop orchestra program polls constantly for 
tasks to perform. Polling is accomplished either by a 
simple loop or by using a periodic function call. The 
polling function checks for an incoming message and calls 
a scheduler routine to test for any ready-to-run events. If a 
message arrives, it is interpreted. For example, a Key 
message, specifying a key change, normally schedules a 
key change at the beat indicated in the message. The 
scheduler maintains a sorted list (a priority queue) of 
events. Each event is represented by time (in beats), a 
function to be called, and parameters to be passed to the 
function [2]. For example, the Key message handler might 
schedule an event at beat 64 to call the function named 
key_change, with parameters indicating the key of d-
minor. At beat 64, this event becomes ready to run, so the 
scheduler calls key_change and removes the event from 
the queue. 

This scheduler is also used to generate music. For 
example, a simple bass player that plays quarter notes can 
be implemented as a function that looks at a chord 
progression data structure to find the current chord and 
select an appropriate pitch to play. After sending a MIDI 
key-down message to start the note, the bass player 
function schedules a key-up message one beat into the 
future. The bass player function also schedules an event to 
call back to the same bass player function one beat in the 
future. This generates an infinite sequence of quarter notes. 
Incoming Chords messages will change the chord 
progression data structure, affecting pitch selection. 
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Of course, this simple scheme can be elaborated. The 
bass player might stop (by not rescheduling itself) based 
on the current style, and the message handler for Style 
might need to start the appropriate bass player. The bass 
player can vary the rhythm by rescheduling itself at any 
beat time (or fraction thereof). For example, the current 
drummer algorithm works by reading rhythmic patterns 
from arrays of rhythm data.  

3. IMPLEMENTATION 

The CMLO is implemented using Serpent [3], a real-
time scripting language. Serpent was used because, as a 
scripting language, it hides many system-dependent data 
types, calling conventions, and details. In general, a 
Serpent program is much shorter than the corresponding 
Java or C++ program, but Java offers many more on-line 
resources and code examples. Most students with Java 
experience feel that a Java implementation would have 
taken about equal effort. Serpent has the advantage of a 
real-time garbage collector, but for this project, occasional 
brief stalls due to garbage collection would probably not 
be noticed. 

Since early course assignments required students to 
implement and use their own schedulers and other useful 
components in anticipation of the CMLO project, it was 
believed that their existing software could be reused in the 
CMLO. However, one of the most limiting factors in the 
CMLO development was the constantly changing protocol 
specifications, and the coordination effort was almost 
overwhelming. In retrospect, it probably would have been 
better to develop some solid core components, including a 
scheduler, time synchronization module, message 
marshalling and parsing, and data structures for chord 
progressions and other music state information. This 
would have insured greater compatibility between clients 
and simplified system integration. 

Another problem was that testing was difficult without 
all the system components in place. Leaving each student 
to construct their own test scaffolding creates much 
duplicated effort and in practice minimized the amount of 
testing students could accomplish. A ready-made test 
environment would have helped. 

Pedagogically, the difficulties we encountered can be 
viewed as very valuable learning experiences. Also, 
leaving even the lowest levels of system protocol design to 
the students seemed to create a greater sense of ownership, 
interest, and ultimately pride in the resulting system. On 
the other hand, it would have been fun to spend more time 
on music generation and control, which might have been 
possible if more infrastructure already had been in place. 
The best path is perhaps a matter of choosing which 
lessons are most valuable. 

The public performance of the CMLO took place in 
December, 2006. Laptops and portable speakers were 
arranged around an atrium that was simultaneously 

housing a poster session where students in other courses 
were presenting their work. 

4. CONCLUSIONS 

The CMU Laptop Orchestra provided a fun and 
challenging project as the culmination of a computer 
science course on computer music systems 
implementation. The orchestra provided system design 
and implementation challenges, a creative musical outlet, 
and an interesting platform for collaborative distributed 
music making. The platform serves to synchronize 
distributed virtual musicians, providing them with beats, 
tempo, chord progressions, and style, and the virtual 
musicians play familiar musical roles of bass, drums, 
melody, and harmony. 

The potential for widespread distribution is quite 
interesting. We were almost able to install a graphical 
interface in Belfast during the performance in Pittsburgh. 
The potential is certainly there to locate conducting and 
control anywhere in the world. Any number of musicians 
can join the “jam session,” and a future version might even 
support live musicians playing along with virtual ones. In 
this case, it might be necessary to run the virtual musicians 
well ahead of real time and deliver music early to the live 
players to avoid network latency. 

Another potential is to create virtual bands for virtual 
worlds such as Second Life. Here, real and virtual players 
might gather to perform for virtual and real audiences. The 
Improv system [5] provides an example of how these 
virtual players might be created. Perhaps a virtual version 
of “American Idol” would provide an interesting showcase 
for music generation algorithms and computer music in 
general. 

 REFERENCES 

[1] Chadabe, J. Electric Sound: The Past and 
Promise of Electronic Music. Upper Saddle 
River, New Jersey: Prentice Hall, (1997), pp. 
295-297. 

[2] Dannenberg, “Software Design for Interactive 
Multimedia Performance,” Interface - Journal of 
New Music Research, 22(3) (August 1993), pp. 
213-228. 

[3] Dannenberg. “A Language for Interactive Audio 
Applications,” in Proceedings of the 2002 
International Computer Music Conference. San 
Francisco: International Computer Music 
Association, (2002), pp. 509-15. 

[4] Mills, D. Network Time Protocol (NTP). IETF 
RFC 958. 



The Carnegie Mellon Laptop Orchestra Dannenberg, et al., ICMC 2007. 
 

5 

[5] Singer, E., Goldberg, A., Perlin, K., Castiglia, C., 
and Liao, S. “Improv: Interactive Improvisational 
Animation and Music” In ISEA 96 Proceedings, 
Seventh International Symposium on Electronic 
Art. Rotterdam, Netherlands: ISEA96 Foundation 
(1997). 

[6] Trueman, D., Cook, P., Smallwood, S., and 
Wang, G. “PLOrk: Princeton Laptop Orchestra, 

Year 1” In Proceedings of the 2006 International 
Computer Music Conference (ICMC), New 
Orleans, U.S., November 2006. 

[7] Wright, M., Freed, A., "Open Sound Control: A 
New Protocol for Communicating with Sound 
Synthesizers", in International Computer Music 
Conference, Thessaloniki, Greece, 1997. 

 


