
1Originally published as: Roger B. Dannenberg, Sofia Cavaco, Eugene Ang, Igor Avramovic, Barkin Aygun, Jinwook
Baek, Eric Barndollar, Daniel Duterte, Jeffrey Grafton, Robert Hunter, Chris Jackson, Umpei Kurokawa, Daren Makuck,
Timothy Mierzejewski, Michael Rivera, Dennis Torres, and Apphia Yu. “The Carnegie Mellon Laptop Orchestra.” In
Proceedings of the 2007 International Computer Music Conference, Volume II. San Francisco: The International
Computer Music Association, (August 2007), pp. II-340 - 343.

THE CARNEGIE MELLON LAPTOP ORCHESTRA
1

 Roger B. Dannenberg, Sofia Cavaco, Eugene Ang, Igor Avramovic, Barkin Aygun,
Jinwook Baek, Eric Barndollar, Daniel Duterte, Jeffrey Grafton, Robert Hunter,

 Chris Jackson, Umpei Kurokawa, Daren Makuck, Timothy Mierzejewski,
Michael Rivera, Dennis Torres, Apphia Yu

 Carnegie Mellon University
School of Computer Science

ABSTRACT

The Carnegie Mellon Laptop Orchestra (CMLO) is a
collection of computers that communicate through a
wireless network and collaborate to generate music. The
CMLO is the culmination of a course on Computer Music
Systems and Information Processing, where students learn
and apply techniques for audio and MIDI programming,
real-time synchronization and scheduling, music
representation, and music information retrieval.

1. INTRODUCTION

Starting with the League of Automatic Music Composers
and the Hub [1], the idea of networked computers running
semi-autonomously to compose and perform music has
been a fascinating subject. Recently, the Princeton Laptop
Orchestra [6] was created, with input from composers,
computer music researchers, and students. Inspired by
these efforts, we formed the Carnegie Mellon Laptop
Orchestra, or CMLO, as part of a course offered by the
Computer Science Department.

The design and musical directions of the CMLO are
determined by the instructional goals of the course and by
the musical knowledge and background of the students.
The main goal of the class is to learn how to design and
implement real-time interactive music systems (and related
systems such as robotics, embedded systems, games, and
process control) by implementing small projects. Since
most students are not studying music, they come with a
variety of backgrounds and experience. All are familiar
with popular music of some kind, but few are well versed
in contemporary art music. The CMLO is structured
around very conventional music, but offers some
innovation in the areas of modular software for music
making, network control and delivery of music, and real-
time interaction with compositional algorithms.

Reflecting the emphasis of the couse, we describe the
software architecture of the CMLO, the workings of the
components, and finally the outcome of a public concert.

Overall, the CMLO was a great success, not only in terms
of producing music but also in motivating students to
integrate and apply what they learned in the course.
Undoubtedly, working in a software development team,
coordinating changing specifications, and integrating and
testing software were all valuable additions to the course.

2. CMLO SYSTEM DESIGN

Class projects are difficult to design. On the one hand, it is
good if everyone has a job to do that somehow supports
the whole. On the other hand, it is risky if the overall
success depends upon each component working perfectly.
The CMLO has some critical components, but many are
not so critical for the success of the whole system. In most
cases, we assigned two students to work together on the
most critical components.

2.1. Components

The overall design, as shown in Figure 1, is based on a
central hub that relays messages to clients. Although the
central hub must not fail, the system allows clients to join
and leave the network on-the-fly. So, for example, a client
can be stopped, the code can be edited, and the client can
be restarted and re-attached to the network.

Most of the clients represent virtual musicians, serving
conventional roles that include: drummer, bass player,
chord player, melody player, and arpegiator. These
musicians are controlled by information that is equivalent
to a “lead sheet.” In other words, musicians get time
signature, tempo, key signature, and chord symbols, but no
information at the note level. This gives the creator of the
musicians the opportunity to explore any number of
compositional algorithms and generative music techniques.
Musicians are also created for different styles that include
blues, funk, and techno. Some musicians can handle
multiple styles, and some are specialists. The specialists
simply stop playing if the current musical style is not
within their capability.

The Carnegie Mellon Laptop Orchestra Dannenberg, et al., ICMC 2007.

2

Figure 1. System organization of the CMU Laptop
Orchestra.

The musicians are coordinated and controlled by
sending them state information via the network. Some
information, e.g. a chord progression, is generated
algorithmically, and all the control information originates
from a program called Harmony. This program makes a
plan for a group of measures and sends this plan to all the
musicians through the central hub.

Harmony, in turn, responds to some high-level controls
that include tempo, key, and musical style. This
information is manipulated using a program with a
graphical interface. Like the other components the
graphical interface can join the network dynamically.
Figure 2 shows the interface used to control the orchestra.

For example, if a user decides to change the current
style to Blues, he or she can choose this style in the GUI
(Figure 2). As a result, the interface process sends a style-
changing message via the central hub to the Harmony
process. Once it receives that message, the Harmony
process generates a new chord progression for that style
and sends this chord progression along with style
information to the virtual musician processes, again via the
central hub. In order to have all musicians start the new
style at the same time, the Harmony process adds a
timestamp to each message and sends the messages well
ahead of real time. When a musician receives the style
information, it checks if it knows how to play this style, in
which case it uses the chord progression information to
generate music. The details of how style, chords, and other
information are interpreted to improvise music are left up
to the individual clients.

Some debugging support was written to help debug the
complete system. The debug monitor program can join the
network, monitor all commands coming from the Harmony
program, and examine the behavior of the clock
synchronization protocol.

Other modules were contemplated, including synthesis
modules (currently musicians use local MIDI synthesizers)

and modules to collect and stream MIDI to remote concert
sites. As it turns out, we used Skype (www.skype.com) to
transmit audio and video from the concert to the instructor,
who was (safely) over 3000 miles away.

Figure 2. Graphical user interface to control style,
volume, tempo, and key during performances.

2.2. Message Communication

The various processes communicate via TCP/IP through a
central hub or server, and all other processes (musicians,
Harmony, graphical interface, debugging tools) are called
clients. Routing all messages through a central process has
obvious drawbacks, but in practice, it greatly simplifies
communication by: (1) establishing a single connection
point for each component, (2) centralizing the recovery
code needed for dropped connections (clients assume that
the central hub never stops, and only the hub needs to
handle the case where a client crashes or disconnects), (3)
creating a single authority for time synchronization, and
(4) providing a mechanism for locating desired recipients
of messages.

Although OSC (http://opensoundcontrol.org) [7] is
frequently used as the foundation for distributed music
applications, our need for many-to-many communication
led us to create our own protocol just for this distributed
application. Messages are sent from clients to the hub,

The Carnegie Mellon Laptop Orchestra Dannenberg, et al., ICMC 2007.

3

which then forwards messages to appropriate clients. The
messages are:
• I_am: used by a client when connecting to the hub.

Identifies the client by category such as “drum,”
“bass,” “ui,” or “har;”

• Style: sets the style to “techno,” “blues,” etc.;
• Time: specifies the real time of a given beat;
• Tempo: specifies a tempo change;
• Volume: specifies volume scale factor;
• Tchange: requests a sudden tempo change;
• Accel: requests a gradual tempo change;
• Key: specifies a key change;
• Chords: specifies a chord as a pitch class set, a root,

and the position (measure) of the chord within a
sequence of chord changes.

For simplicity, messages are all strings of plain text.
Messages are sent to the hub and optionally include a set
of logical destinations. For example, the graphical
interface program can send a Tchange message with a
destination of “har.” The hub will forward this message to
the Harmony program (which identified itself to the hub
using an “I_am har” message). The Harmony program
will then plan a suitable time to introduce a tempo change
(usually the end of an 8-bar phrase) and issue a Tempo
message to all clients.

2.3. Synchronization

Synchronization in the laptop orchestra is important
because of the distribution of machines, the potentially
high latency of wireless communication, and the fact that
the generated music is beat based. Synchronization is
achieved in a layered fashion and relies heavily on time-
stamped messages. The important principle here is that the
client behavior should depend on the message content
including timestamps, but not on the message delivery
time, which is difficult to control.

Synchronization is achieved though several layers of
timing specification. At the top layer, musical activities are
scheduled according to integer beat numbers. For example,
chord changes or style changes will take place on integer
beat boundaries. Changes are sent in advance of the actual
beat to allow time for messages to propagate, and when the
messages arrive early, clients use a scheduler to delay the
processing of the message until the indicated beat time.

To determine when beats occur, there is a system-wide
mapping from real-time to beat-time. This mapping is
specified as a simple linear function with two coefficients
(offset and rate). This specification avoids any need for
clients to keep a cumulative record of tempo changes in
order to know the current beat, and therefore clients can
join the network at any time and quickly synchronize with
other clients.

At the lowest level of timing specification, all clients
must have a shared view of the global real time. Elaborate
schemes, including NTP [4] could be used, but for

simplicity and pedagogical purposes, we embedded time
synchronization into the clients and the central hub, which
serves as a time server. The method is quite simple: clients
periodically request the real time from the hub. When the
time tr returns, the client knows that this time was correct
at some point between when the request was issued (local
time t1) and when the reply was received (local time t2). If
these values are sufficiently small, which is usually the
case, the client estimates that the real time was correct at
the half-way point between sending the request and
receiving the reply. Thus the offset between hub time and
local time is approximately tr – (t2–t1)/2. If the difference
(t2–t1) is large, this round of synchronization is simply
ignored and the previously estimated offset is used until
the next round.

There was some concern that network traffic would
either be too heavy or the delays would be unacceptable.
The protocols were designed conservatively in anticipation
of long delays. We also planned to have a backup hub
running on a wired Ethernet, which would cut the wireless
traffic approximately in half. In practice everything
worked very well, and we even ran Skype with an audio
and video connection over the same wireless network
without problems.

2.4. Program Structure

The typical laptop orchestra program polls constantly for
tasks to perform. Polling is accomplished either by a
simple loop or by using a periodic function call. The
polling function checks for an incoming message and calls
a scheduler routine to test for any ready-to-run events. If a
message arrives, it is interpreted. For example, a Key
message, specifying a key change, normally schedules a
key change at the beat indicated in the message. The
scheduler maintains a sorted list (a priority queue) of
events. Each event is represented by time (in beats), a
function to be called, and parameters to be passed to the
function [2]. For example, the Key message handler might
schedule an event at beat 64 to call the function named
key_change, with parameters indicating the key of d-
minor. At beat 64, this event becomes ready to run, so the
scheduler calls key_change and removes the event from
the queue.

This scheduler is also used to generate music. For
example, a simple bass player that plays quarter notes can
be implemented as a function that looks at a chord
progression data structure to find the current chord and
select an appropriate pitch to play. After sending a MIDI
key-down message to start the note, the bass player
function schedules a key-up message one beat into the
future. The bass player function also schedules an event to
call back to the same bass player function one beat in the
future. This generates an infinite sequence of quarter notes.
Incoming Chords messages will change the chord
progression data structure, affecting pitch selection.

The Carnegie Mellon Laptop Orchestra Dannenberg, et al., ICMC 2007.

4

Of course, this simple scheme can be elaborated. The
bass player might stop (by not rescheduling itself) based
on the current style, and the message handler for Style
might need to start the appropriate bass player. The bass
player can vary the rhythm by rescheduling itself at any
beat time (or fraction thereof). For example, the current
drummer algorithm works by reading rhythmic patterns
from arrays of rhythm data.

3. IMPLEMENTATION

The CMLO is implemented using Serpent [3], a real-
time scripting language. Serpent was used because, as a
scripting language, it hides many system-dependent data
types, calling conventions, and details. In general, a
Serpent program is much shorter than the corresponding
Java or C++ program, but Java offers many more on-line
resources and code examples. Most students with Java
experience feel that a Java implementation would have
taken about equal effort. Serpent has the advantage of a
real-time garbage collector, but for this project, occasional
brief stalls due to garbage collection would probably not
be noticed.

Since early course assignments required students to
implement and use their own schedulers and other useful
components in anticipation of the CMLO project, it was
believed that their existing software could be reused in the
CMLO. However, one of the most limiting factors in the
CMLO development was the constantly changing protocol
specifications, and the coordination effort was almost
overwhelming. In retrospect, it probably would have been
better to develop some solid core components, including a
scheduler, time synchronization module, message
marshalling and parsing, and data structures for chord
progressions and other music state information. This
would have insured greater compatibility between clients
and simplified system integration.

Another problem was that testing was difficult without
all the system components in place. Leaving each student
to construct their own test scaffolding creates much
duplicated effort and in practice minimized the amount of
testing students could accomplish. A ready-made test
environment would have helped.

Pedagogically, the difficulties we encountered can be
viewed as very valuable learning experiences. Also,
leaving even the lowest levels of system protocol design to
the students seemed to create a greater sense of ownership,
interest, and ultimately pride in the resulting system. On
the other hand, it would have been fun to spend more time
on music generation and control, which might have been
possible if more infrastructure already had been in place.
The best path is perhaps a matter of choosing which
lessons are most valuable.

The public performance of the CMLO took place in
December, 2006. Laptops and portable speakers were
arranged around an atrium that was simultaneously

housing a poster session where students in other courses
were presenting their work.

4. CONCLUSIONS

The CMU Laptop Orchestra provided a fun and
challenging project as the culmination of a computer
science course on computer music systems
implementation. The orchestra provided system design
and implementation challenges, a creative musical outlet,
and an interesting platform for collaborative distributed
music making. The platform serves to synchronize
distributed virtual musicians, providing them with beats,
tempo, chord progressions, and style, and the virtual
musicians play familiar musical roles of bass, drums,
melody, and harmony.

The potential for widespread distribution is quite
interesting. We were almost able to install a graphical
interface in Belfast during the performance in Pittsburgh.
The potential is certainly there to locate conducting and
control anywhere in the world. Any number of musicians
can join the “jam session,” and a future version might even
support live musicians playing along with virtual ones. In
this case, it might be necessary to run the virtual musicians
well ahead of real time and deliver music early to the live
players to avoid network latency.

Another potential is to create virtual bands for virtual
worlds such as Second Life. Here, real and virtual players
might gather to perform for virtual and real audiences. The
Improv system [5] provides an example of how these
virtual players might be created. Perhaps a virtual version
of “American Idol” would provide an interesting showcase
for music generation algorithms and computer music in
general.

 REFERENCES

[1] Chadabe, J. Electric Sound: The Past and
Promise of Electronic Music. Upper Saddle
River, New Jersey: Prentice Hall, (1997), pp.
295-297.

[2] Dannenberg, “Software Design for Interactive
Multimedia Performance,” Interface - Journal of
New Music Research, 22(3) (August 1993), pp.
213-228.

[3] Dannenberg. “A Language for Interactive Audio
Applications,” in Proceedings of the 2002
International Computer Music Conference. San
Francisco: International Computer Music
Association, (2002), pp. 509-15.

[4] Mills, D. Network Time Protocol (NTP). IETF
RFC 958.

The Carnegie Mellon Laptop Orchestra Dannenberg, et al., ICMC 2007.

5

[5] Singer, E., Goldberg, A., Perlin, K., Castiglia, C.,
and Liao, S. “Improv: Interactive Improvisational
Animation and Music” In ISEA 96 Proceedings,
Seventh International Symposium on Electronic
Art. Rotterdam, Netherlands: ISEA96 Foundation
(1997).

[6] Trueman, D., Cook, P., Smallwood, S., and
Wang, G. “PLOrk: Princeton Laptop Orchestra,

Year 1” In Proceedings of the 2006 International
Computer Music Conference (ICMC), New
Orleans, U.S., November 2006.

[7] Wright, M., Freed, A., "Open Sound Control: A
New Protocol for Communicating with Sound
Synthesizers", in International Computer Music
Conference, Thessaloniki, Greece, 1997.

